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The fundamental objects that we deal with in calculus that occur in calculus and describe the process of
are functions. This chapter prepares the way for calcu-  using these functions as mathematical models of real-
lus by discussing the basic ideas concerning functions, ~ world phenomena. We also discuss the use of graph- A
their graphs, and ways of transforming and combining  ing calculators and graphing software for computers
them. We stress that a function can be represented in and see that parametric equations provide the best
different ways: by an equation, in a table, by a graph,  method for graphing certain types of curves. A
or in words. We look at the main types of functions
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Four Ways to Represent a Function « « =« =« =« « o o o o &

Functions arise whenever one quantity depends on another. Consider the following
four situations.

A. The area A of a circle depends on the radius r of the circle. The rule that con-
nects 7 and A is given by the equation A = 7%, With each positive number
there is associated one value of A, and we say that A is a function of r.

Population B. The human population of the world P depends on the time ¢. The table gives esti-
Year (millions) mates of the world population P(7) at time 7, for certain years. For instance,
1900 1650 P(1950) = 2,560,000,000
1910 1750 But for each value of the time ¢ there is a corresponding value of P, and we say
1920 1860 that P is a function of z.
1930 2070 . .
1940 2300 C. The cost C of mailing a first-class letter depends on the weight w of the letter.
1950 2'5 60 Although there is no simple formula that connects w and C, the post office has a
1960 3040 rule for determining C when w is known.
1970 3710 D. The vertical acceleration a of the ground as measured by a seismograph during
1980 4450 an earthquake is a function of the elapsed time ¢. Figure 1 shows a graph gener-
1990 5280 ated by seismic activity during the Northridge earthquake that shook Los Angeles
2000 6070 in 1994. For a given value of ¢, the graph provides a corresponding value of a.
a
(em/s?)
100 +
50+
t (seconds)
FIGURE 1 -501
Vertical ground acceleration during
the Northridge earthquake Calif. Dept. of Mines and Geology

Each of these examples describes a rule whereby, given a number (7, ¢, w, or ?),
another number (A, P, C, or a) is assigned. In each case we say that the second num-
ber is a function of the first number.

11
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X — f — fx)
(input) (output)
FIGURE 2

Machine diagram for a function f

A R

FIGURE 3
Arrow diagram for f

A function f is a rule that assigns to each element x in a set A exactly one
element, called f(x), in a set B.

We usually consider functions for which the sets A and B are sets of real numbers.
The set A is called the domain of the function. The number f(x) is the value of f
at X and is read “f of x.” The range of f is the set of all possible values of f(x) as x
varies throughout the domain. A symbol that represents an arbitrary number in the
domain of a function f is called an independent variable. A symbol that represents
a number in the range of f is called a dependent variable. In Example A, for
instance, r is the independent variable and A is the dependent variable.

It’s helpful to think of a function as a machine (see Figure 2). If x is in the domain
of the function f, then when x enters the machine, it’s accepted as an input and the
machine produces an output f(x) according to the rule of the function. Thus, we can
think of the domain as the set of all possible inputs and the range as the set of all pos-
sible outputs.

The preprogrammed functions in a calculator are good examples of a function as a
machine. For example, the square root key on your calculator is such a function. You
press the key labeled v/ (or \/;) and enter the input x. If x < 0, then x is not in the
domain of this function; that is, x is not an acceptable input, and the calculator will
indicate an error. If x = 0, then an approximation to /x will appear in the display.
Thus, the v/x key on your calculator is not quite the same as the exact mathematical
function f defined by f(x) = /x.

Another way to picture a function is by an arrow diagram as in Figure 3. Each
arrow connects an element of A to an element of B. The arrow indicates that f(x) is
associated with x, f(a) is associated with a, and so on.

The most common method for visualizing a function is its graph. If f is a function
with domain A, then its graph is the set of ordered pairs

{Cx, f(0)) [x € A}

(Notice that these are input-output pairs.) In other words, the graph of f consists of all
points (x, y) in the coordinate plane such that y = f(x) and x is in the domain of f.

The graph of a function f gives us a useful picture of the behavior or “life history”
of a function. Since the y-coordinate of any point (x, y) on the graph is y = f(x), we
can read the value of f(x) from the graph as being the height of the graph above the
point x (see Figure 4). The graph of f also allows us to picture the domain of f on the
x-axis and its range on the y-axis as in Figure 5.

Y (x, f(x))

range

FIGURE 4 FIGURE 5



FIGURE 6

A The nofafion for intervals is given in
Appendix A.

y=2x-1

N =

FIGURE 7

FIGURE 8
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EXAMPLE 1 The graph of a function f is shown in Figure 6.
(a) Find the values of f(1) and f(5).
(b) What are the domain and range of f?

y

SOLUTION
(a) We see from Figure 6 that the point (1, 3) lies on the graph of f, so the value of
fat1is f(1) = 3. (In other words, the point on the graph that lies above x = 1 is
three units above the x-axis.)

When x = 5, the graph lies about 0.7 unit below the x-axis, so we estimate that
f(5) = —=0.7.

(b) We see that f(x) is defined when 0 < x < 7, so the domain of f is the closed
interval [0, 7]. Notice that f takes on all values from —2 to 4, so the range of f is

l-2=sy=4=[-24] =
EXAMPLE 2 Sketch the graph and find the domain and range of each function.
(@) flx) =2x—1 (b) g(x) = x*
SOLUTION

(a) The equation of the graph is y = 2x — 1, and we recognize this as being the
equation of a line with slope 2 and y-intercept — 1. (Recall the slope-intercept form
of the equation of a line: y = mx + b. See Appendix B.) This enables us to sketch
the graph of f in Figure 7. The expression 2x — 1 is defined for all real numbers, so
the domain of f is the set of all real numbers, which we denote by R. The graph
shows that the range is also R.

(b) Since g(2) = 2> = 4 and g(—1) = (—1)* = 1, we could plot the points (2, 4)
and (—1, 1), together with a few other points on the graph, and join them to produce
the graph (Figure 8). The equation of the graph is y = x?, which represents a
parabola (see Appendix B). The domain of g is R. The range of g consists of all
values of g(x), that is, all numbers of the form x2. But x* = 0 for all numbers x and
any positive number y is a square. So the range of g is {y| y = 0} = [0, ). This can
also be seen from Figure 8.
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FN\ Representations of Functions

There are four possible ways to represent a function:

= verbally (by a description in words)
= numerically  (by a table of values)

= visually (by a graph)

m algebraically (by an explicit formula)

If a single function can be represented in all four ways, it is often useful to go from
one representation to another to gain additional insight into the function. (In Example
2, for instance, we started with algebraic formulas and then obtained the graphs.) But
certain functions are described more naturally by one method than by another. With
this in mind, let’s reexamine the four situations that we considered at the beginning of
this section.

A. The most useful representation of the area of a circle as a function of its radius
is probably the algebraic formula A(r) = 772, though it is possible to compile
a table of values or to sketch a graph (half a parabola). Because a circle has
to have a positive radius, the domain is {r | r > 0} = (0, ), and the range is
also (0, ).

B. We are given a description of the function in words: P(¢) is the human popula-
tion of the world at time 7. The table of values of world population on page 11
provides a convenient representation of this function. If we plot these values,
we get the graph (called a scatter plot) in Figure 9. It too is a useful represen-
tation; the graph allows us to absorb all the data at once. What about a for-
mula? Of course, it’s impossible to devise an explicit formula that gives the
exact human population P(7) at any time z. But it is possible to find an expres-
sion for a function that approximates P(t). In fact, using methods explained in
Section 1.5, we obtain the approximation

P(r) = f(r) = (0.008196783) - (1.013723)"

and Figure 10 shows that it is a reasonably good “fit.” The function f is called
a mathematical model for population growth. In other words, it is a function
with an explicit formula that approximates the behavior of our given function.
We will see, however, that the ideas of calculus can be applied to a table of
values; an explicit formula is not necessary.

P P

6Xx10°+ . 6 X 10°

1900 1920 1940 1960 1980 2000 ! 1900 1920 1940 1960 1980 2000 !

FIGURE 9 FIGURE 10



A A function defined by a table of
values is called a tabular function.

w (ounces) C(w) (dollars)
O<w=1 0.34
I<w=2 0.56
2<w=3 0.78
3<w=4 1.00
4<w=>5 1.22
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The function P is typical of the functions that arise whenever we attempt to
apply calculus to the real world. We start with a verbal description of a func-
tion. Then we may be able to construct a table of values of the function, per-
haps from instrument readings in a scientific experiment. Even though we
don’t have complete knowledge of the values of the function, we will see
throughout the book that it is still possible to perform the operations of calcu-
lus on such a function.

C. Again the function is described in words: C(w) is the cost of mailing a first-
class letter with weight w. The rule that the U.S. Postal Service used as of 2001
is as follows: The cost is 34 cents for up to one ounce, plus 22 cents for each
successive ounce up to 11 ounces. The table of values shown in the margin is
the most convenient representation for this function, though it is possible to
sketch a graph (see Example 10).

D. The graph shown in Figure 1 is the most natural representation of the vertical
acceleration function a(z). It’s true that a table of values could be compiled,
and it is even possible to devise an approximate formula. But everything a
geologist needs to know—amplitudes and patterns—can be seen easily from
the graph. (The same is true for the patterns seen in electrocardiograms of
heart patients and polygraphs for lie-detection.) Figures 11 and 12 show the
graphs of the north-south and east-west accelerations for the Northridge earth-
quake; when used in conjunction with Figure 1, they provide a great deal of
information about the earthquake.

a a
(cm/s?) (cm/s?)
400 + 200 +
200 100 +
I || I IIII i h“’ Hllllili'lili I"‘l“ﬁ"' ILY.D
5 5 | l'l'!*'”“l".!u 1 L
(seconds) (seconds)
—200 ¢ ~100T
—400 1 —2007
Calif. Dept. of Mines and Geology Calif. Dept. of Mines and Geology
FIGURE 11 North-south acceleration for FIGURE 12 East-west acceleration for
the Northridge earthquake the Northridge earthquake
In the next example we sketch the graph of a function that is defined verbally.
EXAMPLE 3 When you turn on a hot-water faucet, the temperature 7 of the water
T depends on how long the water has been running. Draw a rough graph of T as a
function of the time ¢ that has elapsed since the faucet was turned on.
SOLUTION The initial temperature of the running water is close to room temperature
because of the water that has been sitting in the pipes. When the water from the hot
water tank starts coming out, T increases quickly. In the next phase, 7T is constant
0 ¢ at the temperature of the heated water in the tank. When the tank is drained, T
decreases to the temperature of the water supply. This enables us to make the rough
FIGURE 13 sketch of T as a function of ¢ in Figure 13. [ ]
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FIGURE 16

A more accurate graph of the function in Example 3 could be obtained by using a
thermometer to measure the temperature of the water at 10-second intervals. In gen-
eral, scientists collect experimental data and use them to sketch the graphs of func-
tions, as the next example illustrates.

EXAMPLE 4 The data shown in the margin come from an experiment on the lactoni-
zation of hydroxyvaleric acid at 25 °C. They give the concentration C(¢) of this acid
(in moles per liter) after  minutes. Use these data to draw an approximation to the
graph of the concentration function. Then use this graph to estimate the concentra-
tion after 5 minutes.

SOLUTION We plot the five points corresponding to the data from the table in Fig-

ure 14. The curve-fitting methods of Section 1.2 could be used to choose a model
and graph it. But the data points in Figure 14 look quite well behaved, so we simply
draw a smooth curve through them by hand as in Figure 15.

C(1)

0.08 ¢

0.06 T .

0.04 1 .

0.02 1 ’ .
0l 123456 78!

FIGURE 14 FIGURE 15

Then we use the graph to estimate that the concentration after 5 minutes is

C(5) = 0.035 mole/liter ]

In the following example we start with a verbal description of a function in a phys-
ical situation and obtain an explicit algebraic formula. The ability to do this is a use-
ful skill in solving calculus problems that ask for the maximum or minimum values of
quantities.

EXAMPLE 5 A rectangular storage container with an open top has a volume of 10 m®.
The length of its base is twice its width. Material for the base costs $10 per square
meter; material for the sides costs $6 per square meter. Express the cost of materials
as a function of the width of the base.

SOLUTION We draw a diagram as in Figure 16 and introduce notation by letting w and
2w be the width and length of the base, respectively, and & be the height.

The area of the base is (2w)w = 2w?, so the cost, in dollars, of the material for
the base is 10(2w?). Two of the sides have area wh and the other two have area
2wh, so the cost of the material for the sides is 6[2(wh) + 2(2wh)]. The total cost is
therefore

C = 10Quw?) + 6[2(wh) + 2(2wh)] = 20w* + 36wh

To express C as a function of w alone, we need to eliminate 4 and we do so by using
the fact that the volume is 10 m®. Thus

ww)h = 10



In seffing up applied functions as in
Example 5, it may be useful to review
the principles of problem solving as dis-
cussed on page 88, particularly Step 1:
Understand the Problem.

A If a function is given by a formula
and the domain is not sfated explicitly,
the convention is that the domain is the
set of all numbers for which the formula
makes sense and defines a real number.

FIGURE 17
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which gives h = =—

Substituting this into the expression for C, we have

5 5 , . 180
C = 20w" + 36w| — | = 20w + —
w w
Therefore, the equation
180
Clw) = 20w* + — w>0
w
expresses C as a function of w. e
EXAMPLE 6 Find the domain of each function.
1
(@) f) =x T2 ®) g0) = 5

SOLUTION
(a) Because the square root of a negative number is not defined (as a real number),
the domain of f consists of all values of x such that x + 2 = 0. This is equivalent to
x = —2, so the domain is the interval [ —2, ).
(b) Since

1 1

—xzx(x—l)

g(x) = =

and division by 0 is not allowed, we see that g(x) is not defined when x = 0 or
x = 1. Thus, the domain of g is

{x|x#0,x # 1}
which could also be written in interval notation as
(=2,0) U (0,1) U (1, ) [

The graph of a function is a curve in the xy-plane. But the question arises: Which
curves in the xy-plane are graphs of functions? This is answered by the following test.

The Vertical Line Test A curve in the xy-plane is the graph of a function of x if
and only if no vertical line intersects the curve more than once.

The reason for the truth of the Vertical Line Test can be seen in Figure 17. If each
vertical line x = a intersects a curve only once, at (a, b), then exactly one functional
value is defined by f(a) = b. But if a line x = a intersects the curve twice, at (a, b)
and (a, c), then the curve can’t represent a function because a function can’t assign
two different values to a.

y y o
xX=a xX=a

N e D
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FIGURE 18

FIGURE 19

For example, the parabola x = y? — 2 shown in Figure 18(a) is not the graph of a
function of x because, as you can see, there are vertical lines that intersect the parabola
twice. The parabola, however, does contain the graphs of rwo functions of x. Notice
that x = y* — 2 implies y> = x + 2, so y = *,/x + 2. So the upper and lower
halves of the parabola are the graphs of the functions f(x) = \/x + 2 [from Example
6(a)] and g(x) = —+/x + 2. [See Figures 18(b) and (c).] We observe that if we reverse
the roles of x and y, then the equation x = A(y) = y* — 2 does define x as a function
of y (with y as the independent variable and x as the dependent variable) and the
parabola now appears as the graph of the function .

y y y

-2, ON X 7'2 0 X 0 X

(@ x=y>—2 (b)y=vx+2 () y=—Vx+2

E Piecewise Defined Functions

The functions in the following four examples are defined by different formulas in dif-
ferent parts of their domains.

EXAMPLE 7 A function f is defined by

I1—x ifx=s1l
f(x)_{xz if x> 1

Evaluate f(0), f(1), and f(2) and sketch the graph.

SOLUTION Remember that a function is a rule. For this particular function the rule is
the following: First look at the value of the input x. If it happens that x =< 1, then the
value of f(x) is 1 — x. On the other hand, if x > 1, then the value of f(x) is x

Since 0 < 1, we have f(0) =1 — 0= 1.
Since 1 < 1, wehave f(1) =1 —1=0.
Since 2 > 1, we have f(2) = 2> = 4.

How do we draw the graph of f? We observe that if x < 1, then f(x) = 1 — x,
so the part of the graph of f that lies to the left of the vertical line x = 1 must coin-
cide with the line y = 1 — x, which has slope —1 and y-intercept 1. If x > 1, then
f(x) = x2, so the part of the graph of f that lies to the right of the line x = 1 must
coincide with the graph of y = x?, which is a parabola. This enables us to sketch the
graph in Figure 19. The solid dot indicates that the point (1, 0) is included on the
graph; the open dot indicates that the point (1, 1) is excluded from the graph. |



A For a more exfensive review of
absolute values, see Appendix A.

FIGURE 20

FIGURE 21

A Point-slope form of the equation of a
line:

y =y =mlx = x1)
See Appendix B.
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The next example of a piecewise defined function is the absolute value function.
Recall that the absolute value of a number a, denoted by |a , 1s the distance from a
to 0 on the real number line. Distances are always positive or 0, so we have

|a]| =0  for every number a
For example,
|3]=3 |-3]=3 |0]=0 |V2-1]=y2-1 [3—-a|=n-3

In general, we have

lal]=a ifa=0

la| = —a ifa<0

(Remember that if a is negative, then —a is positive.)

EXAMPLE 8 Sketch the graph of the absolute value function f(x) = | x|.
SOLUTION From the preceding discussion we know that

X if x=0
lx[ =97 .
x if x<O0

Using the same method as in Example 7, we see that the graph of f coincides with
the line y = x to the right of the y-axis and coincides with the line y = —x to the
left of the y-axis (see Figure 20). [

EXAMPLE 9 Find a formula for the function f graphed in Figure 21.

y

0 1 A
\

SOLUTION The line through (0, 0) and (1, 1) has slope m = 1 and y-intercept b = 0, so
its equation is y = x. Thus, for the part of the graph of f that joins (0, 0) to (1, 1),
we have

flx) =x fosx<1
The line through (1, 1) and (2, 0) has slope m = —1, so its point-slope form is
y—0=(—-1)x—2) or y=2—x
So we have

fx)=2—x ifl<x<2
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FIGURE 23
An even function
y
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FIGURE 24
An odd function

CHAPTER 1 FUNCTIONS AND MODELS

We also see that the graph of f coincides with the x-axis for x > 2. Putting this
information together, we have the following three-piece formula for f:

X fosx<1
f)=42—x ifl<x<?2
0 if x>2 ]

EXAMPLE 10 In Example C at the beginning of this section we considered the cost
C(w) of mailing a first-class letter with weight w. In effect, this is a piecewise
defined function because, from the table of values, we have

034 if0<w=1
Clw) = 056 if l<ws=2
078 if2<w=3
1.00 if3<w=4

The graph is shown in Figure 22. You can see why functions similar to this one are
called step functions—they jump from one value to the next. Such functions will be
studied in Chapter 2. ]

E Symmetry

If a function f satisfies f(—x) = f(x) for every number x in its domain, then f is
called an even function. For instance, the function f(x) = x?is even because

f=x) = (=27 = x> = f(»)

The geometric significance of an even function is that its graph is symmetric with
respect to the y-axis (see Figure 23). This means that if we have plotted the graph of
f for x = 0, we obtain the entire graph simply by reflecting about the y-axis.

If f satisfies f(—x) = —f(x) for every number x in its domain, then f is called an
odd function. For example, the function f(x) = x*is odd because

f=0) = (—0° = —x" = —f(x)

The graph of an odd function is symmetric about the origin (see Figure 24). If we
already have the graph of f for x = 0, we can obtain the entire graph by rotating
through 180° about the origin.

EXAMPLE 11 Determine whether each of the following functions is even, odd, or
neither even nor odd.
(a) f(x) =x>+x

) glx) =1 —x* (c) h(x) = 2x — x?

SOLUTION

(a) f(=x) = (=x + (=x) = (=1)’x” + (—x)
=—x—x=—(x"+x)
= —f(x)

Therefore, f is an odd function.

(b) g—x)=1—-(—x'=1-x"=g(x)

So g is even.



FIGURE 25

FIGURE 26

FIGURE 27
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(c) h(—x) =2(—x) — (—x)* = —2x — x?

Since h(—x) # h(x) and h(—x) # —h(x), we conclude that A is neither even nor

odd. N
The graphs of the functions in Example 11 are shown in Figure 25. Notice that the

graph of 4 is symmetric neither about the y-axis nor about the origin.

y y y
1

11 f g 14 h

7'1 1 X X 1 X

(a) (b) (©

PN\ Increasing and Decreasing Functions

The graph shown in Figure 26 rises from A to B, falls from B to C, and rises again
from C to D. The function f is said to be increasing on the interval [a, b], decreasing
on [b, c], and increasing again on [c, d]. Notice that if x; and x, are any two numbers
between a and b with x; < x,, then f(x;) < f(x,). We use this as the defining prop-
erty of an increasing function.

y

A function f is called increasing on an interval 7 if
flx1) < f(x2) whenever x; < x,in [

It is called decreasing on [ if

f(x1) > f(x2) whenever x; < x,in

In the definition of an increasing function it is important to realize that the inequal-
ity f(x1) < f(x2) must be satisfied for every pair of numbers x; and x, in I with
x; < Xa.

You can see from Figure 27 that the function f(x) = x?is decreasing on the inter-
val (=<0, 0] and increasing on the interval [0, ©).
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Exercises - « -« « « « < .« .

1. The graph of a function f is given.
(a) State the value of f(—1).
(b) Estimate the value of f(2).
(¢) For what values of x is f(x) = 2?
(d) Estimate the values of x such that f(x) = 0.
(e) State the domain and range of f.
(f) On what interval is f increasing?

2. The graphs of f and g are given.
(a) State the values of f(—4) and ¢(3).
(b) For what values of x is f(x) = g(x)?
(c) Estimate the solution of the equation f(x) = —1.
(d) On what interval is f decreasing?
(e) State the domain and range of f.
(f) State the domain and range of g.

3. Figures 1, 11, and 12 were recorded by an instrument oper-
ated by the California Department of Mines and Geology at
the University Hospital of the University of Southern Cali-
fornia in Los Angeles. Use them to estimate the ranges of
the vertical, north-south, and east-west ground acceleration
functions at USC during the Northridge earthquake.

4, In this section we discussed examples of ordinary, everyday
functions: population is a function of time, postage cost is a
function of weight, water temperature is a function of time.
Give three other examples of functions from everyday life
that are described verbally. What can you say about the
domain and range of each of your functions? If possible,
sketch a rough graph of each function.

5-8 m Determine whether the curve is the graph of a function
of x. If it is, state the domain and range of the function.

5. y 6.
3 +
2

A

_'3\yow\§gx o T

_2<

9. The graph shown gives the weight of a certain person as a
function of age. Describe in words how this person’s weight
varies over time. What do you think happened when this
person was 30 years old?

200 T

Weight 1507
d

(pounds) 100+

50 T

4 4 4 4 4 4 4
t t t t t

0 10 20 30 40 50 60 7 Age
(years)

10. The graph shown gives a salesman’s distance from his
home as a function of time on a certain day. Describe in
words what the graph indicates about his travels on this day.

Distance
from home
(miles)

Time
6pM. (hours)

11. You put some ice cubes in a glass, fill the glass with cold
water, and then let the glass sit on a table. Describe how the
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18.

temperature of the water changes as time passes. Then
sketch a rough graph of the temperature of the water as a
function of the elapsed time.

. Sketch a rough graph of the number of hours of daylight as

a function of the time of year.

. Sketch a rough graph of the outdoor temperature as a func-

tion of time during a typical spring day.

. You place a frozen pie in an oven and bake it for an

hour. Then you take it out and let it cool before eating it.
Describe how the temperature of the pie changes as time
passes. Then sketch a rough graph of the temperature of the
pie as a function of time.

. A homeowner mows the lawn every Wednesday afternoon.

Sketch a rough graph of the height of the grass as a function
of time over the course of a four-week period.

. An airplane flies from an airport and lands an hour later at

another airport, 400 miles away. If 7 represents the time in
minutes since the plane has left the terminal building, let
x(r) be the horizontal distance traveled and y(z) be the alti-
tude of the plane.

(a) Sketch a possible graph of x(7).

(b) Sketch a possible graph of y(7).

(c) Sketch a possible graph of the ground speed.

(d) Sketch a possible graph of the vertical velocity.

The number N (in thousands) of cellular phone subscribers
in Malaysia is shown in the table. (Midyear estimates are
given.)

t 1991 1993 1995 1997

N 132 304 873 2461

(a) Use the data to sketch a rough graph of N as a function
of 1.

(b) Use your graph to estimate the number of cell-phone
subscribers in Malaysia at midyear in 1994 and 1996.

Temperature readings 7 (in °C) were recorded every two
hours from midnight to 2:00 p.M. in Cairo, Egypt, on July
21, 1999. The time ¢ was measured in hours from midnight.

0 2 4 6 8 10 12 14

T 23 26 29 32 33 33 32 32

20.

(a) Use the readings to sketch a rough graph of T as a func-
tion of 7.
(b) Use your graph to estimate the temperature at 5:00 A.M.

. If f(x) = 3x? — x + 2, find £(2), £(=2), f(a), f(—a),

fla + 1),2f(a), f(2a), f(@®), [f(@)]* and f(a + h).

A spherical balloon with radius r inches has volume

V(r) = %wr3. Find a function that represents the amount of
air required to inflate the balloon from a radius of r inches
to a radius of r + 1 inches.
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21-22 m Find £ + h), f(x + A), and L&A S0

h
where i # 0.
21. f(x) =x — x? 22. f(x) = -
’ ) x+ 1
23-27 m Find the domain of the function.
X 5x + 4
BIW =5 BIO= 2
25. F(r) = i + It 26. g(u) = Vu + & —u
1
27. h(x) =

N/x* = 5x
28. Find the domain and range and sketch the graph of the
function h(x) = /4 — x2.

29-36 m Find the domain and sketch the graph of the function.
2. f(r)=131—1 30. F(x) =|2x + 1]

3x + 4 -1
31 Gy = 21 32 H() =
2 -1
X if x<0
3. f(x) =
J() {x+1 if x>0
2x+3 if x<—1
34'f(x)_{3—x if x=—1
x+2 ifx<-—1
35. f(x) =
@) {x2 if x> —1
-1 ifx=-l
36. f(x) =43x+2 if |[x| <1
7-2x ifx=1

37-42 m Find an expression for the function whose graph is
the given curve.

37. The line segment joining the points (=2, 1) and (4, —6)
38. The line segment joining the points (—3, —2) and (6, 3)
39. The bottom half of the parabola x + (y — 1)> =0

40. The top half of the circle (x — 1)* + y>* =1

41. y 42. y
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43-47 m Find a formula for the described function and state its
domain.

43. A rectangle has perimeter 20 m. Express the area of the
rectangle as a function of the length of one of its sides.

44. A rectangle has area 16 m?. Express the perimeter of the
rectangle as a function of the length of one of its sides.

45. Express the area of an equilateral triangle as a function of
the length of a side.

46. Express the surface area of a cube as a function of its
volume.

47. An open rectangular box with volume 2 m® has a square
base. Express the surface area of the box as a function of
the length of a side of the base.

48. A Norman window has the shape of a rectangle surmounted
by a semicircle. If the perimeter of the window is 30 ft,
express the area A of the window as a function of the width
x of the window.

49. A box with an open top is to be constructed from a rectan-
gular piece of cardboard with dimensions 12 in. by 20 in.
by cutting out equal squares of side x at each corner and
then folding up the sides as in the figure. Express the vol-
ume V of the box as a function of x.

20 1

|
\
’x
X
12
X
| [0

o

50. A taxi company charges two dollars for the first mile (or
part of a mile) and 20 cents for each succeeding tenth of a
mile (or part). Express the cost C (in dollars) of a ride as a
function of the distance x traveled (in miles) for 0 < x < 2,
and sketch the graph of this function.

51. In a certain country, income tax is assessed as follows.
There is no tax on income up to $10,000. Any income over
$10,000 is taxed at a rate of 10%, up to an income of
$20,000. Any income over $20,000 is taxed at 15%.

(a) Sketch the graph of the tax rate R as a function of the
income /.

(b) How much tax is assessed on an income of $14,000?
On $26,000?

(c) Sketch the graph of the total assessed tax T as a function
of the income 1.

52. The functions in Example 10 and Exercises 50 and 51(a)
are called step functions because their graphs look like
stairs. Give two other examples of step functions that arise
in everyday life.

53. (a) If the point (5, 3) is on the graph of an even function,
what other point must also be on the graph?

(b) If the point (5, 3) is on the graph of an odd function,
what other point must also be on the graph?

54. A function f has domain [—35, 5] and a portion of its graph
is shown.
(a) Complete the graph of f if it is known that f is even.
(b) Complete the graph of f if it is known that f is odd.

Y

55-60 m Determine whether f is even, odd, or neither. If f is
even or odd, use symmetry to sketch its graph.

55. f(x) =x2 56. f(x)=x"
57. f(x) =x*+x 58. f(x) = x* — 4x?
59. f(x) =x* — x 60. f(x) =3x>+2x*+ 1

kZ‘ Mathematical Models < « ¢ ¢ ¢ « o o o ¢ ¢ o o o

A mathematical model is a mathematical description (often by means of a function
or an equation) of a real-world phenomenon such as the size of a population, the
demand for a product, the speed of a falling object, the concentration of a product in



FIGURE 1
The modeling process

A The coordinate geometry of lines is
reviewed in Appendix B.
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a chemical reaction, the life expectancy of a person at birth, or the cost of emission
reductions. The purpose of the model is to understand the phenomenon and perhaps
to make predictions about future behavior.

Figure 1 illustrates the process of mathematical modeling. Given a real-world prob-
lem, our first task is to formulate a mathematical model by identifying and naming the
independent and dependent variables and making assumptions that simplify the phe-
nomenon enough to make it mathematically tractable. We use our knowledge of the
physical situation and our mathematical skills to obtain equations that relate the vari-
ables. In situations where there is no physical law to guide us, we may need to collect
data (either from a library or the Internet or by conducting our own experiments) and
examine the data in the form of a table in order to discern patterns. From this numeri-
cal representation of a function we may wish to obtain a graphical representation by
plotting the data. The graph might even suggest a suitable algebraic formula in some
cases.

Real-world Formulate . | Mathematical
problem ” model
A
Test Solve
Real-world | Mathematical
predictions - Interpret conclusions

The second stage is to apply the mathematics that we know (such as the calculus
that will be developed throughout this book) to the mathematical model that we have
formulated in order to derive mathematical conclusions. Then, in the third stage, we
take those mathematical conclusions and interpret them as information about the orig-
inal real-world phenomenon by way of offering explanations or making predictions.
The final step is to test our predictions by checking against new real data. If the pre-
dictions don’t compare well with reality, we need to refine our model or to formulate
a new model and start the cycle again.

A mathematical model is never a completely accurate representation of a physical
situation—it is an idealization. A good model simplifies reality enough to permit
mathematical calculations but is accurate enough to provide valuable conclusions. It
is important to realize the limitations of the model. In the end, Mother Nature has the
final say.

There are many different types of functions that can be used to model relationships
observed in the real world. In what follows, we discuss the behavior and graphs
of these functions and give examples of situations appropriately modeled by such
functions.

E Linear Models

When we say that y is a linear function of x, we mean that the graph of the function
is a line, so we can use the slope-intercept form of the equation of a line to write a for-
mula for the function as

y=f(x) =mx+b

where m is the slope of the line and b is the y-intercept.
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20 4

T=-10h+20

FIGURE 2

10 +
TNe
FIGURE 3

A characteristic feature of linear functions is that they grow at a constant rate. For
instance, Figure 2 shows a graph of the linear function f(x) = 3x — 2 and a table of
sample values. Notice that whenever x increases by 0.1, the value of f(x) increases by
0.3. So f(x) increases three times as fast as x. Thus, the slope of the graph y = 3x — 2,
namely 3, can be interpreted as the rate of change of y with respect to x.

) X f(x)=3x—-2
p= 2 1.0 1.0
1.1 1.3
1.2 1.6
0 . 1.3 1.9
1.4 2.2
-2 1.5 2.5

EXAMPLE 1

(a) As dry air moves upward, it expands and cools. If the ground temperature is
20 °C and the temperature at a height of 1 km is 10 °C, express the temperature T
(in °C) as a function of the height £ (in kilometers), assuming that a linear model is
appropriate.

(b) Draw the graph of the function in part (a). What does the slope represent?

(c) What is the temperature at a height of 2.5 km?

SOLUTION
(a) Because we are assuming that 7 is a linear function of 4, we can write

T=mh+b
We are given that 7 = 20 when i = 0, so
20=m-0+b=0b

In other words, the y-intercept is b = 20.
We are also given that 7 = 10 when h = 1, so

10=m-1+20
The slope of the line is therefore m = 10 — 20 = —10 and the required linear func-
tion is

T=—10h + 20

(b) The graph is sketched in Figure 3. The slope is m = —10 °C/km, and this repre-
sents the rate of change of temperature with respect to height.

(c) At a height of 4 = 2.5 km, the temperature is

T=-102.5) +20=—-5°C [ ]

If there is no physical law or principle to help us formulate a model, we construct
an empirical model, which is based entirely on collected data. We seek a curve that
“fits” the data in the sense that it captures the basic trend of the data points.
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TABLE 1 EXAMPLE 2 Table 1 lists the average carbon dioxide level in the atmosphere, meas-
Y . ured in parts per million at Mauna Loa Observatory from 1980 to 1998. Use the data
ear CO, level (in ppm) . ..
in Table 1 to find a model for the carbon dioxide level.

1980 338.5 . . .
1982 3410 SOLUTION We use the data in Table 1 to make the scatter plot in Figure 4, where ¢
1984 3443 represents time (in years) and C represents the CO; level (in parts per million, ppm).
1986 347.0 C
1988 351.3 370 1
1990 354.0
1992 356.3
1994 358.9 360
1996 362.7
1998 366.7 350 +

340 +

FIGURE 4 1980 1985 1990 1995 2000 1

Scatter plot for the average CO, level

Notice that the data points appear to lie close to a straight line, so it’s natural to
choose a linear model in this case. But there are many possible lines that approxi-
mate these data points, so which one should we use? From the graph, it appears that
one possibility is the line that passes through the first and last data points. The slope
of this line is

366.7 — 338.5 282

= =~ 1. 7
1998 — 1980 18 5666

and its equation is
C — 338.5 = 1.56667(t — 1980)
or

1] C = 1.56667t — 2763.51

Equation 1 gives one possible linear model for the carbon dioxide level; it is
graphed in Figure 5.

c
370 +
360 +
350 +
340 1
FIGURE 5 ‘ ) ) ) )
Linear model through 1980 1985 1990 1995 2000 !

first and last data points

Although our model fits the data reasonably well, it gives values higher than most
of the actual CO, levels. A better linear model is obtained by a procedure from
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A A computer or graphing calculator
finds the regression line by the method
of least squares, which is fo minimize
the sum of the squares of the vertical
distances between the data points and
the line. The defails are explained in
Section 11.7.

FIGURE 6

The regression line

statistics called linear regression. If we use a graphing calculator, we enter the data
from Table 1 into the data editor and choose the linear regression command. (With
Maple we use the fit[leastsquare] command in the stats package; with Mathematica
we use the Fit command.) The machine gives the slope and y-intercept of the regres-
sion line as

m = 1.543333 b= —2717.62
So our least squares model for the CO, level is
2] C = 1543333t — 2717.62

In Figure 6 we graph the regression line as well as the data points. Comparing
with Figure 5, we see that it gives a better fit than our previous linear model.

C
370

360 T

350

340 1

1980 1985 1990 1995 2000 !

EXAMPLE 3 Use the linear model given by Equation 2 to estimate the average CO,
level for 1987 and to predict the level for the year 2010. According to this model,
when will the CO, level exceed 400 parts per million?

SOLUTION Using Equation 2 with t = 1987, we estimate that the average CO, level in
1987 was
C(1987) = (1.543333)(1987) — 2717.62 =~ 348.98

This is an example of interpolation because we have estimated a value between
observed values. (In fact, the Mauna Loa Observatory reported that the average CO,
level in 1987 was 348.8 ppm, so our estimate is quite accurate.)

With ¢ = 2010, we get

C(2010) = (1.543333)(2010) — 2717.62 =~ 384.48

So we predict that the average CO; level in the year 2010 will be 384.5 ppm. This
is an example of extrapolation because we have predicted a value outside the region
of observations. Consequently, we are far less certain about the accuracy of our
prediction.

Using Equation 2, we see that the CO, level exceeds 400 ppm when

1.543333¢ — 2717.62 > 400
Solving this inequality, we get

3117.62

——— =~ 2020.06
1.543333



FIGURE 7
The graphs of quadratic
functions are parabolas.

FIGURE 8
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We therefore predict that the CO, level will exceed 400 ppm by the year 2020.
This prediction is somewhat risky because it involves a time quite remote from our
observations. =

P\ Polynomials

A function P is called a polynomial if
P(x) = a,x" + a1 x" '+ -+ ax® + ax + ao

where n is a nonnegative integer and the numbers ay, ai, a», . .., a, are constants,
which are called the coefficients of the polynomial. The domain of any polynomial is
R = (—o0, ). If the leading coefficient a, # 0, then the degree of the polynomial
is n. For example, the function

P(x) = 2x° — x* -i—%x3 + ﬁ

is a polynomial of degree 6.

A polynomial of degree 1 is of the form P(x) = mx + b and so it is a linear func-
tion. A polynomial of degree 2 is of the form P(x) = ax® + bx + ¢ and is called a
quadratic function. The graph of P is always a parabola obtained by shifting the
parabola y = ax?, as we will see in the next section. The parabola opens upward if
a > 0 and downward if a < 0. (See Figure 7.)

y y

=)
—

=
—_

=

(@ y=x"+x+1 (b)yy=—2x"+3x+1
A polynomial of degree 3 is of the form
Px) =ax*+ bx>+ cx+d

and is called a cubic function. Figure 8 shows the graph of a cubic function in part
(a) and graphs of polynomials of degrees 4 and 5 in parts (b) and (c). We will see later
why the graphs have these shapes.

y y y
1 27T 20T
1
/ 0 i X v X i X

(@y=x"—x+1 (b)y=x*=3x"+x (€) y=3x"—25x"+ 60x
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TABLE 2
Time Height
(seconds) (meters)
0 450
1 445
2 431
3 408
4 375
5 332
6 279
7 216
8 143
9 61

Polynomials are commonly used to model various quantities that occur in the nat-
ural and social sciences. For instance, in Section 3.3 we will explain why economists
often use a polynomial P(x) to represent the cost of producing x units of a commod-
ity. In the following example we use a quadratic function to model the fall of a ball.

EXAMPLE 4 A ball is dropped from the upper observation deck of the CN Tower,
450 m above the ground, and its height z above the ground is recorded at 1-second
intervals in Table 2. Find a model to fit the data and use the model to predict the
time at which the ball hits the ground.

SOLUTION We draw a scatter plot of the data in Figure 9 and observe that a linear
model is inappropriate. But it looks as if the data points might lie on a parabola, so
we try a quadratic model instead. Using a graphing calculator or computer algebra
system (which uses the least squares method), we obtain the following quadratic
model:

[3] h = 449.36 + 0.96t — 4.90¢>

h h
(meters)

a0 ot 400+

200 : 200 t

P N T S T
(seconds)
FIGURE 9 FIGURE 10
Scatter plot for a falling ball Quadratic model for a falling ball

In Figure 10 we plot the graph of Equation 3 together with the data points and
see that the quadratic model gives a very good fit.
The ball hits the ground when & = 0, so we solve the quadratic equation

—4.90¢* + 0.96¢ + 449.36 = 0
The quadratic formula gives

096+ V(0.96)2 — 4(—4.90) (449.36)
N 2(—4.90)

The positive root is ¢ = 9.67, so we predict that the ball will hit the ground after
about 9.7 seconds. ]

E Power Functions

A function of the form f(x) = x“, where a is a constant, is called a power function.
We consider several cases.

(i) a = n, where n is a positive integer

The graphs of f(x) = x" forn = 1, 2, 3, 4, and 5 are shown in Figure 11. (These are
polynomials with only one term.) We already know the shape of the graphs of y = x
(a line through the origin with slope 1) and y = x? [a parabola, see Example 2(b) in
Section 1.1].
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FIGURE 11 Graphs of f(x)=x"forn=1,2,3,4,5

The general shape of the graph of f(x) = x" depends on whether n is even or
odd. If n is even, then f(x) = x" is an even function and its graph is similar to the
parabola y = x2 If n is odd, then f(x) = x" is an odd function and its graph is simi-
lar to that of y = x°. Notice from Figure 12, however, that as n increases, the graph
of y = x" becomes flatter near 0 and steeper when |x| = 1. (If x is small, then x” is
smaller, x* is even smaller, x* is smaller still, and so on.)

FIGURE 12
Families of power functions

(ii) a = 1/n, where n is a positive integer

The function f(x) = x'/" = {/x is a root function. For n = 2 it is the square root
function f(x) = v/x, whose domain is [0, %) and whose graph is the upper half of
the parabola x = y*. [See Figure 13(a).] For other even values of n, the graph of
y = {/x is similar to that of y = \/x. For n = 3 we have the cube root function
flx) = J/x whose domain is R (recall that every real number has a cube root) and
whose graph is shown in Figure 13(b). The graph of y = {/x for n odd (n > 3) is
similar to that of y = /x.

(L1 (L1)

FIGURE 13
Graphs of root functions (a) f(x)= \/} (b) f(x)= \%/;
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FIGURE 14

The reciprocal function

FIGURE 15
Volume as a function of pressure
at constant temperature

\,) y u
201
0 2 X
FIGURE 16
2xt—x2+1
fo=""a"3"

(iii) a= —1
The graph of the reciprocal function f(x) = x ' = 1/x is shown in Figure 14. Its
graph has the equation y = 1/x, or xy = 1, and is a hyperbola with the coordinate
axes as its asymptotes.

This function arises in physics and chemistry in connection with Boyle’s Law,
which says that, when the temperature is constant, the volume of a gas is inversely
proportional to the pressure:

1

c
V=—
P

where C is a constant. Thus, the graph of V as a function of P (see Figure 15) has
the same general shape as the right half of Figure 14.

1%

Another instance in which a power function is used to model a physical phenom-
enon is discussed in Exercise 20.

E Rational Functions

A rational function f is a ratio of two polynomials:

_ P&
=50

where P and Q are polynomials. The domain consists of all values of x such that
Q(x) # 0. A simple example of a rational function is the function f(x) = 1/x, whose
domain is {x| x # 0}; this is the reciprocal function graphed in Figure 14. The function

f()_2x4—x2+1
* x> —4

is a rational function with domain {x|x # =*2}. Its graph is shown in Figure 16.

PN\ Algebraic Functions

A function f is called an algebraic function if it can be constructed using algebraic
operations (such as addition, subtraction, multiplication, division, and taking roots)
starting with polynomials. Any rational function is automatically an algebraic func-
tion. Here are two more examples:

x* — 16x?

flx) =+x2+ 1 gx)=——F+—+ (x —2)Jx + 1
x+\/)_c
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FIGURE 17
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When we sketch algebraic functions in Chapter 4 we will see that their graphs can
assume a variety of shapes. Figure 17 illustrates some of the possibilities.

y y y
51
1 —
1+ 1
of 5 x 0 1 x
(@) f(x)=x/x+3 (b) g(x) = x>~ 25 (©) h(x) = x*(x = 2)?

An example of an algebraic function occurs in the theory of relativity. The mass of
a particle with velocity v is

mo

m=fO = e

where my, is the rest mass of the particle and ¢ = 3.0 X 10° km/s is the speed of light
in a vacuum.

P\ Trigonometric Functions

Trigonometry and the trigonometric functions are reviewed on Reference Page 2 and
also in Appendix C. In calculus the convention is that radian measure is always
used (except when otherwise indicated). For example, when we use the function
f(x) = sin x, it is understood that sin x means the sine of the angle whose radian

measure is x. Thus, the graphs of the sine and cosine functions are as shown in Fig-
ure 18.

FIGURE 18

(a) f(x)=sinx

L
QO
SIEIES
3
<
3
[
3
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=
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<
=

(b) g(x)=cos x

Notice that for both the sine and cosine functions the domain is (—, %) and the
range is the closed interval [—1, 1]. Thus, for all values of x we have

or, in terms of absolute values,

|sinx| <1 [cosx| <1



Also, the zeros of the sine function occur at the integer multiples of 7r; that is,
sinx =0 when X = nm naninteger

An important property of the sine and cosine functions is that they are periodic
functions and have period 27r. This means that, for all values of x,

sin(x + 27) = sin x cos(x + 2m) = cos x

The periodic nature of these functions makes them suitable for modeling repetitive
phenomena such as tides, vibrating springs, and sound waves. For instance, in
Example 4 in Section 1.3 we will see that a reasonable model for the number of hours
of daylight in Philadelphia 7 days after January 1 is given by the function

2
=12 + 2.8sin| —(t —
L) =12 + 2.8 sm[ 365 (¢ 80)]

The tangent function is related to the sine and cosine functions by the equation

and its graph is shown in Figure 19. It is undefined when cos x = 0, that is, when
x = *=m/2, =37/2,.... Itsrange is (—o, »). Notice that the tangent function has per-
iod

tan(x + 77) = tan x for all x

The remaining three trigonometric functions (cosecant, secant, and cotangent) are
the reciprocals of the sine, cosine, and tangent functions. Their graphs are shown in
Appendix C.

P\ Exponential Functions

These are the functions of the form f(x) = a*, where the base a is a positive constant.
The graphs of y = 2*and y = (0.5)" are shown in Figure 20. In both cases the domain
is (—o, ) and the range is (0, ).

y y

_/l 1

0 1 X 0 1 X
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FIGURE 19
y=tanx

FIGURE 20

(a)y=2" (b) y=(0.5)"

Exponential functions will be studied in detail in Section 1.5 and we will see that
they are useful for modeling many natural phenomena, such as population growth (if
a > 1) and radioactive decay (if a < 1).
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E Logarithmic Functions

These are the functions f(x) = log,x, where the base a is a positive constant. They
are the inverse functions of the exponential functions and will be studied in Sec-
tion 1.6. Figure 21 shows the graphs of four logarithmic functions with various bases.
In each case the domain is (0, ), the range is (—o°, %), and the function increases
slowly when x > 1.

y=log,x
N\
y=log;x

X

=]
=

y=log;x

FIGURE 21

E Transcendental Functions

These are functions that are not algebraic. The set of transcendental functions includes
the trigonometric, inverse trigonometric, exponential, and logarithmic functions, but
it also includes a vast number of other functions that have never been named. In
Chapter 8 we will study transcendental functions that are defined as sums of infinite
series.

EXAMPLE 5 Classify the following functions as one of the types of functions that we
have discussed.

(@) f(x) =5 (b) g(x) = x°

h(x) = % @ ul) =1— 1+ 5¢*
(C) X ]_ \/;C u
SOLUTION

(a) f(x) = 5"is an exponential function. (The x is the exponent.)

(b) g(x) = x’ is a power function. (The x is the base.) We could also consider it to
be a polynomial of degree 5.

1 +x . . .
(¢) h(x) = — is an algebraic function.
1 — x

(d) u(r) =1 — t + 5¢*is a polynomial of degree 4. ]

Exercises « + =« ¢ o o o o o o o o o o e e o e e e e e e e e

1-2 m Classify each function as a power function, root func- (e) s(x) = tan 2x (f) #(x) = logox
tion, polynomial (state its degree), rational function, algebraic )
function, trigonometric function, exponential function, or loga- 2. (a)y = x—6 (b) y=x+
rithmic function. @y x+6 Y Vx =1
1. (@ f(x) = x (b) g(x) = /1 — x? (c) y=10" (d) y=x"
4+ 1 =210+ 1 — = i
(©) h(x) = x° + x* d) r(x) = X (e)y=2t"+1t T (f) y=—cos 6 + sin 0

x4+ x
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3-4 m Match each equation with its graph. Explain your
choices. (Don’t use a computer or graphing calculator.)

3. (@ y=x’ (b) y=x’ () y=x°
y
g
h
0 X
f
4, (a) y = 3x (b) y=3"
(©y=x* @ y=vx
y
F
g
d
X
G

5. (a) Find an equation for the family of linear functions with
slope 2 and sketch several members of the family.
(b) Find an equation for the family of linear functions such
that f(2) = 1 and sketch several members of the family.
(c) Which function belongs to both families?

6. The manager of a weekend flea market knows from past
experience that if he charges x dollars for a rental space at
the flea market, then the number y of spaces he can rent is
given by the equation y = 200 — 4x.

(a) Sketch a graph of this linear function. (Remember that
the rental charge per space and the number of spaces
rented can’t be negative quantities.)

(b) What do the slope, the y-intercept, and the x-intercept of
the graph represent?

7. The relationship between the Fahrenheit (F) and Celsius
(C) temperature scales is given by the linear function
F=3%C+ 32.

(a) Sketch a graph of this function.

10.

1.

12.

(b) What is the slope of the graph and what does it
represent? What is the F-intercept and what does it
represent?

. Jason leaves Detroit at 2:00 p.M. and drives at a constant

speed west along I-90. He passes Ann Arbor, 40 mi from

Detroit, at 2:50 p.M.

(a) Express the distance traveled in terms of the time
elapsed.

(b) Draw the graph of the equation in part (a).

(c) What is the slope of this line? What does it represent?

. Biologists have noticed that the chirping rate of crickets of

a certain species is related to temperature, and the relation-

ship appears to be very nearly linear. A cricket produces

113 chirps per minute at 70 °F and 173 chirps per minute

at 80 °F.

(a) Find a linear equation that models the temperature 7 as
a function of the number of chirps per minute N.

(b) What is the slope of the graph? What does it represent?

(c) If the crickets are chirping at 150 chirps per minute,
estimate the temperature.

The manager of a furniture factory finds that it costs $2200
to manufacture 100 chairs in one day and $4800 to produce
300 chairs in one day.

(a) Express the cost as a function of the number of chairs
produced, assuming that it is linear. Then sketch the
graph.

(b) What is the slope of the graph and what does it
represent?

(c) What is the y-intercept of the graph and what does it
represent?

At the surface of the ocean, the water pressure is the same

as the air pressure above the water, 15 1b/in®. Below the sur-

face, the water pressure increases by 4.34 1b/in” for every

10 ft of descent.

(a) Express the water pressure as a function of the depth
below the ocean surface.

(b) At what depth is the pressure 100 Ib/in*?

The monthly cost of driving a car depends on the number of

miles driven. Lynn found that in May it cost her $380 to

drive 480 mi and in June it cost her $460 to drive 800 mi.

(a) Express the monthly cost C as a function of the distance
driven d, assuming that a linear relationship gives a suit-
able model.

(b) Use part (a) to predict the cost of driving 1500 miles per
month.

(c) Draw the graph of the linear function. What does the
slope represent?

(d) What does the y-intercept represent?

(e) Why does a linear function give a suitable model in this
situation?



13-14 m For each scatter plot, decide what type of function you
might choose as a model for the data. Explain your choices.

13. (a) (b)
y y
. %, o’ ’
LR T
0 X 0 X
14. (a) (b)
Y 2 A
.._ .
0 X 0 X

15. The table shows (lifetime) peptic ulcer rates (per 100 popu-
lation) for various family incomes as reported by the 1989
National Health Interview Survey.

Ulcer rate

Income (per 100 population)

$4,000 14.1

$6,000 13.0

$8,000 13.4
$12,000 12.5
$16,000 12.0
$20,000 124
$30,000 10.5
$45,000 9.4
$60,000 8.2

(a) Make a scatter plot of these data and decide whether a
linear model is appropriate.
(b) Find and graph a linear model using the first and last

data points.

SECTION 1.2 MATHEMATICAL MODELS

Temperature (°F)

Chirping rate (chirps/min)

50
55
60
65
70
75
80
85
90

20
46
79
91
113
140
173
198
211

37

(a) Make a scatter plot of the data.
(b) Find and graph the regression line.
(c) Use the linear model in part (b) to estimate the chirping

rate at 100 °F.

. The table gives the winning heights for the Olympic pole
vault competitions in the 20th century.
Year Height (ft) Year Height (ft)
1900 10.83 1956 14.96
1904 11.48 1960 15.42
1908 12.17 1964 16.73
1912 12.96 1968 17.71
1920 13.42 1972 18.04
1924 12.96 1976 18.04
1928 13.77 1980 18.96
1932 14.15 1984 18.85
1936 14.27 1988 19.77
1948 14.10 1992 19.02
1952 14.92 1996 19.42

(a) Make a scatter plot and decide whether a linear model is

appropriate.

(b) Find and graph the regression line.
(c) Use the linear model to predict the height of the win-
ning pole vault at the 2000 Olympics and compare with

the winning height of 19.36 feet.

(d) Is it reasonable to use the model to predict the winning
height at the 2100 Olympics?

. A study by the U.S. Office of Science and Technology in

1972 estimated the cost (in 1972 dollars) to reduce auto-
mobile emissions by certain percentages:

(c) Find and graph the least squares regression line.

(d) Use the linear model in part (c) to estimate the ulcer
rate for an income of $25,000.

(e) According to the model, how likely is someone with an
income of $80,000 to suffer from peptic ulcers?

(f) Do you think it would be reasonable to apply the model
to someone with an income of $200,000?

. Biologists have observed that the chirping rate of crickets

of a certain species appears to be related to temperature.
The table shows the chirping rates for various temperatures.

Reduction in Cost per Reduction in Cost per

emissions (%) car (in $) emissions (%) car (in $)
50 45 75 90
55 55 80 100
60 62 85 200
65 70 90 375
70 80 95 600

Find a model that captures the “diminishing returns” trend

of these data.
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19. Use the data in the table to model the population of the distance from Earth to the Sun) and their periods 7 (time of
world in the 20th century by a cubic function. Then use revolution in years).
your model to estimate the population in the year 1925.
Planet d T
Year Population (millions) Mercury 0.387 0.241
1900 1650 Venus 0.723 0.615
1910 1750 Earth 1.000 1.000
1920 1860 Mars 1.523 1.881
1930 2070 Jupiter 5.203 11.861
1940 2300 Saturn 9.541 29.457
1950 2560 Uranus 19.190 84.008
1960 3040 Neptune 30.086 164.784
1970 3710 Pluto 39.507 248.350
1980 4450
1990 5280 (a) Fit a power model to the data.
2000 6070 (b) Kepler’s Third Law of Planetary Motion states that
“The square of the period of revolution of a planet is
20. The table shows the mean (average) distances d of the plan- proportional to the cube of its mean distance from the
ets from the Sun (taking the unit of measurement to be the Sun.” Does your model corroborate Kepler’s Third Law?

]3‘ New Functions from Old Functions « ¢« ¢« « ¢ ¢ ¢ ¢ o o &

In this section we start with the basic functions we discussed in Section 1.2 and obtain
new functions by shifting, stretching, and reflecting their graphs. We also show how to
combine pairs of functions by the standard arithmetic operations and by composition.

E Transformations of Functions

By applying certain transformations to the graph of a given function we can obtain the
graphs of certain related functions. This will give us the ability to sketch the graphs of
many functions quickly by hand. It will also enable us to write equations for given
graphs. Let’s first consider translations. If ¢ is a positive number, then the graph of
y =f(x) + ¢ is just the graph of y = f(x) shifted upward a distance of ¢ units
(because each y-coordinate is increased by the same number c). Likewise, if
g(x) = f(x — ¢), where ¢ > 0, then the value of g at x is the same as the value of f at
x — ¢ (c units to the left of x). Therefore, the graph of y = f(x — ¢) is just the graph
of y = f(x) shifted ¢ units to the right (see Figure 1).

Vertical and Horizontal Shifts Suppose ¢ > 0. To obtain the graph of
y = f(x) + c, shift the graph of y = f(x) a distance ¢ units upward
y = f(x) — c, shift the graph of y = f(x) a distance ¢ units downward
y = f(x — c¢), shift the graph of y = f(x) a distance ¢ units to the right
y = f(x + ¢), shift the graph of y = f(x) a distance c¢ units to the left

Now let’s consider the stretching and reflecting transformations. If ¢ > 1, then the
graph of y = cf(x) is the graph of y = f(x) stretched by a factor of ¢ in the vertical
direction (because each y-coordinate is multiplied by the same number c). The graph
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FIGURE 1

Translating the graph of f

TEC In Module 1.3 you can see the
effect of combining the transfor-
mations of this section.

FIGURE 3
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y
y=cf(x)
(c>1)
y=fl=x)
f\ /L T
1 .
y= ;f(l)
0 X

FIGURE 2

Stretching and reflecting the graph of f

of y = —f(x) is the graph of y = f(x) reflected about the x-axis because the point
(x, y) is replaced by the point (x, —y). (See Figure 2 and the following chart, where
the results of other stretching, compressing, and reflecting transformations are also

given.)

Vertical and Horizontal Stretching and Reflecting Suppose ¢ > 1. To obtain the

graph of

y = ¢f(x), stretch the graph of y = f(x) vertically by a factor of ¢

y = (1/¢)f(x), compress the graph of y = f(x) vertically by a factor of ¢
y = f(cx), compress the graph of y = f(x) horizontally by a factor of ¢
y = f(x/c), stretch the graph of y = f(x) horizontally by a factor of ¢

y = —f(x), reflect the graph of y = f(x) about the x-axis

y = f(—x), reflect the graph of y = f(x) about the y-axis

Figure 3 illustrates these stretching transformations when applied to the cosine
function with ¢ = 2. For instance, to get the graph of y = 2 cosx we multiply the

y-coordinate of each point on the graph of y = cos x by 2. This means that the graph

of y = cos x gets stretched vertically by a factor of 2.

Y y=2cos x Y
/2 y=cosx 27
1 _ 1

/‘ y75COSX
0 X ; 0

y=Cos —x
X
f
y=cosx
y=cos2x
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EXAMPLE 1 Given the graph of y = /x, use transformations to graph y = \/x — 2,

y=\/x—2,y=—\/;,y=2\/;,andy=\/—x.

SOLUTION The graph of the square root function y = /x, obtained from Figure 13
in Section 1.2, is shown in Figure 4(a). In the other parts of the figure we sketch
y = Vx—2 by shifting 2 units downward, y = /x — 2 by shifting 2 units to the
right, y = —Jx by reflecting about the x-axis, y = 2x by stretching vertically by a
factor of 2, and y = V—x by reflecting about the y-axis.

y y y y y y

1+ /
0 i ’ 0/ o 0 '2 X 0 X 0 X 0 A

72 £

@y=vx (®) y=vx—2 ©y=vx=2 (@ y=—\x ©y=2Vx (f) y=v-x
FIGURE 4
EXAMPLE 2 Sketch the graph of the function f(x) = x* + 6x + 10.
SOLUTION Completing the square, we write the equation of the graph as
y=x>+6x+10=(x+37>+1

This means we obtain the desired graph by starting with the parabola y = x* and
shifting 3 units to the left and then 1 unit upward (see Figure 5).

y y

0 X _é _'1 0 X

FIGURE 5 (a) y=x? (b)yy=(x+3)7>+1 u

EXAMPLE 3 Sketch the graphs of the following functions.
(a) y = sin 2x (b) y=1—sinx
SOLUTION
(a) We obtain the graph of y = sin 2x from that of y = sin x by compressing hori-
zontally by a factor of 2 (see Figures 6 and 7). Thus, whereas the period of y = sinx
is 27, the period of y = sin 2x is 27/2 = .

y y

y=sin2x

~ = AN ANYANYA
/ VRV

ISR

=)
NIERT
<
=

FIGURE 6 FIGURE 7



FIGURE 8

FIGURE 9

Graph of the length of daylight

from March 21 through December 21
at various latitudes
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(b) To obtain the graph of y = 1 — sin x, we again start with y = sin x. We reflect
about the x-axis to get the graph of y = —sin x and then we shift 1 unit upward to
get y = 1 — sin x. (See Figure 8.)

EXAMPLE 4 Figure 9 shows graphs of the number of hours of daylight as functions
of the time of the year at several latitudes. Given that Philadelphia is located at
approximately 40 °N latitude, find a function that models the length of daylight at
Philadelphia.

20
18 \\
16
14 //:/O_\ \\0\\
b :%/o——*‘\o-i&§
VE\‘,__O
Hours 10 };\\{k
)
g —— 60°N o
50°N
6 —— 40°N
—— 30°N
4 —— 20°N
2

Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Source: Lucia C. Harrison, Daylight, Twilight, Darkness and Time (New York: Silver, Burdett, 1935) page 40.

SOLUTION Notice that each curve resembles a shifted and stretched sine function. By
looking at the blue curve we see that, at the latitude of Philadelphia, daylight lasts
about 14.8 hours on June 21 and 9.2 hours on December 21, so the amplitude of
the curve (the factor by which we have to stretch the sine curve vertically) is
1(14.8 — 9.2) = 2.8.

By what factor do we need to stretch the sine curve horizontally if we measure
the time ¢ in days? Because there are about 365 days in a year, the period of our
model should be 365. But the period of y = sin ¢ is 2, so the horizontal stretching
factor is ¢ = 2/365.

We also notice that the curve begins its cycle on March 21, the 80th day of the
year, so we have to shift the curve 80 units to the right. In addition, we shift it
12 units upward. Therefore, we model the length of daylight in Philadelphia on the
tth day of the year by the function

2T
=12 + 28sin| —(r —
L(t) =12 + 2.8 sm[ 365 (t 80)] .

Another transformation of some interest is taking the absolute value of a function.
If y=|f(x)|, then according to the definition of absolute value, y = f(x) when
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FIGURE 10

f(x) =0 and y = —f(x) when f(x) <O0. This tells us how to get the graph of
y = | f(x)| from the graph of y = f(x): The part of the graph that lies above the x-axis
remains the same; the part that lies below the x-axis is reflected about the x-axis.

EXAMPLE 5 Sketch the graph of the function y = |x* — 1].

SOLUTION We first graph the parabola y = x> — 1 in Figure 10(a) by shifting the
parabola y = x* downward 1 unit. We see that the graph lies below the x-axis when
—1 < x < 1, so we reflect that part of the graph about the x-axis to obtain the graph
of y = |x* — 1] in Figure 10(b).

y y
—1 0 1 X _i 0 i X
(@ y=x*—1 ) y=|x*—1| ]

P\ Combinations of Functions

Two functions f and g can be combined to form new functions f + g, f — g, fg, and
f/g in a manner similar to the way we add, subtract, multiply, and divide real numbers.
If we define the sum f + g by the equation

[1] (f + 9)(x) = f(x) + g(x)

then the right side of Equation 1 makes sense if both f(x) and g(x) are defined, that is,
if x belongs to the domain of f and also to the domain of g. If the domain of f is A
and the domain of g is B, then the domain of f+ g is the intersection of these
domains, thatis, A N B.

Notice that the + sign on the left side of Equation 1 stands for the operation of
addition of functions, but the + sign on the right side of the equation stands for addi-
tion of the numbers f(x) and g(x).

Similarly, we can define the difference f — g and the product fg, and their domains
are also A N B. But in defining the quotient f/g we must remember not to divide by 0.

Algebra of Functions Let f and g be functions with domains A and B. Then the
functions f + g, f — ¢, fg, and f/g are defined as follows:

(f+ 9 (x) =f(x) + g(x) domain = A N B
(f—9) (x) =f(x) — g(x) domain = A N B

(fg) (x) = f(x)g(x) domain =A N B

<i> (x) = RIC) domain = {x € A N B|g(x) # 0}
g g(x)




A Another way fo solve 4 — x* = 0:
2-x2+x=0
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EXAMPLE 6 If f(x) = v/x and g(x) = /4 — x2, find the functions f + g, f — g, fg,
and f/g.

SOLUTION The domain of f(x) = /x is [0, ). The domain of g(x) = /4 — x>
consists of all numbers x such that 4 — x? = 0, that is, x* < 4. Taking square roots
of both sides, we get | x| < 2, or =2 < x < 2, so the domain of g is the interval
[—2, 2]. The intersection of the domains of f and g is

[0, %) N [-2,2] = [0, 2]
Thus, according to the definitions, we have
(f+ ) =Vx+ 4 —x2 0<x<2
(f =9 =vx = V4 - 0=x=<2
(fg)(x) = Vx4 — x> = \JAx — &3 0<x<2?2

(f)(x)=\/\/; - al 0<x<2

; 4 — x2 4 — x?

Notice that the domain of f/g is the interval [0, 2) because we must exclude the
points where g(x) = 0, that is, x = *=2. ]

The graph of the function f + g is obtained from the graphs of f and g by graph-
ical addition. This means that we add corresponding y-coordinates as in Figure 11.
Figure 12 shows the result of using this procedure to graph the function f + g from
Example 6.

FIGURE 11

FIGURE 12

E Composition of Functions

There is another way of combining two functions to get a new function. For example,
suppose that y = f(u) = v/u and u = g(x) = x> + 1. Since y is a function of u and u
is, in turn, a function of x, it follows that y is ultimately a function of x. We compute
this by substitution:

y=f) =flg(x) =f(x* + 1) = Va2 + 1
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The procedure is called composition because the new function is composed of the two
given functions f and g.

In general, given any two functions f and g, we start with a number x in the domain
of g and find its image g(x). If this number g(x) is in the domain of f, then we can cal-
culate the value of f(g(x)). The result is a new function i(x) = f(g(x)) obtained by
substituting g into f. It is called the composition (or composite) of f and g and is
denoted by fog (“fcircle g”).

Definition Given two functions f and g, the composite function f© g (also
called the composition of f and g) is defined by

(fe9)(x) = f(g(x)

The domain of f° g is the set of all x in the domain of g such that g(x) is in the
domain of f. In other words, (f° g)(x) is defined whenever both g(x) and f(g(x)) are
defined. The best way to picture f° g is by a machine diagram (Figure 13) or an arrow
diagram (Figure 14).

FIGURE 13

The fog machine is composed of % — 1= g g(x) f — f(gv)

the g machine (first) and then (input) (oﬁtput)
the f machine.
feg
p f
FIGURE 14 y ¥ .
Arrow diagram for fog X g(x) flgx))

EXAMPLE 7 If f(x) = x* and g(x) = x — 3, find the composite functions f° g
andgof.

SOLUTION We have
(fe9x) = f(g(x) = f(x = 3) = (x = 3)°
(g°f)x) = g(f(x) = g(x*) = x* =3 N
@ NOTE ¢ You can see from Example 7 that, in general, fo g # g ° f. Remember, the
notation f° g means that the function g is applied first and then f is applied second.

In Example 7, f° g is the function that first subtracts 3 and then squares; g © f is the
function that first squares and then subtracts 3.

EXAMPLE 8 If f(x) = v/x and g(x) = /2 — x, find each function and its domain.
(@) feoyg () geof (©) fof (d) geog

SOLUTION

(a) (fo9) =flg) =f(V2 —x) =2 —x =32 —x
The domain of fogis{x|2 —x= 0} = {x|x <2} = (—,2].




If0 < a < b, then a® < b>.

FIGURE 15

A A more geometric method for graph-
ing composite functions is explained in
Exercise 59.

h=fog \y
\,
AR
0 1 X
\ [
\
\
FIGURE 16
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(b) (g°)x) = g(f(x) = g(\/x) = V2 = Jx

For 1/ to be defined we must have x = 0. For /2 — /x to be defined we must have
2 — \/} = (), that is, \/} =< 2, or x =< 4. Thus, we have 0 =< x =< 4, so the domain of
g ° f is the closed interval [0, 4].

(© (fo£)x) = F(f(0) = f(Vx) = Vx = ¥

The domain of fo f is [0, ©).

d (g°9)(x) =g(g(x) =g(vV2 —x)=V2 - V2 —x

This expression is defined when 2 — x = 0, thatis, x < 2,and 2 — /2 — x = 0.
This latter inequality is equivalent to /2 — x < 2, or 2 — x < 4, thatis, x = —2.
Thus, —2 < x < 2, so the domain of g ° g is the closed interval [ -2, 2]. (]

Suppose that we don’t have explicit formulas for f and g but we do have tables of
values or graphs for them. We can still graph the composite function f° g, as the fol-
lowing example shows.

EXAMPLE 9 The graphs of f and g are as shown in Figure 15 and & = f o g. Estimate
the value of 4(0.5). Then sketch the graph of A.

y

\ /

SOLUTION From the graph of g we estimate that g(0.5) = 0.8. Then from the graph of
fwe see that f(0.8) = —1.7. So

h(0.5) = £(g(0.5)) = £(0.8) = —1.7

In a similar way we estimate the values of % in the following table:

X —20 | —-15 | —-1.0 | —05 0.0 0.5 1.0 1.5 2.0

g(x) —-15 | —-16 | —13 | —0.8 0.0 0.8 1.3 1.6 1.5

h(x) = f(g(x)) 1.0 07| 15| 17] 00 |[-17 | =15 |-07 | -1.0

We use these values to graph the composite function /4 in Figure 16. If we want a
more accurate graph, we could apply this procedure to more values of x. [ ]

It is possible to take the composition of three or more functions. For instance, the
composite function fc g o h is found by first applying &, then g, and then f as follows:

(fegoh(x) = f(g(h(x))
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EXAMPLE 10 Find fogo hif f(x) = x/(x + 1), g(x) = x'°, and h(x) = x + 3.

SOLUTION (fegeh(x) = f(g(h(x))) = f(g(x + 3))
_ 10y — M
_f((x+3))_(x+3)10+1 -

So far we have used composition to build complicated functions from simpler ones.
But in calculus it is often useful to be able to decompose a complicated function into
simpler ones, as in the following example.

EXAMPLE 11 Given F(x) = cos*(x + 9), find functions f, g, and & such that
F=fogoh.

SOLUTION Since F(x) = [cos(x + 9)]% the formula for F says: First add 9, then take
the cosine of the result, and finally square. So we let

hx)y=x+9 g(x) = cos x flx) =x2
Then

(fegeh(x) = f(g(h(x) = f(g(x + 9)) = f(cos(x + 9))
= [cos(x + 9)]* = F(x) u

EXErcises -« =« =« o o o o o o o o o o o e e o e e e e e e e e e

1. Suppose the graph of f is given. Write equations for the
graphs that are obtained from the graph of f as follows.
(a) Shift 3 units upward.
(b) Shift 3 units downward.
(c) Shift 3 units to the right.
(d) Shift 3 units to the left.
(e) Reflect about the x-axis.
(f) Reflect about the y-axis. .
(g) Stretch vertically by a factor of 3. -6
(h) Shrink vertically by a factor of 3.

2. Explain how the following graphs are obtained from the
graph of y = f(x).

Ei; i _ S_J;C((xx)) El;; i _ f_()sc 7 (x)S) 4. Eﬁlec t%gz;psh of f is given. Draw the graphs of the following

() y = f(5x) - _

© ¥ = 5709 — 3 @y =/f(x+4) 6) y=f(2) +4

(©) y=2f(x) (d y=—fx) +3

3. The graph of y = f(x) is given. Match each equation with ¥

its graph and give reasons for your choices.

@ y=fx—4

(b)y =/ +3

© y=:f(x) 1

dy=—flx+4)

(€) y=2f(x +6) 0] 1




5. The graph of f is given. Use it to graph the following

functions.
@ y=r(2x ®) y=f(3%)
© y=f(-x @ y=—f(—x
y
—1
0 1
|

6-7 m The graph of y = 4/3x — x? is given. Use transforma-
tions to create a function whose graph is as shown.

y
Y o
Ls y 3x—x
0 3 X
6.
y
3<>
0 2 5 X
7. y
—4 1 0 X

8. (a) How is the graph of y = 2 sin x related to the graph of
y = sinx? Use your answer and Figure 6 to sketch the
graph of y = 2 sinx.

(b) How is the graph of y = 1 + +/x related to the graph of
y= Vx? Use your answer and Figure 4(a) to sketch the
graphof y = 1 + /x.

9-24 m Graph each function, not by plotting points, but by
starting with the graph of one of the standard functions given in
Section 1.2, and then applying the appropriate transformations.

9. y=—1/x 10. y=2 — cos x
1. y =tan2x 1. y={x+2
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13. y = cos(x/2) W y=x>+2x+3
1 .
15. y= 16. y = —2 sin 7x
x—3
1 T 1
.y =si - — 18. y=2+
17. y 3 sm<x 6) y 1
19. y =1+ 2x — x? 20 y=1Jx+4-3
2. y=2—x+1 22 y=(x—17+2
23. y = |sin x| 2. y=|x* - 2x|
25. The city of New Orleans is located at latitude 30 °N. Use

26.

27.

28.

Figure 9 to find a function that models the number of hours
of daylight at New Orleans as a function of the time of year.
Use the fact that on March 31 the sun rises at 5:51 A.M. and
sets at 6:18 p.M. in New Orleans to check the accuracy of
your model.

A variable star is one whose brightness alternately increases
and decreases. For the most visible variable star, Delta
Cephei, the time between periods of maximum brightness is
5.4 days, the average brightness (or magnitude) of the star is
4.0, and its brightness varies by =0.35 magnitude. Find a
function that models the brightness of Delta Cephei as a
function of time.

(a) How is the graph of y = f(| x|) related to the graph
of f?
(b) Sketch the graph of y = sin | x|.

(c) Sketch the graph of y = /| x|.

Use the given graph of f to sketch the graph of y = 1/f(x).
Which features of f are the most important in sketching
y = 1/f(x)? Explain how they are used.

y

N
01\/;

29-30 m Use graphical addition to sketch the graph of f + g.

29.

y
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30. y
i
=
0 g

31-32 m Find f + g, f — g, fg, and f/g and state their domains.
3. f(x) =x*+2x% g(x) =3x>—1

32. f(x) =1 +x, ¢gx)=+1—x

33-34 m Use the graphs of f and g and the method of graphical
addition to sketch the graph of f + g.

33 f(x) =x, gx)=1/x
4. f(x) =x°, g(x) = —x?

35-38 m Find the functions feog,ge°f, fof, and g ° g and their
domains.

35. f(x) =sinx, gx)=1—+x

36. f(x) =1—3x, g(x) =5x*+3x+2

x+1

x+2

38 f(x) =+2x+3, gx)=x>+1

37. f(x) =x + l, g(x) =
X

39-40 = Find fogoh.
3. fF)=+Vx—1, gx)=x*+2, h(x)=x+3

40. f(x) = , g(x) =cosx, h(x)=+x+3

x+ 1

41-44 m Express the function in the form f° g.
1. F(x) = (x> + 1)"° 42. F(x) = sin(yv/x)

43. u(r) = /cost 44, u(t) = _ftanf

1+ tant

45-47 m Express the function in the form fo g o h.
45. H(x) =1 — 3" 46. H(x) = J\x — 1
47. H(x) = sec*(v/x)

48. Use the table to evaluate each expression.
(a) f(g(1)) (b) g(f(1))
(d) g(g(1)) (e) (g°f)(3)

(©) ff()
(f) (f9)(6)

O 3142215

g) | 6 | 3 | 2|1 |23

49. Use the given graphs of f and g to evaluate each expression,
or explain why it is undefined.
@ f(g(2) (b) 9(f(0)
(d) (g°£)6) @ (9°9)(=2)

y

(© (f°9)(0)
) (fof)4)

50. Use the given graphs of f and g to estimate the value of
f(g(x)) forx = =5, —4, =3, ..., 5. Use these estimates to
sketch a rough graph of fo g.

y

L
\

51. A stone is dropped into a lake, creating a circular ripple that
travels outward at a speed of 60 cm/s.
(a) Express the radius r of this circle as a function of the
time f (in seconds).
(b) If A is the area of this circle as a function of the radius,
find A © r and interpret it.

52. An airplane is flying at a speed of 350 mi/h at an altitude

of one mile and passes directly over a radar station at

time t = 0.

(a) Express the horizontal distance d (in miles) that the
plane has flown as a function of 7.

(b) Express the distance s between the plane and the radar
station as a function of d.

(c) Use composition to express s as a function of z.

53. The Heaviside function H is defined by

H() = 0 if r<0
I ift=0
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55.

56.

57.

58.

It is used in the study of electric circuits to represent the
sudden surge of electric current, or voltage, when a switch
is instantaneously turned on.

(a) Sketch the graph of the Heaviside function.

(b) Sketch the graph of the voltage V(¢) in a circuit if the
switch is turned on at time r = 0 and 120 volts are
applied instantaneously to the circuit. Write a formula
for V() in terms of H(z).

(c) Sketch the graph of the voltage V(z) in a circuit if the
switch is turned on at time t = 5 seconds and 240 volts
are applied instantaneously to the circuit. Write a for-
mula for V() in terms of H(z). (Note that starting at
t = 5 corresponds to a translation.)

The Heaviside function defined in Exercise 53 can also be
used to define the ramp function y = czH(z), which repre-
sents a gradual increase in voltage or current in a circuit.
(a) Sketch the graph of the ramp function y = tH(z).

(b) Sketch the graph of the voltage V(¢) in a circuit if the
switch is turned on at time # = 0 and the voltage is
gradually increased to 120 volts over a 60-second time
interval. Write a formula for V(¢) in terms of H(¢)
for t < 60.

(c) Sketch the graph of the voltage V() in a circuit if the
switch is turned on at time r = 7 seconds and the volt-
age is gradually increased to 100 volts over a period of
25 seconds. Write a formula for V(¢) in terms of H(r)
for r < 32.

(a) If g(x) = 2x + 1 and h(x) = 4x*> + 4x + 7, find a
function f such that fo g = h. (Think about what opera-
tions you would have to perform on the formula for g to
end up with the formula for 4.)

(b) If f(x) = 3x + 5and h(x) = 3x* + 3x + 2, find a
function g such that fo g = h.

If f(x) = x + 4 and h(x) = 4x — 1, find a function g such
thatg o f = h.

Suppose g is an even function and let 7 = fo g. Is h always
an even function?

Suppose g is an odd function and let 2 = fo g. Is h always
an odd function? What if f is odd? What if f is even?
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59.

60.

Suppose we are given the graphs of f and g, as in the figure,
and we want to find the point on the graph of 4 = f° g that
corresponds to x = a. We start at the point (a, 0) and draw
a vertical line that intersects the graph of g at the point P.
Then we draw a horizontal line from P to the point Q on the
line y = x.
(a) What are the coordinates of P and of Q?
(b) If we now draw a vertical line from Q to the point R
on the graph of f, what are the coordinates of R?
(c) If we now draw a horizontal line from R to the point S
on the line x = a, show that § lies on the graph of &.
(d) By carrying out the construction of the path PORS for
several values of a, sketch the graph of A.

y

X

al f
|

0 a X

If f is the function whose graph is shown, use the method
of Exercise 59 to sketch the graph of fo f. Start by using
the construction for a = 0, 0.5, 1, 1.5, and 2. Sketch a
rough graph for 0 < x < 2. Then use the result of Exer-
cise 58 to complete the graph.

y

1

Graphing Calculators and Computers « -« « =« « =« o « =«

In this section we assume that you have access to a graphing calculator or a computer
with graphing software. We will see that the use of such a device enables us to graph
more complicated functions and to solve more complex problems than would other-
wise be possible. We also point out some of the pitfalls that can occur with these

machines.
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(a,d) y=d (b,d)
r=a x=b
(a, c) y=c (b, c)

FIGURE 1

The viewing rectangle [a, b] by [c,d ]

2
-2 2
-2
(@) [-2,2] by [-2. 2]
4
—4 4
—4

(b) [—4,4] by [-4, 4]
FIGURE 2 Graphs of f(x)=x>+3

Graphing calculators and computers can give very accurate graphs of functions.
But we will see in Chapter 4 that only through the use of calculus can we be sure that
we have uncovered all the interesting aspects of a graph.

A graphing calculator or computer displays a rectangular portion of the graph of a
function in a display window or viewing screen, which we refer to as a viewing rect-
angle. The default screen often gives an incomplete or misleading picture, so it is
important to choose the viewing rectangle with care. If we choose the x-values to
range from a minimum value of Xmin = a to a maximum value of Xmax = b and the
y-values to range from a minimum of Ymin = ¢ to a maximum of Ymax = d, then the
visible portion of the graph lies in the rectangle

[a,b] X [c,d]={(x,y) |a<x<bc<y<d}

shown in Figure 1. We refer to this rectangle as the [a, b] by [c, d] viewing rectangle.

The machine draws the graph of a function f much as you would. It plots points of
the form (x, f(x)) for a certain number of equally spaced values of x between a and b.
If an x-value is not in the domain of f, or if f(x) lies outside the viewing rectangle,
it moves on to the next x-value. The machine connects each point to the preceding
plotted point to form a representation of the graph of f.

EXAMPLE 1 Draw the graph of the function f(x) = x? + 3 in each of the following
viewing rectangles.

(a) [—2,2]by [-2,2] (b) [—4,4] by [-4,4]

(c) [—10, 10] by [—5, 30] (d) [—=50, 50] by [—100, 1000]

SOLUTION For part (a) we select the range by setting Xmin = —2, Xmax = 2,
Ymin = —2, and Ymax = 2. The resulting graph is shown in Figure 2(a). The
display window is blank! A moment’s thought provides the explanation: Notice
that x> = 0 for all x, so x> + 3 = 3 for all x. Thus, the range of the function
f(x) = x* + 31is [3, ). This means that the graph of f lies entirely outside the
viewing rectangle [—2, 2] by [—2, 2].

The graphs for the viewing rectangles in parts (b), (c), and (d) are also shown in
Figure 2. Observe that we get a more complete picture in parts (c) and (d), but in
part (d) it is not clear that the y-intercept is 3.

30 1000
—10 10 —50 | 50
s ~100
(©) [10,10] by [-5, 30] (d) [-50, 50] by [~100, 1000]

We see from Example 1 that the choice of a viewing rectangle can make a big dif-
ference in the appearance of a graph. Sometimes it’s necessary to change to a larger
viewing rectangle to obtain a more complete picture, a more global view, of the graph.
In the next example we see that knowledge of the domain and range of a function
sometimes provides us with enough information to select a good viewing rectangle.



4
-3 3
| |
-1

FIGURE 3
5
=5 5
=5
FIGURE 4
20
—20
—20

(a)
FIGURE 5 f(x)=x>—150x

20
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EXAMPLE 2 Determine an appropriate viewing rectangle for the function
f(x) = +/8 — 2x? and use it to graph f.
SOLUTION The expression for f(x) is defined when

§—2x’=0 < 2u’<8 < x’<4
& x| s2 & 2=sx=s2

Therefore, the domain of f is the interval [ -2, 2]. Also,
0<.8—-2x?<.8=2,2~283

so the range of f is the interval [0, 22 ]

We choose the viewing rectangle so that the x-interval is somewhat larger than
the domain and the y-interval is larger than the range. Taking the viewing rectangle
to be [—3, 3] by [—1, 4], we get the graph shown in Figure 3. ]

EXAMPLE 3 Graph the function y = x* — 150x.

SOLUTION Here the domain is R, the set of all real numbers. That doesn’t help us
choose a viewing rectangle. Let’s experiment. If we start with the viewing rectangle
[—5,5] by [—5, 5], we get the graph in Figure 4. It appears blank, but actually the
graph is so nearly vertical that it blends in with the y-axis.

If we change the viewing rectangle to [ —20, 20] by [ —20, 20], we get the picture
shown in Figure 5(a). The graph appears to consist of vertical lines, but we know
that can’t be correct. If we look carefully while the graph is being drawn, we see
that the graph leaves the screen and reappears during the graphing process. This
indicates that we need to see more in the vertical direction, so we change the view-
ing rectangle to [ —20, 20] by [ =500, 500]. The resulting graph is shown in Fig-
ure 5(b). It still doesn’t quite reveal all the main features of the function, so we try
[—20, 20] by [—1000, 1000] in Figure 5(c). Now we are more confident that we
have arrived at an appropriate viewing rectangle. In Chapter 4 we will be able to see
that the graph shown in Figure 5(c) does indeed reveal all the main features of the
function.

500 1000

—20 20 —20 20

—500 —1000

(b) (©)

EXAMPLE 4 Graph the function f(x) = sin 50x in an appropriate viewing rectangle.

SOLUTION Figure 6(a) shows the graph of f produced by a graphing calculator using
the viewing rectangle [—12, 12] by [—1.5, 1.5]. At first glance the graph appears to
be reasonable. But if we change the viewing rectangle to the ones shown in the
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following parts of Figure 6, the graphs look very different. Something strange is
happening.
1.5 1.5

—12 12 —10 10

A The appearance of the graphs in -1.5 -5
Figure 6 depends on the machine used.

The graphs you gef with your own @) ®)
graphing device might not look like
these figures, but they will also be quite
inaccurate.

1.5

FIGURE 6
Graphs of f(x) = sin 50x
in four viewing rectangles

-1.5
(d)

In order to explain the big differences in appearance of these graphs and to
find an appropriate viewing rectangle, we need to find the period of the function
y = sin 50x. We know that the function y = sin x has period 27 and the graph
of y = sin 50x is compressed horizontally by a factor of 50, so the period of
y = sin 50x is

1.5
21 T
—=—=0.126
A o
—-25 25 This suggests that we should deal only with small values of x in order to show just
\/ \/ a few oscillations of the graph. If we choose the viewing rectangle [—0.25, 0.25] by
[—1.5, 1.5], we get the graph shown in Figure 7.
s Now we see what went wrong in Figure 6. The oscillations of y = sin 50x are so
’ rapid that when the calculator plots points and joins them, it misses most of the
FIGURE 7 maximum and minimum points and therefore gives a very misleading impression of
f(x)=sin 50x the graph. [

We have seen that the use of an inappropriate viewing rectangle can give a mis-
leading impression of the graph of a function. In Examples 1 and 3 we solved the
problem by changing to a larger viewing rectangle. In Example 4 we had to make the
viewing rectangle smaller. In the next example we look at a function for which there
is no single viewing rectangle that reveals the true shape of the graph.

EXAMPLE 5 Graph the function f(x) = sinx + 5 cos 100x.

SOLUTION Figure 8 shows the graph of f produced by a graphing calculator with view-
ing rectangle [—6.5, 6.5] by [—1.5, 1.5]. It looks much like the graph of y = sin x,
but perhaps with some bumps attached. If we zoom in to the viewing rectangle
[—0.1,0.1] by [—0.1, 0.1], we can see much more clearly the shape of these bumps
in Figure 9. The reason for this behavior is that the second term, ﬁ cos 100x, is very



A Another way to avoid the extraneous
line is to change the graphing mode on
the calculator so that the dots are not
connected. Alternatively, we could zoom
in using the Zoom Decimal mode.

FIGURE 10

1
y_l—x
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small in comparison with the first term, sin x. Thus, we really need two graphs to
see the true nature of this function.

1.5 0.1

A T
v/

-1.5 —0.1

—6.5 0.1

FIGURE 8 FIGURE 9 |

1

_x'

EXAMPLE 6 Draw the graph of the function y = "

SOLUTION Figure 10(a) shows the graph produced by a graphing calculator with
viewing rectangle [—9, 9] by [ =9, 9]. In connecting successive points on the graph,
the calculator produced a steep line segment from the top to the bottom of the
screen. That line segment is not truly part of the graph. Notice that the domain of
the function y = 1/(1 — x) is {x| x # 1}. We can eliminate the extraneous near-
vertical line by experimenting with a change of scale. When we change to the
smaller viewing rectangle [—4.7, 4.7] by [—4.7, 4.7] on this particular calculator, we
obtain the much better graph in Figure 10(b).

9 4.7
-9 f 9 47— 4.7

9 —4.7

(a) (®) [

EXAMPLE 7 Graph the function y = Jx.

SOLUTION Some graphing devices display the graph shown in Figure 11, whereas
others produce a graph like that in Figure 12. We know from Section 1.2 (Figure 13)
that the graph in Figure 12 is correct, so what happened in Figure 11? The explana-
tion is that some machines compute the cube root of x using a logarithm, which is
not defined if x is negative, so only the right half of the graph is produced.

2 2

FIGURE 11 FIGURE 12
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You should experiment with your own machine to see which of these two graphs
is produced. If you get the graph in Figure 11, you can obtain the correct picture by
graphing the function

F) = —— [x]"?
| x|

Notice that this function is equal to Jx (except when x = 0). [ ]

To understand how the expression for a function relates to its graph, it’s helpful to
graph a family of functions, that is, a collection of functions whose equations are
related. In the next example we graph members of a family of cubic polynomials.

EXAMPLE 8 Graph the function y = x* + cx for various values of the number c. How
does the graph change when c is changed?

SOLUTION Figure 13 shows the graphs of y = x>+ cexfore=2,1,0, —1, and —2.
We see that, for positive values of c, the graph increases from left to right with no
maximum or minimum points (peaks or valleys). When ¢ = 0, the curve is flat at
the origin. When c is negative, the curve has a maximum point and a minimum
point. As ¢ decreases, the maximum point becomes higher and the minimum point
lower.

(a) y=x*+2x b)yy=x>+x (c)y=x* (dy=x’—x (e) y=x*—2x

FIGURE 13

Several members of the family of
functions y = x* + cx, all graphed
in the viewing rectangle [—2, 2]
by [-2.5,2.5]

EXAMPLE 9 Find the solution of the equation cos x = x correct to two decimal
places.

SOLUTION The solutions of the equation cos x = x are the x-coordinates of the points
of intersection of the curves y = cos x and y = x. From Figure 14(a) we see that
there is only one solution and it lies between 0 and 1. Zooming in to the viewing
rectangle [0, 1] by [0, 1], we see from Figure 14(b) that the root lies between 0.7
and 0.8. So we zoom in further to the viewing rectangle [0.7, 0.8] by [0.7, 0.8] in
Figure 14(c). By moving the cursor to the intersection point of the two curves, or by
inspection and the fact that the x-scale is 0.01, we see that the root of the equation is
about 0.74. (Many calculators have a built-in intersection feature.)

0.8

FIGURE 14

Locating the roots (@) [-5,5] by [-1.5,1.5] (b) [0,1] by [0,1] (¢) [0.7,0.8] by [0.7,0.8]

of cosx=x x-scale = 1

x-scale = 0.1 x-scale = 0.01 |
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EXercises :« =« =« o o o o o o o o o o e o o e e e o o o e e e

1. Use a graphing calculator or computer to determine which 21. Use graphs to determine which of the functions
of the given viewing rectangles produces the most appropri- f(x) = 10x* and g(x) = x*/10 is eventually larger (that is,
ate graph of the function f(x) = 10 + 25x — x°. larger when x is very large).
() [-4,4] by [-4,4] . . .
(b) [~ 10, 10] by [~ 10, 10] 22. Use graphs to detegmlne which of t.he functions
() [~20, 20] by [~ 100, 100] f(x) = x* — 100x? and g(x) = x* is eventually larger.
(d) [~100, 100] by [~200, 200] 23. For what values of x is it true that | sinx — x| < 0.1?

2. Use a graphing calculator or computer to determine which
of the given viewing rectangles produces the most appropri-
ate graph of the function f(x) = /8x — x2.

(a) [~4,4] by [-4,4]
(b) [—5, 5] by [0, 100]

24. Graph the polynomials P(x) = 3x° — 5x° + 2x and
Q(x) = 3x° on the same screen, first using the viewing rect-
angle [—2, 2] by [—2, 2] and then changing to [—10, 10] by
[—10,000, 10,000]. What do you observe from these

(©) [~ 10, 10] by [—10, 40] graphs?
(d) [—2, 10] by [-2, 6] 25. In this exercise we consider the family of functions
f(x) = ¥/x, where n is a positive integer.
3-14 m Determine an appropriate viewing rectangle for the (a) Graph the root functions y = v/x, y = ¥/x, and y = {/x
given function and use it to draw the graph. on the same screen using the viewing rectangle [—1, 4]
3. f(x) =5+ 20x — x* by [—1, 3]

(b) Graph the root functions y = x, y = 3/}, and y = \5/}

4. f(x) = x* + 30x* + 200x on the same screen using the viewing rectangle [—3, 3]
5. f(x) = /81 — x* 6. f(x) = JO.1x + 20 by [—2, 2]. (See Example 7.)
(c) Graph the root functions y = Vx, y = Ix, y = V/x, and
7. f(x) = x>+ 100 8. f(x) = % y = {/x on the same screen using the viewing rectangle
X x° + 100 [—1,3]by[—1,2]
9. f(x) = cos 100x 10. £(x) = 3 sin 120x (d) What conclusions can you make from these graphs?
1. f(x) = sin(x/40) 12. y = tan 25x 26. In this exercise we consider the family of functions
e ] f(x) = 1/x", where n is a positive integer.
13,y =30 4.y =x* + 0.02sin 50x (a) Graph the functions y = 1/x and y = 1/x* on the same
screen using the viewing rectangle [—3, 3] by [—3, 3].
(b) Graph the functions y = 1/x? and y = 1/x* on the same
15. Graph the ellipse 4x* + 2y* = 1 by graphing the functions screen using the same viewing rectangle as in part (a).
whose graphs are the upper and lower halves of the ellipse. (c) Graph all of the functions in parts (a) and (b) on the same

screen using the viewing rectangle [—1, 3] by [—1, 3].

16. Graph the hyperbola y*> — 9x? = 1 by graphing the func- !
(d) What conclusions can you make from these graphs?

tions whose graphs are the upper and lower branches of the

hyperbola. 27. Graph the function f(x) = x* + cx? + x for several values

of ¢. How does the graph change when ¢ changes?
17-19 = Find all solutions of the equation correct to two deci-

mal places. 28. Graph the function f(x) = +/1 + cx? for various values of
17. ¥ — 02— 4=0 c. Describe how changing the value of ¢ affects the graph.

18. ° =4y — 1 29. Graph the function y = x"2", x =0, forn = 1,2,3,4,5,
and 6. How does the graph change as n increases?
19. x* = sinx
30. The curves with equations

20. We saw in Example 9 that the equation cos x = x has = &
. YT 2
exactly one solution. c— X
(a) Use a graph to show that the equation cos x = 0.3x has
three solutions and find their values correct to two deci-
mal places.
(b) Find an approximate value of m such that the equation 31. What happens to the graph of the equation y* = cx* + x?
cos x = mux has exactly two solutions. as ¢ varies?

are called bullet-nose curves. Graph some of these curves
to see why. What happens as ¢ increases?
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32. This exercise explores the effect of the inner function g on

a composite function y = f(g(x)).

(a) Graph the function y = sin(\/} ) using the viewing rect-
angle [0, 400] by [—1.5, 1.5]. How does this graph dif-
fer from the graph of the sine function?

(b) Graph the function y = sin(x?) using the viewing rect-
angle [—5, 5] by [—1.5, 1.5]. How does this graph differ
from the graph of the sine function?

33. The figure shows the graphs of y = sin 96x and y = sin 2x
as displayed by a TI-83 graphing calculator.

y =sin 96x

153

Exponential Functions - -

34,

The first graph is inaccurate. Explain why the two graphs
appear identical. [Hint: The TI-83’s graphing window is 95
pixels wide. What specific points does the calculator plot?]

The first graph in the figure is that of y = sin 45x as dis-
played by a TI-83 graphing calculator. It is inaccurate and
s0, to help explain its appearance, we replot the curve in
dot mode in the second graph.

2 0F

What two sine curves does the calculator appear to be
plotting? Show that each point on the graph of y = sin 45x
that the TI-83 chooses to plot is in fact on one of these two
curves. (The TI-83’s graphing window is 95 pixels wide.)

The function f(x) = 2% is called an exponential function because the variable, x, is the
exponent. It should not be confused with the power function g(x) = x? in which the

variable is the base.

In general, an exponential function is a function of the form

f(x) =a*

where a is a positive constant. Let’s recall what this means.
If x = n, a positive integer, then

n factors

If x = 0, then a® = 1, and if x = —n, where n is a positive integer, then

If x is a rational number, x = p/q, where p and ¢ are integers and ¢ > 0, then

ax — ap/q — qal, — (\q/a)p

But what is the meaning of a” if x is an irrational number? For instance, what is meant

by 2* or 579



FIGURE 1
Representation of y = 2, x rational

FIGURE 2

y=2" xreal
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To help us answer this question we first look at the graph of the function y = 2%,
where x is rational. A representation of this graph is shown in Figure 1. We want to
enlarge the domain of y = 2* to include both rational and irrational numbers.

y

There are holes in the graph in Figure 1 corresponding to irrational values of x. We
want to fill in the holes by defining f(x) = 2%, where x € R, so that f is an increasing
function. In particular, since the irrational number /3 satisfies

1.7<3<18
we must have

21.7 < 2‘/§ < 21,8

and we know what 2'7 and 2'* mean because 1.7 and 1.8 are rational numbers.
Similarly, if we use better approximations for /3, we obtain better approximations
for 23:

173 <3< 1.74 2173 < 2V3 < 0!
1.732 < /3 < 1.733
1.7320 < /3 < 1.7321

1.73205 < /3 < 1.73206

=
> 2 <t
> 20 <oV <l
=

21,73205 < 2ﬁ < 2I.73206

It can be shown that there is exactly one number that is greater than all of the
numbers

2 1.7 2].73 2 1.732 21.7320 2].73205
> 5 5 >

s

and less than all of the numbers

21.8 21,74 214733 21.7321 21,73206
b b b b

s

We define 27 to be this number. Using the preceding approximation process we can
compute it correct to six decimal places:

2V3 = 3321997

Similarly, we can define 2* (or a*, if a > 0) where x is any irrational number.
Figure 2 shows how all the holes in Figure 1 have been filled to complete the graph of
the function f(x) = 2%, x € R.
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A If0 <a <1, then a* approaches 0 as
x becomes large. If a > 1, then a*
approaches 0 as x decreases through
negative values. In both cases the

x-axis is a horizontal asympfote. These
matters are discussed in Section 2.5.

FIGURE 3

(@y=a", 0<a<l1

FIGURE 4

The graphs of members of the family of functions y = a* are shown in Figure 3 for
various values of the base a. Notice that all of these graphs pass through the same
point (0, 1) because a’ = 1 for a # 0. Notice also that as the base a gets larger, the
exponential function grows more rapidly (for x > 0).

g e e e

You can see from Figure 3 that there are basically three kinds of exponential func-
tions y = a”. If 0 < a < 1, the exponential function decreases; if @ = 1, it is a con-
stant; and if @ > 1, it increases. These three cases are illustrated in Figure 4. Observe
that if @ # 1, then the exponential function y = a* has domain R and range (0, ).
Notice also that, since (1/a)* = 1/a* = a ™, the graph of y = (1/a)" is just the reflec-
tion of the graph of y = a™ about the y-axis.

y y

0 X 0

b)yy=1* (©)y=a",a>1

One reason for the importance of the exponential function lies in the following
properties. If x and y are rational numbers, then these laws are well known from ele-
mentary algebra. It can be proved that they remain true for arbitrary real numbers
x and y.

Laws of Exponents If a and b are positive numbers and x and y are any real num-
bers, then

1. a*™ = a*a’ 2 a7 =

3 (a*) =a® 4. (ab)* = a*b*




A For a review of reflecting and
shiffing graphs, see Section 1.3.

FIGURE 5

A Example 2 shows that y = 2*
increases more quickly than y = x.

To demonstrate just how quickly

f(x) = 2% increases, let’s perform

the following thought experiment.
Suppose we start with a piece of paper
a thousandth of an inch thick and we
fold it in half 50 times. Each time we
fold the paper in half, the thickness of
the paper doubles, so the thickness of
the resulting paper would be 2°%/1000
inches. How thick do you think that is?
It works out to be more than 17 million
miles!
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EXAMPLE 1 Sketch the graph of the function y = 3 — 2" and determine its domain
and range.

SOLUTION First we reflect the graph of y = 2* (shown in Figure 2) about the x-axis
to get the graph of y = —2" in Figure 5(b). Then we shift the graph of y = —2*
upward three units to obtain the graph of y = 3 — 2" in Figure 5(c). The domain is
R and the range is (—oo, 3).

\0 X 0 X

—1

(@) y=2" (b) y=—2" () y=3-2" ]

EXAMPLE 2 Use a graphing device to compare the exponential function f(x) = 2*
and the power function g(x) = x. Which function grows more quickly when x is
large?

SOLUTION Figure 6 shows both functions graphed in the viewing rectangle [—2, 6]

by [0, 40]. We see that the graphs intersect three times, but for x > 4, the graph of
f(x) = 2% stays above the graph of g(x) = x*. Figure 7 gives a more global view and
shows that for large values of x, the exponential function y = 2* grows far more
rapidly than the power function y = x>

40 250
y=2"
y=x’
) 0 : ' 8
FIGURE 6 FIGURE 7 -

E Applications of Exponential Functions

The exponential function occurs very frequently in mathematical models of nature and
society. Here we indicate briefly how it arises in the description of population growth
and radioactive decay. In later chapters we will pursue these and other applications in
greater detail.

First we consider a population of bacteria in a homogeneous nutrient medium.
Suppose that by sampling the population at certain intervals it is determined that the
population doubles every hour. If the number of bacteria at time 7 is p(¢), where 1 is
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measured in hours, and the initial population is p(0) = 1000, then we have
p(1) = 2p(0) = 2 X 1000
p(2) = 2p(1) = 27 X 1000
p(3) = 2p(2) = 2* X 1000
It seems from this pattern that, in general,
p(r) = 2" X 1000 = (1000)2"

This population function is a constant multiple of the exponential function y = 2, so
it exhibits the rapid growth that we observed in Figures 2 and 7. Under ideal con-
ditions (unlimited space and nutrition and freedom from disease) this exponential
growth is typical of what actually occurs in nature.

What about the human population? Table 1 shows data for the population of the
world in the 20th century and Figure 8 shows the corresponding scatter plot.

6%x10°t

1900 1920 1940 1960 1980 2000 !

| CHAPTER 1 FUNCTIONS AND MODELS
TABLE 1
Population
Year (millions)
1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2560
1960 3040
1970 3710
1980 4450
1990 5280
2000 6070

FIGURE 9
Exponential model for
population growth

FIGURE 8 Scatter plot for world population growth

The pattern of the data points in Figure 8 suggests exponential growth, so we use
a graphing calculator with exponential regression capability to apply the method of
least squares and obtain the exponential model

P = (0.008196783) - (1.013723)'

Figure 9 shows the graph of this exponential function together with the original data
points. We see that the exponential curve fits the data reasonably well. The period of
relatively slow population growth is explained by the two world wars and the depres-
sion of the 1930s.

P

6x10° T

1900 1920 1940 1960 1980 2000 !
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FIGURE 10
m=24.271%

P
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EXAMPLE 3 The half-life of strontium-90, *Sr, is 25 years. This means that half of
any given quantity of *°Sr will disintegrate in 25 years.

(a) If a sample of *°Sr has a mass of 24 mg, find an expression for the mass m(z)
that remains after ¢ years.

(b) Find the mass remaining after 40 years, correct to the nearest milligram.

(¢) Use a graphing device to graph m(r) and use the graph to estimate the time
required for the mass to be reduced to 5 mg.

SOLUTION
(a) The mass is initially 24 mg and is halved during each 25-year period, so

m(0) = 24

m(25) = %(24)

1 1 1
m(50) = E . 5(24) = ?(24)
m(75) = % : %(24) _ %(24)
m(100) = % : %(24) _ %(24)

From this pattern, it appears that the mass remaining after ¢ years is

1
mit) = 25 (24) = 24277

This is an exponential function with base a = 27"/% = 1/2/%,

(b) The mass that remains after 40 years is
m(40) = 24 - 27/* = 79 mg

(c) We use a graphing calculator or computer to graph the function

m(f) = 24 - 27% in Figure 10. We also graph the line m = 5 and use the cursor to
estimate that m(f) = 5 when ¢ = 57. So the mass of the sample will be reduced to

5 mg after about 57 years. [ ]

PN The Number e

Of all possible bases for an exponential function, there is one that is most convenient
for the purposes of calculus. The choice of a base « is influenced by the way the graph
of y = a* crosses the y-axis. Figures 11 and 12 show the tangent lines to the graphs

y y

FIGURE 11 FIGURE 12
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FIGURE 13

The natural exponential function
crosses the y-axis with a slope of 1.

TEC Module 1.5 enables you to
graph exponential functions with
various bases and their tangent lines in
order to estimate more closely the value
of a for which the tangent has slope 1.

i

of y = 2" and y = 3" at the point (0, 1). (Tangent lines will be defined precisely in
Section 2.6. For present purposes, you can think of the tangent line to an exponential
graph at a point as the line that touches the graph only at that point.) If we measure
the slopes of these tangent lines, we find that m = 0.7 for y = 2" and m = 1.1 for
y = 3"

It turns out, as we will see in Chapter 3, that some of the formulas of calculus will
be greatly simplified if we choose the base a so that the slope of the tangent line to
y =a"at (0, 1) is exactly 1 (see Figure 13). In fact, there is such a number and it is
denoted by the letter e. (This notation was chosen by the Swiss mathematician Leon-
hard Euler in 1727, probably because it is the first letter of the word exponential.) In
view of Figures 11 and 12, it comes as no surprise that the number e lies between 2
and 3 and the graph of y = ¢” lies between the graphs of y = 2 and y = 3* (see Fig-
ure 14). In Chapter 3 we will see that the value of e, correct to five decimal places, is

e =~ 271828

FIGURE 14

EXAMPLE 4 Graph the function y = 3¢ * — 1 and state the domain and range.

SOLUTION We start with the graph of y = ¢” from Figures 13 and 15(a) and reflect
about the y-axis to get the graph of y = ¢~ in Figure 15(b). (Notice that the graph
crosses the y-axis with a slope of —1). Then we compress the graph vertically by a
factor of 2 to obtain the graph of y = 3¢ * in Figure 15(c). Finally, we shift the
graph downward one unit to get the desired graph in Figure 15(d). The domain is R
and the range is (—1, «).

y y y

0 X

@y=e"
FIGURE 15

byy=e* ©y=1e" dy=1e*—1

How far to the right do you think we would have to go for the height of the graph
of y = e*to exceed a million? The next example demonstrates the rapid growth of this
function by providing an answer that might surprise you.
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EXAMPLE 5 Use a graphing device to find the values of x for which e¢* > 1,000,000.

SOLUTION In Figure 16 we graph both the function y = e* and the horizontal line

y = 1,000,000. We see that these curves intersect when x =~ 13.8. Thus, ¢* > 10°
when x > 13.8. It is perhaps surprising that the values of the exponential function
have already surpassed a million when x is only 14.

1.5 x10°

y=10°

FIGURE 16 0

EXErcises « =+« =+ ¢ o o o o o o o o o o o o o o o e e e e e o e

1. (a) Write an equation that defines the exponential function 14. Starting with the graph of y = ¢*, find the equation of the
with base a > 0. graph that results from
(b) What is the domain of this function? (a) reflecting about the line y = 4
(c) If @ # 1, what is the range of this function? (b) reflecting about the line x = 2
(d) Sketch the general shape of the graph of the exponential
function for each of the following cases. 15-16 ®m Find the exponential function f(x) = Ca* whose
i) a>1 (i) a=1 (i) 0<a<1 graph is given.
2. (a) How is the number e defined? 15. 16.
(b) What is an approximate value for e? y y
(c) What is the natural exponential function? (3,24) \
3-6 m Graph the given functions on a common screen. How are 2

these graphs related?
.y=2% y=e', y=5", y=20" (1,6)
4. y=¢", y=e™, y=8, y=87" —
5.y=3% y=105 y=(3), y=)

6. y =09, y=06° y=03% y=0.1"

o 17. If f(x) = 5%, show that
7-12 m Make a rough sketch of the graph of each function. Do

not use a calculator. Just use the graphs given in Figures 3 and f&+h) = f) 5x< 5h— >

14 and, if necessary, the transformations of Section 1.3.

h h
1. y=4"-3 8. y=4"3
. . 18. Suppose you are offered a job that lasts one month. Which
9. y= -2 10. y=1+2e of the following methods of payment do you prefer?
N, y=3—¢" 12 y=2+5(1—e") 1. One million dollars at the end of the month.

IL. One cent on the first day of the month, two cents on the
second day, four cents on the third day, and, in general,

. . ok .
13. Starting with the graph of y = e*, write the equation of the 271 cents on the nth day.

graph that results from

(a) shifting 2 units downward 19. Show that if the graphs of f(x) = x? and g(x) = 2" are

(b) shifting 2 units to the right drawn on a coordinate grid where the unit of measurement
(c) reflecting about the x-axis is 1 inch, then at a distance 2 ft to the right of the origin the
(d) reflecting about the y-axis height of the graph of f is 48 ft but the height of the graph

(e) reflecting about the x-axis and then about the y-axis of g is about 265 mi.
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¥4 20. Compare the functions f(x) = x° and g(x) = 5 by graph-
ing both functions in several viewing rectangles. Find all
points of intersection of the graphs correct to one decimal
place. Which function grows more rapidly when x is large?
=

S
I

21.

Compare the functions f(x) = x'* and g(x) = e* by graph-
ing both f and g in several viewing rectangles. When does
the graph of ¢ finally surpass the graph of f?

/19 22. Use a graph to estimate the values of x such that
e* > 1,000,000,000.

23. Under ideal conditions a certain bacteria population is
known to double every three hours. Suppose that there are
initially 100 bacteria.

(a) What is the size of the population after 15 hours?

(b) What is the size of the population after ¢ hours?

(c) Estimate the size of the population after 20 hours.

(d) Graph the population function and estimate the time for

the population to reach 50,000.

24. An isotope of sodium, **Na, has a half-life of 15 hours. A
sample of this isotope has mass 2 g.

(a) Find the amount remaining after 60 hours.

(b) Find the amount remaining after ¢ hours.

(c) Estimate the amount remaining after 4 days.

1.6

4 25.

[ 26.

(d) Use a graph to estimate the time required for the mass
to be reduced to 0.01 g.

Use a graphing calculator with exponential regression capa-
bility to model the population of the world with the data
from 1950 to 2000 in Table 1 on page 60. Use the model to
estimate the population in 1993 and to predict the popula-
tion in the year 2010.

The table gives the population of the United States, in mil-
lions, for the years 1900-2000.

Year Population Year Population
1900 76 1960 179
1910 92 1970 203
1920 106 1980 227
1930 123 1990 250
1940 131 2000 275
1950 150

Use a graphing calculator with exponential regression capa-
bility to model the U. S. population since 1900. Use the
model to estimate the population in 1925 and to predict the
population in the years 2010 and 2020.

Inverse Functions and Logarithms - . « . . =« « « =« +

Table 1 gives data from an experiment in which a bacteria culture started with 100
bacteria in a limited nutrient medium; the size of the bacteria population was recorded
at hourly intervals. The number of bacteria N is a function of the time : N = f ().
Suppose, however, that the biologist changes her point of view and becomes inter-
ested in the time required for the population to reach various levels. In other words,
she is thinking of ¢ as a function of N. This function is called the inverse function of f,
denoted by !, and read “f inverse.” Thus, t = f~!(N) is the time required for the
population level to reach N. The values of f~! can be found by reading Table 1 back-
ward or by consulting Table 2. For instance, f~'(550) = 6 because f(6) = 550.

40 10
;. / - TABLE 1 N as a function of ¢ TABLE 2 1 as a function of N
o, ( v t N =f() t=f"'(N)
\ ) (hours) = population at time # N = time to reach N bacteria
[ ] L]
: f 0 100 100 0
A —_— B 1 168 168 1
2 259 259 2
3 358 358 3
4 * 10 4 445 445 4
3¢ 5 509 509 5
o4 6 550 550 6
2. 7 573 573 7
Le °2 8 586 586 8
Not all functions possess inverses. Let’s compare the functions f and g whose
FIGURE 1 arrow diagrams are shown in Figure 1. Note that f never takes on the same value twice



A In the language of inputs and outputs,
this definition says that f is one-fo-one if
each oufput corresponds fo only one
input.
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|
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|
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FIGURE 2
This function is not one-to-one
because f(x;) = f(x,).

=
/

/ﬁ |

FIGURE 3
f(x)= x> is one-to-one.

\
\ |/

FIGURE 4
g(x) = x? is not one-to-one.

=
S
=

SECTION 1.6 INVERSE FUNCTIONS AND LOGARITHMS 65

(any two inputs in A have different outputs), whereas g does take on the same value
twice (both 2 and 3 have the same output, 4). In symbols,

9(2) = ¢(3)

but S(x)) # f(xy) whenever x; # x,

Functions that have this latter property are called one-to-one functions.

[1] Definition A function f is called a one-to-one function if it never takes on
the same value twice; that is,

Fxp) # f(x,) whenever x; # x,

If a horizontal line intersects the graph of f in more than one point, then we see
from Figure 2 that there are numbers x, and x, such that f(x,) = f(x,). This means
that f is not one-to-one. Therefore, we have the following geometric method for deter-
mining whether a function is one-to-one.

Horizontal Line Test A function is one-to-one if and only if no horizontal line
intersects its graph more than once.

EXAMPLE 1 Is the function f(x) = x* one-to-one?

SOLUTION 1 If x, # x,, then x] # x3 (two different numbers can’t have the same
cube). Therefore, by Definition 1, f(x) = x> is one-to-one.

SOLUTION 2 From Figure 3 we see that no horizontal line intersects the graph of

f(x) = x* more than once. Therefore, by the Horizontal Line Test, f is one-to-one.
]

EXAMPLE 2 Is the function g(x) = x? one-to-one?

SOLUTION T This function is not one-to-one because, for instance,
g(1) =1 =g(—1)

and so 1 and —1 have the same output.

SOLUTION 2 From Figure 4 we see that there are horizontal lines that intersect the
graph of g more than once. Therefore, by the Horizontal Line Test, g is not one-to-
one. =

One-to-one functions are important because they are precisely the functions that
possess inverse functions according to the following definition.

[2] Definition Let f be a one-to-one function with domain A and range B.
Then its inverse function f ! has domain B and range A and is defined by

[f=x & fly=y

for any y in B.
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x This definition says that if f maps x into y, then f ! maps y back into x. (If f were

not one-to-one, then ' would not be uniquely defined.) The arrow diagram in Fig-
f I ure 5 indicates that ! reverses the effect of f. Note that

B

FIGURE 5

y domain of f ' = range of f

range of f ! = domain of f

For example, the inverse function of f(x) = x> is f~'(x) = x'/? because if y = x°,
then

F0) =) = @) =
@ CAUTION » Do not mistake the —1 in f~' for an exponent. Thus

£ Yx) does not mean

1
f(x)
The reciprocal 1/f(x) could, however, be written as [ f(x)]~".

EXAMPLE 3 If (1) = 5, f(3) = 7, and f(8) = —10, find f~(7), £~'(5), and
f71(=10).
SOLUTION From the definition of f~! we have
Y7 =3 because f3) =7
f'6)=1  because f(1)=5
£ Y(=10) =38 because f(8) = —10

The diagram in Figure 6 makes it clear how f ' reverses the effect of f in this case.

A B A B

(O8]
[98)

FIGURE 6

The inverse function reverses ¥ F!
inputs and outputs. — -

The letter x is traditionally used as the independent variable, so when we concen-
trate on f ' rather than on f, we usually reverse the roles of x and y in Definition 2
and write

3] W=y < fO)=x

By substituting for y in Definition 2 and substituting for x in (3), we get the fol-
lowing cancellation equations:



FIGURE 7

A In Example 4, notice how !
reverses the effect of f. The function £ is
the rule “Cube, then add 27; f~!is the
rule “Subtract 2, then take the cube
root.”
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(4] f U (f(x)) =x forevery xinA

f(f'(x)) =x forevery xin B

The first cancellation equation says that if we start with x, apply f, and then apply ',
we arrive back at x, where we started (see the machine diagram in Figure 7). Thus,
f " undoes what f does. The second equation says that f undoes what f~' does.

For example, if f(x) = x, then f~'(x) = x'/* and so the cancellation equations
become

Ff) = ()3 =«
FUE) = (13 =«

These equations simply say that the cube function and the cube root function cancel
each other when applied in succession.

Now let’s see how to compute inverse functions. If we have a function y = f(x) and
are able to solve this equation for x in terms of y, then according to Definition 2 we
must have x = f~!(y). If we want to call the independent variable x, we then inter-
change x and y and arrive at the equation y = f~'(x).

[5] How to Find the Inverse Function of a One-to-One Function f
STEP 1 Write y = f(x).
STEP 2 Solve this equation for x in terms of y (if possible).

STEP 3 To express f ' as a function of x, interchange x and y.
The resulting equation is y = f~'(x).

EXAMPLE 4 Find the inverse function of f(x) = x* + 2.
SOLUTION According to (5) we first write

y=x>+2
Then we solve this equation for x:
X3 = y—2
x=sy—2

Finally, we interchange x and y:
y= =3
Therefore, the inverse function is £~ !(x) = /x — 2. =

The principle of interchanging x and y to find the inverse function also gives us the
method for obtaining the graph of f ' from the graph of f. Since f(a) = b if and only
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if f7'(b) = a, the point (a, b) is on the graph of f if and only if the point (b, a) is on
the graph of f~'. But we get the point (b, a) from (a, b) by reflecting about the line

y = x. (See Figure 8.)

y (b, a) y

=

/

/

/ - (a, b)
o7 | 0

X X

B f

FIGURE 8 FIGURE 9

Therefore, as illustrated by Figure 9:

The graph of f~!is obtained by reflecting the graph of f about the line y = x.

EXAMPLE 5 Sketch the graphs of f(x) = /=1 — x and its inverse function using the
same coordinate axes.

SOLUTION First we sketch the curve y = /—1 — x (the top half of the parabola

y? = —1 — x, or x = —y? — 1) and then we reflect about the line y = x to get the
graph of f~'. (See Figure 10.) As a check on our graph, notice that the expression
for f'is f7'(x) = —x? — 1, x = 0. So the graph of f ! is the right half of the
parabola y = —x* — 1 and this seems reasonable from Figure 10. ]

5 Logarithmic Functions

If @ >0 and a # 1, the exponential function f(x) = a” is either increasing or
decreasing and so it is one-to-one by the Horizontal Line Test. It therefore has an
inverse function !, which is called the logarithmic function with base a and is
denoted by log . If we use the formulation of an inverse function given by (3),

o=y < f)=x
then we have

[6] log,x=y <& a’'=x

Thus, if x > 0, then log,x is the exponent to which the base a must be raised to give
x. For example, log,,0.001 = —3 because 10~ = 0.001.

The cancellation equations (4), when applied to f(x) = a* and f '(x) = log,x,
become

log,(a*) = x foreveryx € R

log, x

a =x foreveryx >0




y y=x
0 X
y=log,x, a>1

FIGURE 11

y _

y=log, x
y=log;x
14+
0 1 \ X
y=logsx
y=logx

FIGURE 12

A Notation for Logarithms

Most textbooks in calculus and the
sciences, as well as calculators, use the
nofation In x for the natural logarithm
and log x for the “common logarithm,”
log o x. In the more advanced mathe-
matical and scientific literature and in
computer languages, however, the
nofation log x usually denotes the natural
logarithm.
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The logarithmic function log, has domain (0, ) and range R. Its graph is the
reflection of the graph of y = a* about the line y = x.

Figure 11 shows the case where a > 1. (The most important logarithmic functions
have base a > 1.) The fact that y = a” is a very rapidly increasing function for x > 0
is reflected in the fact that y = log,x is a very slowly increasing function for x > 1.

Figure 12 shows the graphs of y = log,x with various values of the base a. Since
log, 1 = 0, the graphs of all logarithmic functions pass through the point (1, 0).

The following properties of logarithmic functions follow from the corresponding
properties of exponential functions given in Section 1.5.

Laws of Logarithms If x and y are positive numbers, then

1. log,(xy) = log,x + log,y
X

2. loga(—> = log,x — log,y
y

3. log,(x") = rlog,x (where r is any real number)

EXAMPLE 6 Use the laws of logarithms to evaluate log, 80 — log, 5.
SOLUTION Using Law 2, we have

80
log,80 — log,5 = log2<?> =log,16 =4

because 24 = 16. L

PN Natural Logarithms

Of all possible bases a for logarithms, we will see in Chapter 3 that the most conven-
ient choice of a base is the number e, which was defined in Section 1.5. The logarithm
with base e is called the natural logarithm and has a special notation:

log,x =Inx

If we put a = e and replace log, with In in (6) and (7), then the defining properties
of the natural logarithm function become

Inx=y < e =ux
[9] In(e*) = x xER
e =y x>0

In particular, if we set x = 1, we get

Ine =1
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EXAMPLE 7 Find x if In x = 5.
SOLUTION 1 From (8) we see that

Inx=25 means e’ =x

Therefore, x = e°.

(If you have trouble working with the “In” notation, just replace it by log,. Then
the equation becomes log, x = 5; so, by the definition of logarithm, ¢ = x.)

SOLUTION 2 Start with the equation
Inx =135

and apply the exponential function to both sides of the equation:

But the second cancellation equation in (9) says that e™* = x. Therefore, x = ¢°. &

EXAMPLE 8 Solve the equation ¢ 3* = 10.

SOLUTION We take natural logarithms of both sides of the equation and use (9):

In(e®) = In 10

5—=3x=1In10
3x=5—-1In10
x=13(5—1n10)

Since the natural logarithm is found on scientific calculators, we can approximate
the solution to four decimal places: x = 0.8991. ]
EXAMPLE 9 Express Ina + 5 1Inb as a single logarithm.

SOLUTION Using Laws 3 and 1 of logarithms, we have

Ina +3lnb=1Ina + Inb'?
=Ina + ln\/z
=1n(a\/5) [ ]

The following formula shows that logarithms with any base can be expressed in
terms of the natural logarithm.

For any positive number a (a # 1), we have

In x
log,x = —
Ina
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Proof Lety = log,x. Then, from (6), we have a” = x. Taking natural logarithms of
both sides of this equation, we get yIn a = In x. Therefore

In x
YT ha
na =
Scientific calculators have a key for natural logarithms, so Formula 10 enables
us to use a calculator to compute a logarithm with any base (as shown in the next
example). Similarly, Formula 10 allows us to graph any logarithmic function on a
graphing calculator or computer (see Exercises 43 and 44).

EXAMPLE 10 Evaluate logy5 correct to six decimal places.
SOLUTION Formula 10 gives

loz.5 — 5 _ 0773976
0 =—=(.
£° 7 s -

EXAMPLE 11 In Example 3 in Section 1.5 we showed that the mass of *’Sr that
remains from a 24-mg sample after ¢ years is m = f(r) = 24 - 27/%. Find the
inverse of this function and interpret it.

SOLUTION We need to solve the equation m = 24 - 277/ for 7. We start by isolating
the exponential and taking natural logarithms of both sides:

2*[/25 — ﬂ

24

InQ %) = In( -
n(27%) n<24>

t
—Ean =Inm — In24

25 25
=~ (lnm—1n24) = —=(In24 — |
t 1112(nm n 24) lr12(n nm)

So the inverse function is
25
Y m) =——=(n24 — Inm)
In2

This function gives the time required for the mass to decay to m milligrams. In par-
ticular, the time required for the mass to be reduced to 5 mg is

25
t=£f"15) = E(ln 24 — In5) =~ 56.58 years

This answer agrees with the graphical estimate that we made in Example 3 in Sec-
tion 1.5. ]

The graphs of the exponential function y = e* and its inverse function, the natural
logarithm function, are shown in Figure 13. Because the curve y = e¢” crosses the
y-axis with a slope of 1, it follows that the reflected curve y = In x crosses the x-axis
with a slope of 1.
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In common with all other logarithmic functions with base greater than 1, the natu-
ral logarithm is an increasing function defined on (0, «) and the y-axis is a vertical
asymptote. (This means that the values of In x become very large negative as x
approaches 0.)

EXAMPLE 12 Sketch the graph of the function y = In(x — 2) — 1.
SOLUTION We start with the graph of y = In x as given in Figure 13. Using the

transformations of Section 1.3, we shift it two units to the right to get the graph
of y = In(x — 2) and then we shift it one unit downward to get the graph of
y = In(x — 2) — 1. (See Figure 14.)

y x=2 y

y=Inx y=Inx—-2)—1

y=In(x—2)

FIGURE 14

|
|
|
|
|
|
f "
I /(3,0 .
|
|
|
|
|
|

Although In x is an increasing function, it grows very slowly when x > 1. In fact,
In x grows more slowly than any positive power of x. To illustrate this fact, we
compare approximate values of the functions y = Inx and y = x/? = \/x in the
following table and we graph them in Figures 15 and 16. You can see that initially the
graphs of y = Vx and y = In x grow at comparable rates, but eventually the root func-
tion far surpasses the logarithm.

x 1 2 5 10 50 | 100 | 500 | 1000 | 10,000 | 100,000

Inx | 0 | 069 | 1.61 | 230 | 391 | 46 | 62 6.9 9.2 11.5

Vo]l 141 | 224 | 3.6 | 7.07 | 100 | 224 | 316 100 316

% 0 | 049 | 072 | 0.73 | 055 | 046 | 028 | 0.22 0.09 0.04
y

y=vx

y=Inx

0 /1 x 0 1000

FIGURE 15 FIGURE 16
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1. (a) What is a one-to-one function?
(b) How can you tell from the graph of a function whether
it is one-to-one?

2. (a) Suppose f is a one-to-one function with domain A and
range B. How is the inverse function f~' defined? What
is the domain of f~'? What is the range of f~'?

(b) If you are given a formula for f, how do you find a
formula for f~'?

(c) If you are given the graph of f, how do you find the
graph of f~'?

3-14 m A function f is given by a table of values, a graph, a
formula, or a verbal description. Determine whether f is one-
to-one.

3. X 1 2 3 4 5 6
f(x) 1.5 2.0 3.6 53 2.8 2.0
4. X 1 2 3 4 5 6
F(x) 1 2 4 8 16 32
5 y 6. y
X X
7 y 8 y
X X

9. f(x) =1i(x +5) 10. f(x) =1+ 4x — x?
. g(o) = || 12 g(0 = Vx

13. f(2) is the height of a football ¢ seconds after kickoff.
14. f(¢) is your height at age ¢.

15-16 m Use a graph to decide whether f is one-to-one.
15. f(x) =x>—x 16. f(x) =x>+x

17. If f is a one-to-one function such that f(2) = 9, what
is £719)?
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18. Let f(x) = 3 + x> + tan(mwx/2), where —1 < x < 1.
(a) Find £~'(3).
(b) Find f(f~'(5)).

19. If g(x) = 3 + x + ¢ find g~ '(4).

20. The graph of f is given.
(a) Why is f one-to-one?
(b) State the domain and range of f ..
(c) Estimate the value of f7!(1).

|
w
(!
()

|
—_
(=)
[\
w 4+
=

21. The formula C = 2(F — 32), where F = —459.67,
expresses the Celsius temperature C as a function of the
Fahrenheit temperature F. Find a formula for the inverse
function and interpret it. What is the domain of the inverse
function?

22. In the theory of relativity, the mass of a particle with veloc-
ity v is
mo

m=fo) ===

where m is the rest mass of the particle and c is the speed
of light in a vacuum. Find the inverse function of f and
explain its meaning.

23-28 m Find a formula for the inverse of the function.

4x — 1
23. f(x) = /10 — 3x 8, f(x) = —
2x+ 3
25. f(x) = e* 26, y=2x*+3
1+ e
27. y = In(x + 3) 2. y=- =
—

{4 29-30 m Find an explicit formula for ' and use it to graph

£7L, £, and the line y = x on the same screen. To check your
work, see whether the graphs of f and f ! are reflections about
the line.

29. f(x) =1—-2/x% x>0

30. f(x) =+/x>+2x, x>0
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31. Use the given graph of f to sketch the graph of £~
y
1 +

32. Use the given graph of f to sketch the graphs of f ' and 1/f.

y

33. (a) How is the logarithmic function y = log,x defined?
(b) What is the domain of this function?
(c) What is the range of this function?
(d) Sketch the general shape of the graph of the function
y=log,xifa > 1.

34. (a) What is the natural logarithm?
(b) What is the common logarithm?
(c) Sketch the graphs of the natural logarithm function and
the natural exponential function with a common set of
axes.

35-38 m Find the exact value of each expression.
35. (a) log, 64 (b) logg 3
36. (a) log,2 (b) IneV?

37. (a) log,,1.25 + log,,80
(b) logs 10 + logs20 — 3logs2

38. (a) 2(10g23+lug25) (b) 631"2

39-40 m Express the given quantity as a single logarithm.

39. 2In4 — In2 40. Inx + alny — blnz

41. Use Formula 10 to evaluate each logarithm correct to six
decimal places.

(a) log, 5 (b) log526.05

42. Find the domain and range of the function
g(x) = In(4 — x?).

¥ 43-44 m Use Formula 10 to graph the given functions on a

common screen. How are these graphs related?

43. y=1log,sx, y=1Inx, y=log,x, y=logsx

A 46

4. y=1Inx, y=Ilog,,x, y=e", y=10"

45, Suppose that the graph of y = log, x is drawn on a coor-
dinate grid where the unit of measurement is an inch. How
many miles to the right of the origin do we have to move
before the height of the curve reaches 3 ft?

. Compare the functions f(x) = x®! and g(x) = In x by
graphing both f and g in several viewing rectangles. When
does the graph of f finally surpass the graph of g?

47-48 m Make a rough sketch of the graph of each function.
Do not use a calculator. Just use the graphs given in Figures 12
and 13 and, if necessary, the transformations of Section 1.3.
47. (a) y = log,,(x + 5) (b) y=—Inx

48. (a) y = In(—x) (b) y=1In]|x|

49-52 m Solve each equation for x.

49. (a)2Inx =1 b)ye* =5

50. (a) e>**3—7=0 () In(5 — 2x) = =3
b)Inx +In(x —1)=1
(b) e™ = Ce"*, where a # b

51. (a)2* % =3
52. (a) In(lnx) =1

53-54 m Solve each inequality for x.
53. (a) e* < 10 (b) Inx > —1

54, )2 <Inx <9 (b) 73 >4

55. Graph the function f(x) = +/x3 + x2 + x + 1 and explain

why it is one-to-one. Then use a computer algebra system to
find an explicit expression for f~'(x). (Your CAS will pro-
duce three possible expressions. Explain why two of them
are irrelevant in this context.)

56. (a) If g(x) = x® + x*, x = 0, use a computer algebra sys-

tem to find an expression for g ~'(x).
(b) Use the expression in part (a) to graph y = g(x), y = x,
and y = g~ '(x) on the same screen.

57. If a bacteria population starts with 100 bacteria and doubles
every three hours, then the number of bacteria after ¢ hours
isn = f(r) = 100 - 23, (See Exercise 23 in Section 1.5.)
(a) Find the inverse of this function and explain its

meaning.
(b) When will the population reach 50,000?

58. When a camera flash goes off, the batteries immediately
begin to recharge the flash’s capacitor, which stores electric
charge given by

0 = Q,(1 — e™"/)



(The maximum charge capacity is Q, and ¢ is measured in

seconds.)

(a) Find the inverse of this function and explain its meaning.

(b) How long does it take to recharge the capacitor to 90%
of capacity if a = 2?

59. Starting with the graph of y = Inx, find the equation of the
graph that results from
(a) shifting 3 units upward
(b) shifting 3 units to the left
(c) reflecting about the x-axis
(d) reflecting about the y-axis
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(e) reflecting about the line y = x

(f) reflecting about the x-axis and then about the line y = x

(g) reflecting about the y-axis and then about the line y = x

(h) shifting 3 units to the left and then reflecting about the
liney = x

60. (a) If we shift a curve to the left, what happens to its reflec-
tion about the line y = x? In view of this geometric
principle, find an expression for the inverse of
g(x) = f(x + ¢), where f is a one-to-one function.

(b) Find an expression for the inverse of h(x) = f(cx),
where ¢ # 0.

: ] : Parametric curves . o . ° e ° ° ° ° ° . ° ° ° ° °

(. y)=(f(r), g(0)

/0 X

FIGURE 1

A
y c Imagine that a particle moves along the curve C shown in Figure 1. It is impossible to
describe C by an equation of the form y = f(x) because C fails the Vertical Line Test.
But the x- and y-coordinates of the particle are functions of time and so we can write
C x = f(t) and y = ¢(r). Such a pair of equations is often a convenient way of describ-
/ ing a curve and gives rise to the following definition.
Suppose that x and y are both given as functions of a third variable ¢ (called a
parameter) by the equations

x=f@ y=g

(called parametric equations). Each value of ¢ determines a point (x, y), which we
can plot in a coordinate plane. As ¢ varies, the point (x, y) = (f(1), g(¢)) varies and
traces out a curve C, which we call a parametric curve. The parameter 7 does not nec-
essarily represent time and, in fact, we could use a letter other than ¢ for the parame-
ter. But in many applications of parametric curves, ¢ does denote time and therefore
we can interpret (x, y) = (f(), g(¢)) as the position of a particle at time 7.

EXAMPLE 1 Sketch and identify the curve defined by the parametric equations

x=1"=2t y=t+1

SOLUTION Each value of ¢ gives a point on the curve, as shown in the table. For
instance, if = 0, then x = 0, y = 1 and so the corresponding point is (0, 1). In
Figure 2 we plot the points (x, y) determined by several values of the parameter and
we join them to produce a curve.

t X y
-1 3

0 0

1 -1

2 0

3 3

4 8

NA W = O =
-
Il
S

FIGURE 2
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FIGURE 3

FIGURE 4

A particle whose position is given by the parametric equations moves along the
curve in the direction of the arrows as ¢ increases. Notice that the consecutive points
marked on the curve appear at equal time intervals but not at equal distances. That is
because the particle slows down and then speeds up as ¢ increases.

It appears from Figure 2 that the curve traced out by the particle may be a parab-
ola. This can be confirmed by eliminating the parameter ¢ as follows. We obtain
t =y — 1 from the second equation and substitute into the first equation. This gives

x=1=2r=(-1-2(y-1)=y"—4y+3
and so the curve represented by the given parametric equations is the parabola

x=y*— 4y + 3. =

No restriction was placed on the parameter ¢ in Example 1, so we assumed that ¢
could be any real number. But sometimes we restrict 7 to lie in a finite interval. For
instance, the parametric curve

x=t"—2t y=t+1 0<r<4

shown in Figure 3 is the part of the parabola in Example 1 that starts at the point (0, 1)
and ends at the point (8, 5). The arrowhead indicates the direction in which the curve
is traced as ¢ increases from O to 4.

In general, the curve with parametric equations

x = f(r) y = g(r) as<t<b

has initial point (f(a), g(@)) and terminal point (1 (), g(b)).

EXAMPLE 2 What curve is represented by the parametric equations x = cos ¢,
y=sint,0 <1t <277

SOLUTION If we plot points, it appears that the curve is a circle. We can confirm this
impression by eliminating ¢. Observe that

x? + y* = cos’t + sin’t = 1

Thus, the point (x, y) moves on the unit circle x* + y? = 1. Notice that in this
example the parameter ¢ can be interpreted as the angle (in radians) shown in Fig-
ure 4. As t increases from O to 277, the point (x, y) = (cos z, sin f) moves once
around the circle in the counterclockwise direction starting from the point (1, 0).

_x Y
=5
\ .
(cost, sint)
\
‘ t=0
t=m t A J
0 (L0
t=2
=32
2 [}

EXAMPLE 3 What curve is represented by the parametric equations x = sin 27,
y=cos2t,0=<t=<2m?



FIGURE 5

(11)

FIGURE 6

TEC Module 1.7A gives an anima-
tion of the relationship between
motion along a parametric curve x = f(),
y = ¢(1) and motion along the graphs of
fand g as functions of . Clicking on
TRIG gives you the family of parametric
curves
x=acosbt y=csindt
If you choose a = b = ¢ =d =1 and
click START, you will see how the graphs
of x = cos t and y = sin 1 relate to
the circle in Example 2. If you choose
a=b=c=1,d=2, you will see
graphs as in Figure 7. By clicking on
PAUSE and then repeatedly on STEP,
you can see from the color coding how
motion along the graphs of x = cos r and
y = sin 2t corresponds to mofion along
the parametric curve, which is called a
Lissajous figure.
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SOLUTION Again we have
x>+ y? =sin?2t + cos?2t =1

so the parametric equations again represent the unit circle x*> + y*> = 1. But as ¢
increases from 0 to 27, the point (x, y) = (sin 21, cos 21) starts at (0, 1) and moves
twice around the circle in the clockwise direction as indicated in Figure 5.

y
t=0,7, 27

0,1)

|

Examples 2 and 3 show that different sets of parametric equations can represent the
same curve. Thus, we distinguish between a curve, which is a set of points, and a
parametric curve, in which the points are traced in a particular way.

EXAMPLE 4 Sketch the curve with parametric equations x = sin ¢, y = sin’.

SOLUTION Observe that y = (sin #)> = x* and so the point (x, y) moves on the parabola
y = x% But note also that, since —1 < sint < 1, we have —1 < x < 1, so the

parametric equations represent only the part of the parabola for which —1 < x < 1.
Since sin ¢ is periodic, the point (x, y) = (sin ¢, sin’) moves back and forth infinitely

often along the parabola from (—1, 1) to (1, 1). (See Figure 6.) [ ]
=
=
[
g
y y
x t
FIGURE 7 x=cost y=sin2t y=sin2t
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FIGURE 8

FIGURE 9

FIGURE 10

P\ Graphing Devices

Most graphing calculators and computer graphing programs can be used to graph
curves defined by parametric equations. In fact, it is instructive to watch a parametric
curve being drawn by a graphing calculator because the points are plotted in order as
the corresponding parameter values increase.

EXAMPLE 5 Use a graphing device to graph the curve x = y* — 3y2

SOLUTION If we let the parameter be ¢ = y, then we have the equations
x=t"—32 y=t¢

Using these parametric equations to graph the curve, we obtain Figure 8. It would
be possible to solve the given equation (x = y* — 3y?) for y as four functions of x
and graph them individually, but the parametric equations provide a much easier
method. [ ]

In general, if we need to graph an equation of the form x = g(y), we can use the
parametric equations
x=g0) y=t

Notice also that curves with equations y = f(x) (the ones we are most familiar with—
graphs of functions) can also be regarded as curves with parametric equations

(1] x=1t y=f@

Another use of parametric equations is to graph the inverse function of a one-to-
one function. Many graphing devices won’t plot the inverse of a given function
directly, but we can obtain the desired graph by using the parametric graphing capa-
bility of such a device. We know that the graph of the inverse function is obtained by
interchanging the x- and y-coordinates of the points on the graph of f. Therefore, from
(1), we see that parametric equations for the graph of f ' are

x=fn y=t1

EXAMPLE 6 Show that the function f(x) = y/x3 + x? + x + 1 is one-to-one and graph
both f and f~'.

SOLUTION We plot the graph in Figure 9 and observe that f is one-to-one by the
Horizontal Line Test.

To graph f and f~' on the same screen we use parametric graphs. Parametric
equations for the graph of f are

xX=t y=Vet+e+r+1
and parametric equations for the graph of f ' are

x=Vet+e+r+1 y=t
Let’s also plot the line y = x:

Figure 10 shows all three graphs and, indeed, it appears that the graph of f ' is the
reflection of the graph of f in the line y = x. [ ]
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shows how the cycloid is formed

as the circle moves.
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Graphing devices are particularly useful when sketching complicated curves. For
instance, the curves shown in Figures 11 and 12 would be virtually impossible to pro-
duce by hand.

—6.5 A\ J 6.5
-8
FIGURE 11 FIGURE 12
x=t+2sin2t, y=t+2cos 5t x=cost—cos 80tsint, y=2sin¢— sin 807

One of the most important uses of parametric curves is in computer-aided design
(CAD). In the Laboratory Project after Section 3.5 we will investigate special para-
metric curves, called Bézier curves, that are used extensively in manufacturing, espe-
cially in the automotive industry. These curves are also employed in specifying the
shapes of letters and other symbols in laser printers.

P\ The Cycloid

EXAMPLE 7 The curve traced out by a point P on the circumference of a circle as
the circle rolls along a straight line is called a cycloid (see Figure 13). If the circle
has radius r and rolls along the x-axis and if one position of P is the origin, find
parametric equations for the cycloid.

SOLUTION We choose as parameter the angle of rotation 6 of the circle (# = 0 when
P is at the origin). Suppose the circle has rotated through 6 radians. Because the
circle has been in contact with the line, we see from Figure 14 that the distance it
has rolled from the origin is

|OT| = arc PT = r6

Therefore, the center of the circle is C(r6, r). Let the coordinates of P be (x, y).
Then from Figure 14 we see that

x=1|0T| — |PQ|=r6— rsin 6 = r(6 — sin )
y=|TC| — |QC|=r — rcos 6 = r(1 — cos 6)

Therefore, parametric equations of the cycloid are

(2] x=r(0 — sin 0) y =r(l — cos 6) peER

One arch of the cycloid comes from one rotation of the circle and so is described by
0 = 6 =< 2. Although Equations 2 were derived from Figure 14, which illustrates
the case where 0 < 0 < 71/2, it can be seen that these equations are still valid for
other values of 6 (see Exercise 31).
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cycloid

FIGURE 15

P P

FIGURE 16

R\
\

FIGURE 17 Members of the family
X=a-+cost,y=atant +sint,

all graphed in the viewing rectangle
[—4,4]by [-4,4]

Although it is possible to eliminate the parameter 6 from Equations 2, the result-
ing Cartesian equation in x and y is very complicated and not as convenient to work
with as the parametric equations. [ ]

One of the first people to study the cycloid was Galileo, who proposed that bridges
be built in the shape of cycloids and who tried to find the area under one arch of a
cycloid. Later this curve arose in connection with the brachistochrone problem: Find
the curve along which a particle will slide in the shortest time (under the influence of
gravity) from a point A to a lower point B not directly beneath A. The Swiss mathe-
matician John Bernoulli, who posed this problem in 1696, showed that among all pos-
sible curves that join A to B, as in Figure 15, the particle will take the least time slid-
ing from A to B if the curve is part of an inverted arch of a cycloid.

The Dutch physicist Huygens had already shown that the cycloid is also the solu-
tion to the tautochrone problem; that is, no matter where a particle P is placed on an
inverted cycloid, it takes the same time to slide to the bottom (see Figure 16). Huygens
proposed that pendulum clocks (which he invented) should swing in cycloidal arcs
because then the pendulum would take the same time to make a complete oscillation
whether it swings through a wide or a small arc.

E Families of Parametric Curves

EXAMPLE 8 Investigate the family of curves with parametric equations
X=a+ cost y=atant + sint
What do these curves have in common? How does the shape change as a increases?

SOLUTION We use a graphing device to produce the graphs for the cases a = —2, —1,
—0.5, —0.2,0, 0.5, 1, and 2 shown in Figure 17. Notice that all of these curves
(except the case a = 0) have two branches, and both branches approach the vertical
asymptote x = a as x approaches a from the left or right.

I I
| |
| |
! ! |
| | |
: Ho :
! ! |
| | |
| |
| |
1 I

a=0.5

When a < —1, both branches are smooth; but when a reaches —1, the right
branch acquires a sharp point, called a cusp. For a between —1 and 0 the cusp turns
into a loop, which becomes larger as a approaches 0. When a = 0, both branches
come together and form a circle (see Example 2). For a between 0 and 1, the left
branch has a loop, which shrinks to become a cusp when a = 1. For a > 1, the
branches become smooth again, and as a increases further, they become less curved.
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Notice that the curves with a positive are reflections about the y-axis of the corre-
sponding curves with a negative.

These curves are called conchoids of Nicomedes after the ancient Greek scholar
Nicomedes. He called them conchoids because the shape of their outer branches
resembles that of a conch shell or mussel shell. [ ]

EXercises :« =+ =« ¢ o o o o o o o o o o o o o o o o e e e e e e

-4 m .Sketch t.he curve by using the pafame.trlc.equat'lons to 17. x=2sint, y=3cost, 0<r<2m
plot points. Indicate with an arrow the direction in which the ,
curve is traced as f increases. 18. x =cos’t, y=cost, 0<r<dm

lLx=1+yt, y=1*—41, 0<t<5 L . .
* Vi Y 19. Suppose a curve is given by the parametric equations

2. x=2cost, y=t—cost, 0<t<2mw x = f(#), y = g(t), where the range of f is[1, 4] and the

range of g is [2, 3]. What can you say about the curve?
3. x=S5sint, y=1¢} —-w<t<gnm & gis[2.3] you say “ v

20. Match the graphs of the parametric equations x = f(z) and
y = ¢(1) in (a)—(d) with the parametric curves labeled I-1V.
Give reasons for your choices.

4 x=e¢'+t, y=e' —t —2=<t=<2

5-8 m

(a) Sketch the curve by using the parametric equations to plot @ !
points. Indicate with an arrow the direction in which the ; T "
curve is traced as ¢ increases.

(b) Eliminate the parameter to find a Cartesian equation of /\

the curve. ! 1 ' > x
L x=2t+4, y=1r—1 \/

x=1t% y=6-—73t

Lx=4t, y=1—1 (b) i

9-14 m
1t 1t 2|
(a) Eliminate the parameter to find a Cartesian equation of )
the curve.

(b) Sketch the curve and indicate with an arrow the direction in
which the curve is traced as the parameter increases.

©o ~N o~ v
b b

i
i
I
—
—

9. x=sinh, y=cosh, O0<6O=<m x y y

21 2 11
10 x=4cos 6, y=5sin0, —-w/2<6<u/2 / /x A
Mox=e, y=e" ,
* ¢ Y ¢ 2t 2t 1 2/ x
In ¢, y=\ﬁ, t=1

13. x = sin’6, y = cos*6

12. x

4. x=sech, y=tan, —w/2<6<m/2 (d v
x ", YA,
20—

15-18 m Describe the motion of a particle with position (x, y)

as ¢ varies in the given interval.

. 5 5
15. x=cosmwt, y=sinzwt, 1s<t<2 \/ ‘/ k
=

16. x=2 +cost, y=3+sint, 0<¢t<27w o x
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21-22 m Use the graphs of x = f(r) and y = ¢(¢) to sketch the
parametric curve x = f(¢), y = g(¢). Indicate with arrows the
direction in which the curve is traced as ¢ increases.

21, x y
17 17

VAYAR

22. X y

23. (a) Show that the parametric equations

x=xi+ @—x)t  y=y+ (y2—yt

where 0 < r < 1, describe the line segment that joins
the points Pi(x,, y;) and Py(x2, y2).

(b) Find parametric equations to represent the line segment
from (=2, 7) to (3, —1).

24. Use a graphing device and the result of Exercise 23(a) to

draw the triangle with vertices A (1, 1), B(4, 2), and C(1, 5).

25. Graph the curve x = y — 3y° + y°.

26. Graph the curves y = x° and x = y(y — 1)? and find their
points of intersection correct to one decimal place.

27. Find parametric equations for the path of a particle that
moves along the circle x> + (y — 1)> = 4 in the following
manner:

(a) Once around clockwise, starting at (2, 1)
(b) Three times around counterclockwise, starting at (2, 1)
(¢) Halfway around counterclockwise, starting at (0, 3)

{17 28. Graph the semicircle traced by the particle in Exercise 27(c).
] 28. Graph th icircl d by th icle in Exercise 27(c)

/A 29. (a) Find parametric equations for the ellipse
x*/a* + y*/b* = 1. [Hint: Modify the equations of
a circle in Example 2.]
(b) Use these parametric equations to graph the ellipse
whena =3 and b =1, 2, 4, and 8.
(c) How does the shape of the ellipse change as b varies?

30. If a projectile is fired with an initial velocity of v, meters
per second at an angle « above the horizontal and air resist-
ance is assumed to be negligible, then its position after

t seconds is given by the parametric equations
x = (vocos a)t y = (vosin )t — 59¢°

where ¢ is the acceleration due to gravity (9.8 m/s?).

3L
32.

33.

34.

(a) If a gun is fired with @ = 30° and vy = 500 m/s, when
will the bullet hit the ground? How far from the gun will
it hit the ground? What is the maximum height reached
by the bullet?

(b) Use a graphing device to check your answers to part (a).
Then graph the path of the projectile for several other
values of the angle « to see where it hits the ground.
Summarize your findings.

(c) Show that the path is parabolic by eliminating the
parameter.

Derive Equations 2 for the case 7/2 < 0 < .

Let P be a point at a distance d from the center of a circle
of radius r. The curve traced out by P as the circle rolls
along a straight line is called a trochoid. (Think of the
motion of a point on a spoke of a bicycle wheel.) The
cycloid is the special case of a trochoid with d = r. Using
the same parameter 6 as for the cycloid and assuming the
line is the x-axis and 6§ = 0 when P is at one of its lowest
points, show that parametric equations of the trochoid are

x=r6 — dsin 6 y=r—dcos 6

Sketch the trochoid for the cases d < rand d > r.

If a and b are fixed numbers, find parametric equations for
the set of all points P determined as shown in the figure,
using the angle 6 as the parameter. Then eliminate the
parameter and identify the curve.

y

If a and b are fixed numbers, find parametric equations for
the set of all points P determined as shown in the figure,
using the angle 6 as the parameter. The line segment AB is
tangent to the larger circle.

y
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35. A curve, called a witch of Maria Agnesi, consists of all (b) Are any of these points of intersection collision points?
points P determined as shown in the figure. Show that para- In other words, are the particles ever at the same place
metric equations for this curve can be written as at the same time? If so, find the collision points.

- (c) Describe what happens if the path of the second particle
x = 2acot 6 y = 2asin~0 .
is given by
R X, =3+ cost y2=1+sint 0sr=<2m
y
y=2a c /] 37. Investigate the family of curves defined by the parametric
\\\ equations x = t%, y = > — ct. How does the shape change
AN as ¢ increases? Illustrate by graphing several members of the
B - family.
|
at | /1] 38. The swallowtail catastrophe curves are defined by the
: parametric equations x = 2ct — 4¢°, y = —ct* + 3t*.
| Graph several of these curves. What features do the curves
: have in common? How do they change when c increases?
0 . . .
0 O /9 39. The curves with equations x = a sin nt, y = b cos t are
* called Lissajous figures. Investigate how these curves vary
. ) ) o when a, b, and n vary. (Take n to be a positive integer.)
i 36. Suppose that the position of one particle at time ¢ is given
by [ 40. Investigate the family of curves defined by the parametric
xy=3sint yi =2cost O0sr=2w equations
and the position of a second particle is given by x=sint(c — sint) y=cost(c— sint)
= -3+ =1 +si << 4
2 3+ cost y2 =1+ sint O=i=2m How does the shape change as ¢ changes? In particular, you
(a) Graph the paths of both particles. How many points of should identify the transitional values of ¢ for which the
intersection are there? basic shape of the curve changes.
Laboratory
| Project
J ¥ Running Circles around Circles

In this project we investigate families of curves, called hypocycloids and epicycloids, that
are generated by the motion of a point on a circle that rolls inside or outside another circle.

1. A hypocycloid is a curve traced out by a fixed point P on a circle C of radius b as C

’ rolls on the inside of a circle with center O and radius a. Show that if the initial position
of P is (a, 0) and the parameter 6 is chosen as in the figure, then parametric equations of
C the hypocycloid are
b —b —b
. 0 P (a, 0) x=(a—b)cos@+bcos<a 0) y=(a—b)sin0—bsin<a 0>
o A x
2. Use a graphing device (or the interactive graphic in TEC Module 1.7B) to draw the
graphs of hypocycloids with a a positive integer and » = 1. How does the value of a
affect the graph? Show that if we take a = 4, then the parametric equations of the
hypocycloid reduce to
x=4cos’ y=4sin’f
T EE lesk @i Medlde 1.7B o see This curve is called a hypocycloid of four cusps, or an astroid.
how hypocycloids and epi- 3. Now try b = 1 and @ = n/d, a fraction where n and d have no common factor. First let
cycloids are formed by the motion of n = 1 and try to determine graphically the effect of the denominator d on the shape of

rolling circles. the graph. Then let n vary while keeping d constant. What happens when n = d + 1?
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4. What happens if » = 1 and « is irrational? Experiment with an irrational number like
V2 or e — 2. Take larger and larger values for 6 and speculate on what would happen if
we were to graph the hypocycloid for all real values of 6.

5. If the circle C rolls on the outside of the fixed circle, the curve traced out by P is called
an epicycloid. Find parametric equations for the epicycloid.

6. Investigate the possible shapes for epicycloids. Use methods similar to Problems 2—4.

(2

Review

. (a) What is a function? What are its domain and range?

(b) What is the graph of a function?
(c) How can you tell whether a given curve is the graph of a
function?

Discuss four ways of representing a function. Illustrate your
discussion with examples.

(a) What is an even function? How can you tell if a func-
tion is even by looking at its graph?

(b) What is an odd function? How can you tell if a function
is odd by looking at its graph?

What is an increasing function?
What is a mathematical model?

Give an example of each type of function.

(a) Linear function (b) Power function
(c) Exponential function (d) Quadratic function
(e) Polynomial of degree 5 () Rational function

. Sketch by hand, on the same axes, the graphs of the follow-

ing functions.

(a) f(x) =x (b) g(x) = x?
(©) h(x) = x° @ jx) = x*

. Draw, by hand, a rough sketch of the graph of each
function.
(a) y =sinx (b) y =tanx
(©)y=e" (dy=Inx
(e y=1/x )y = |x|

(@y=+x

* CONCEPT CHECK -
9.

10.

11.

Suppose that f has domain A and g has domain B.
(a) What is the domain of f + g?

(b) What is the domain of fg?

(c) What is the domain of f/g?

How is the composite function f o g defined? What is its
domain?

Suppose the graph of f is given. Write an equation for
each of the graphs that are obtained from the graph of f
as follows.

(a) Shift 2 units upward.

(b) Shift 2 units downward.

(c) Shift 2 units to the right.

(d) Shift 2 units to the left.

(e) Reflect about the x-axis.

(f) Reflect about the y-axis.

(g) Stretch vertically by a factor of 2.

(h) Shrink vertically by a factor of 2.

(i) Stretch horizontally by a factor of 2.

(j) Shrink horizontally by a factor of 2.

. (a) What is a one-to-one function? How can you tell if a

function is one-to-one by looking at its graph?

(b) If f is a one-to-one function, how is its inverse function
f ! defined? How do you obtain the graph of £~ from
the graph of f?

. (a) What is a parametric curve?

(b) How do you sketch a parametric curve?



Determine whether the statement is true or false. If it is true, explain why.

A TRUE-FALSE QUIZ A

If it is false, explain why or give an example that disproves the statement.

2
3
4

. If fis a function, then f(s + 1) = f(s) + f(2).
. If f(s) = f(1), then s = t.
. If fis a function, then f(3x) = 3f(x).

. If x; < x, and f is a decreasing function, then

flxn) > flxz).

. A vertical line intersects the graph of a function at most
once.

1. Let f be the function whose graph is given.

2.

(a) Estimate the value of f(2).

(b) Estimate the values of x such that f(x) = 3.

(c) State the domain of f.

(d) State the range of f.

(e) On what interval is f increasing?

(f) Is f one-to-one? Explain.

(g) Is f even, odd, or neither even nor odd? Explain.

y

T

The graph of g is given.

(a) State the value of g(2).

(b) Why is g one-to-one?

(¢) Estimate the value of g~'(2).
(d) Estimate the domain of g'.
(e) Sketch the graph of g~ .

y

10.

11.

EXERCISES

3.

6.

CHAPTER 1 REVIEW 85

If f and g are functions, then fog=go f.
. o 1
. If fis one-to-one, then f~'(x) = ——.
f(x)
. You can always divide by e*.
. If0 <a<b,thenlna < Inb.
If x > 0, then (In x)° = 6 In x.
1
If x > 0and a > 1, then nx _ i.
Ina a

The distance traveled by a car is given by the values in the
table.

t (seconds) 0 1 2 3 4 5

10 32 70 119 178

d (feet) 0

(a) Use the data to sketch the graph of d as a function of 7.
(b) Use the graph to estimate the distance traveled after
4.5 seconds.

. Sketch a rough graph of the yield of a crop as a function of

the amount of fertilizer used.

5-8 ®m Find the domain and range of the function.

10.

5. f(x) = V4 = 3x2
6. g(x) = 1/(x + 1)
7.
8

y=1+sinx

. y=Inlnx

. Suppose that the graph of f is given. Describe how the

graphs of the following functions can be obtained from the
graph of f.

(@) y=f(x) +8
(©y=1+2f(x) dy=fx-2) -2
() y=—fx ) y=rf"x

The graph of f is given. Draw the graphs of the following
functions.

@y=f(x—28)
©y=2-f

b))y =f(x+8)

) y=—f(
dy=3fx)—1
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e)y=/"'0 () y=f"x+3)

11-16 = Use transformations to sketch the graph of the

function.
1. y = —sin2x 12 y =3In(x — 2)
13. y=(1 + ¢Y)/2 4 y=2—Jx
15. =

f®) x+2

1+x ifx<O

16. =

J() {e* ifx=0
17. Determine whether f is even, odd, or neither even nor odd.

20.

21.

(@) f(x) =2x" — 3x* + 2

(b) flx) =x* —x7

(©) flx) = e

(d f(x) =1+ sinx

Find an expression for the function whose graph consists of
the line segment from the point (—2, 2) to the point (—1, 0)

together with the top half of the circle with center the origin
and radius 1.

If f(x) = Inx and g(x) = x> — 9, find the functions f° g,
gof, fof,ge°g,and their domains.

Express the function F(x) = 1/4/x + /x as a composition
of three functions.

Life expectancy improved dramatically in the 20th century.
The table gives the life expectancy at birth (in years) of
males born in the United States.

Birth year Life expectancy
1900 48.3
1910 51.1
1920 55.2
1930 574
1940 62.5
1950 65.6
1960 66.6
1970 67.1
1980 70.0
1990 71.8
2000 73.0

22.

23.
24,

25.
26.

27.

28.

A129.

A 30.

Use a scatter plot to choose an appropriate type of model.
Use your model to predict the life span of a male born in
the year 2010.

A small-appliance manufacturer finds that it costs $9000 to
produce 1000 toaster ovens a week and $12,000 to produce
1500 toaster ovens a week.

(a) Express the cost as a function of the number of toaster
ovens produced, assuming that it is linear. Then sketch
the graph.

(b) What is the slope of the graph and what does it
represent?

(c) What is the y-intercept of the graph and what does it
represent?

If f(x) = 2x + Inx, find £7'(2).

x+ 1
2x + 1°

Find the inverse function of f(x) =

Find the exact value of each expression.
(a) e*™* (b) logip25 + logio4

Solve each equation for x.
(@)e* =5 (b) Inx =2 (c) e =2

The half-life of palladium-100, '“Pd, is four days. (So half

of any given quantity of 'Pd will disintegrate in four days.)

The initial mass of a sample is one gram.

(a) Find the mass that remains after 16 days.

(b) Find the mass m(z) that remains after ¢ days.

(c) Find the inverse of this function and explain its
meaning.

(d) When will the mass be reduced to 0.01 g?

The population of a certain species in a limited environ-
ment with initial population 100 and carrying capacity
1000 is

100,000

PO =100 + 900

where ¢ is measured in years.

(a) Graph this function and estimate how long it takes for
the population to reach 900.

(b) Find the inverse of this function and explain its
meaning.

(c) Use the inverse function to find the time required for the
population to reach 900. Compare with the result of
part (a).

Graph members of the family of functions
f(x) = In(x? — ¢) for several values of c. How does the
graph change when ¢ changes?

Graph the three functions y = x¢, y = a*, and y = log,x on
the same screen for two or three values of @ > 1. For large
values of x, which of these functions has the largest values
and which has the smallest values?



31.

32.

33.

34.

(a) Sketch the curve represented by the parametric equa-
tions x = e, y = V1,0 < 1 < 1, and indicate with an
arrow the direction in which the curve is traced as ¢
increases.

(b) Eliminate the parameter to find a Cartesian equation of
the curve.

(a) Find parametric equations for the path of a particle that
moves counterclockwise halfway around the circle
(x — 2)* + y* = 4, from the top to the bottom.

(b) Use the equations from part (a) to graph the semi-
circular path.

Use parametric equations to graph the function
f(x) = 2x + In x and its inverse function on the same
screen.

(a) Find parametric equations for the set of all points P

determined as shown in the figure so that | OP| = |AB|.

(This curve is called the cissoid of Diocles after the
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Greek scholar Diocles, who introduced the cissoid as a
graphical method for constructing the edge of a cube
whose volume is twice that of a given cube.)

y
A B
x=2a
P
0, C
o a X

(b) Use the geometric description of the curve to draw a
rough sketch of the curve by hand. Check your work by
using the parametric equations to graph the curve.



| Principles
2 | of
Problem
Solving

[1] Understand the
Problem

[2] Think of a Plan

There are no hard and fast rules that will ensure success in solving problems.
However, it is possible to outline some general steps in the problem-solving process
and to give some principles that may be useful in the solution of certain problems.
These steps and principles are just common sense made explicit. They have been
adapted from George Polya’s book How To Solve It.

The first step is to read the problem and make sure that you understand it clearly. Ask
yourself the following questions:

What is the unknown?
What are the given quantities?

What are the given conditions?

For many problems it is useful to
draw a diagram

and identify the given and required quantities on the diagram.
Usually it is necessary to

introduce suitable notation

In choosing symbols for the unknown quantities we often use letters such as a, b, c,
m, n, x, and y, but in some cases it helps to use initials as suggestive symbols; for
instance, V for volume or ¢ for time.

Find a connection between the given information and the unknown that will enable
you to calculate the unknown. It often helps to ask yourself explicitly: “How can I
relate the given to the unknown?” If you don’t see a connection immediately, the fol-
lowing ideas may be helpful in devising a plan.

Try to Recognize Something Familior Relate the given situation to previous knowledge.
Look at the unknown and try to recall a more familiar problem that has a similar
unknown.

Try fo Recognize Patterns Some problems are solved by recognizing that some kind of
pattern is occurring. The pattern could be geometric, or numerical, or algebraic. If you
can see regularity or repetition in a problem, you might be able to guess what the con-
tinuing pattern is and then prove it.

Use Analogy Try to think of an analogous problem, that is, a similar problem, a
related problem, but one that is easier than the original problem. If you can solve the
similar, simpler problem, then it might give you the clues you need to solve the origi-
nal, more difficult problem. For instance, if a problem involves very large numbers,
you could first try a similar problem with smaller numbers. Or if the problem involves
three-dimensional geometry, you could look for a similar problem in two-dimensional
geometry. Or if the problem you start with is a general one, you could first try a spe-
cial case.

Introduce Something Extra It may sometimes be necessary to introduce something new,
an auxiliary aid, to help make the connection between the given and the unknown. For
instance, in a problem where a diagram is useful the auxiliary aid could be a new line
drawn in a diagram. In a more algebraic problem it could be a new unknown that is
related to the original unknown.




(3] Carry Out the Plan

[4] Look Back

Take Cases We may sometimes have to split a problem into several cases and give a
different argument for each of the cases. For instance, we often have to use this strat-
egy in dealing with absolute value.

Work Backward Sometimes it is useful to imagine that your problem is solved and
work backward, step by step, until you arrive at the given data. Then you may be able
to reverse your steps and thereby construct a solution to the original problem. This
procedure is commonly used in solving equations. For instance, in solving the equa-
tion 3x — 5 = 7, we suppose that x is a number that satisfies 3x — 5 = 7 and work
backward. We add 5 to each side of the equation and then divide each side by 3 to get
x = 4. Since each of these steps can be reversed, we have solved the problem.

Establish Subgoals In a complex problem it is often useful to set subgoals (in which the
desired situation is only partially fulfilled). If we can first reach these subgoals, then
we may be able to build on them to reach our final goal.

Indirect Reasoning  Sometimes it is appropriate to attack a problem indirectly. In using
proof by contradiction to prove that P implies Q we assume that P is true and Q is
false and try to see why this can’t happen. Somehow we have to use this information
and arrive at a contradiction to what we absolutely know is true.

Mathematical Induction In proving statements that involve a positive integer n, it is fre-
quently helpful to use the following principle.

Principle of Mathematical Induction Let S, be a statement about the positive
integer n. Suppose that

1. S)is true.

2. Si+i is true whenever S, is true.

Then S, is true for all positive integers n.

This is reasonable because, since S; is true, it follows from condition 2 (with
k = 1) that S, is true. Then, using condition 2 with k = 2, we see that S; is true. Again
using condition 2, this time with k = 3, we have that S, is true. This procedure can be
followed indefinitely.

In Step 2 a plan was devised. In carrying out that plan we have to check each stage of
the plan and write the details that prove that each stage is correct.

Having completed our solution, it is wise to look back over it, partly to see if we have
made errors in the solution and partly to see if we can think of an easier way to solve
the problem. Another reason for looking back is that it will familiarize us with the
method of solution and this may be useful for solving a future problem. Descartes
said, “Every problem that I solved became a rule which served afterwards to solve
other problems.”

These principles of problem solving are illustrated in the following examples.
Before you look at the solutions, try to solve these problems yourself, referring to
these Principles of Problem Solving if you get stuck. You may find it useful to refer to
this section from time to time as you solve the exercises in the remaining chapters of
this book.
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= Understand the problem

= Draw a diagram

FIGURE 1

m Connect the given with the unknown
= Introduce something extra

u Relate to the familiar

90

EXAMPLE 1 Express the hypotenuse 4 of a right triangle with area 25 m? as a function
of its perimeter P.

SOLUTION Let’s first sort out the information by identifying the unknown quantity and
the data:

Unknown: hypotenuse h

Given quantities: perimeter P, area 25 m?

It helps to draw a diagram and we do so in Figure 1.

h

a

In order to connect the given quantities to the unknown, we introduce two extra
variables a and b, which are the lengths of the other two sides of the triangle. This
enables us to express the given condition, which is that the triangle is right-angled,
by the Pythagorean Theorem:

h?> = a® + b*
The other connections among the variables come by writing expressions for the area
and perimeter:
25 =lab P=a+b+h

Since P is given, notice that we now have three equations in the three unknowns a,
b, and h:

m h? =a® + b2
2] 25 = sab
(3] P=a+b+h

Although we have the correct number of equations, they are not easy to solve in a
straightforward fashion. But if we use the problem-solving strategy of trying to rec-
ognize something familiar, then we can solve these equations by an easier method.
Look at the right sides of Equations 1, 2, and 3. Do these expressions remind you of
anything familiar? Notice that they contain the ingredients of a familiar formula:

(a + b)*=a*+ 2ab + b*
Using this idea, we express (a + b)? in two ways. From Equations 1 and 2 we have
(a + b)* = (a® + b*) + 2ab = h* + 4(25)
From Equation 3 we have

(@ + b= (P — h)?=P>—2Ph + h*®

Thus h* + 100 = P* — 2Ph + h*
2Ph = P> — 100
P? — 100
h=——"7"7"7
2P
This is the required expression for 4 as a function of P. [ ]




u Take cases

As the next example illustrates, it is often necessary to use the problem-solving
principle of faking cases when dealing with absolute values.
EXAMPLE 2 Solve the inequality [x — 3| + |x + 2| < I1.
SOLUTION Recall the definition of absolute value:

x if x=0
=12 irr<o

-3 if x—3=0
It follows that |x = 3| = {x( 3) ;f * 3<0
—(x — Y-

x—3 if x=3
—x+3 if x<3

+2  ifx+2=0
Similarly lx+2] = {x o

—-x+2) fx+2<0
:{x+2 if x= -2
—x—2 ifx<-=2
These expressions show that we must consider three cases:
x< =2 —2=x<3 x=3
CASE| - If x < —2, we have
|x = 3]+ |x+2]| <11
—x+3-—x—-2<I11
—2x < 10
x> =5
CASE Il - If —2 < x < 3, the given inequality becomes
—x+3+x+2<I1l1
5<11 (always true)
CASE Ill - If x = 3, the inequality becomes

x—3+x+2<11
2x < 12
x<6

Combining cases I, II, and III, we see that the inequality is satisfied when
—5 < x < 6. So the solution is the interval (=5, 6). [ ]

In the following example we first guess the answer by looking at special cases and
recognizing a pattern. Then we prove it by mathematical induction.
In using the Principle of Mathematical Induction, we follow three steps:

STEP 1 Prove that S, is true when n = 1.
STEP 2 Assume that S, is true when n = k and deduce that S, is true when n = k + 1.

STEP 3 Conclude that S, is true for all n by the Principle of Mathematical Induction.
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EXAMPLE 3 If fo(x) = x/(x + 1) and fo4y = foof, forn=10,1,2,...,finda
formula for f,(x).

= Analogy: Try a similar, simpler
problem

SOLUTION We start by finding formulas for f,(x) for the special cases n = 1, 2, and 3.

) = (oo fo) () = fil fo(x) =fo< - >
x+1
X X
_ x+1 _ x+1 _ X
 x Co2x 41 2x+1
+ 1
x+1 x+1

A0 = (oo fi) () = fi i) =fo< . )

2x + 1
X X
2x + 1 _ 2x+1 X
X 3x + 1 3x + 1
+1
2x + 1 2x + 1

u Look for a pattern

A = (frof) (x) = S AX) =fo< - )

3x + 1
X X
o 3x+1 3+l X
x Cdx+ 1 4x+ 1
3x + 1 3x + 1

We notice a pattern: The coefficient of x in the denominator of f,(x) isn + 1 in
the three cases we have computed. So we make the guess that, in general,

X
* = G e T

To prove this, we use the Principle of Mathematical Induction. We have already veri-
fied that (4) is true for n = 1. Assume that it is true for n = k, that is,

X
A = e+ 1

Then  firi(x) = (fy o fi) (x) = il /i) =fo(+>

k+ 1x+1
X X
(k+Dx+1  (k+Dx+1 X
x Ck+)x+1 (k+2)x+1
k+ Dx+1 (k+Dx+1

This expression shows that (4) is true for n = k + 1. Therefore, by mathematical
induction, it is true for all positive integers n.
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* Problems

Y
<]

. One of the legs of a right triangle has length 4 cm. Express the length of the altitude

perpendicular to the hypotenuse as a function of the length of the hypotenuse.

. The altitude perpendicular to the hypotenuse of a right triangle is 12 cm. Express the

length of the hypotenuse as a function of the perimeter.

3. Solve the equation |2x — 1| — |x + 5| = 3.

4. Solve the inequality [x — 1| — |x — 3| = 5.

5. Sketch the graph of the function f(x) = |x* — 4|x| + 3.

6. Sketch the graph of the function g(x) = |x? — 1] — |x* — 4.

7. Draw the graph of the equation |x| + |y| =1 + |xy].

8. Draw the graph of the equation x?y — y* — 5x? + 5y? = 0 without making a table of

1.
12.

13.
14.
15.

16.
17.
18.
19.

20.

values.

. Sketch the region in the plane consisting of all points (x, y) such that | x| + |y| < 1.
10.

Sketch the region in the plane consisting of all points (x, y) such that
lx =yl +[x[ = [y[=2

Evaluate (log, 3) (logs;4) (Iog,5) - - - (logs; 32).

(a) Show that the function f(x) = ln(x + J/x2+ 1) is an odd function.
(b) Find the inverse function of f.

Solve the inequality In(x* — 2x — 2) < 0.
Use indirect reasoning to prove that log, 5 is an irrational number.

A driver sets out on a journey. For the first half of the distance she drives at the leisurely
pace of 30 mi/h; she drives the second half at 60 mi/h. What is her average speed on
this trip?

Is it true that fo (g + h) = fog + fo h?

Prove that if n is a positive integer, then 7" — 1 is divisible by 6.

Provethat1 + 3+ 5+ -+ + 2n — 1) = n*

If fo(x) = x* and fo+1(x) = fo( fu(x)) forn =0, 1,2, ..., find a formula for f,(x).

(a) If fox) = 2 and f,o1 = fo o fuforn=20,1,2, ..., find an expression for f,(x)
—-x
and use mathematical induction to prove it.

(b) Graph fy, fi, f>, f5 on the same screen and describe the effects of repeated
composition.
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