2 Measure and Outer
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In this chapter we first consider some of the ways in which a mea-

sure can be defined on a o-aigebra. In the case of Lebesgue measure
we defined measure for open sets and used this to define outer
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measure, from which we obtaln the notion of measurable set and
Lebesgue measure. Such a procedure is feasible in general. In the
first section we discuss the process of deriving a measure from an
outer measure, and in the second section we derive an outer measure
from a measure that is defined only on an algebra of sets. The
remainder of the chapter is devoted to some applications of this
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process.

1 Outer Measure and Measurability

By an outer measure u* we mean a nonnegative extended real-
valued set function defined on all subsets of a space X and having
the following properties:

. u*@ = 0.
ii.h. A€ B = u*A < u*B.

iii. E< JE = u*E < Y u*E,.

i=1 i=1

The second property is called monotonicity and the third countable
subadditivity. In view of (i) finite subadditivity follows from (iii).

288
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Because of (ii), property (iii) can be replaced by
iii. E= (JE,, E; disjoint = u*E < ¥ u*E,.
i=1 i=1
The outer measure u* is called finite if u*X < oo.

By analogy with the case of Lebesgue measure we define a set E to
be measurable with respect to u* if for every set 4 we have

p*(A) = p*(A N E) + p*(A n E).

Since u* is subadditive, it is only necessary to show that

u*(4) = wHA N E) + p*A N E)
for every A4 in order to prove that E is measurable. This inequality is
trivially true when pu*A = oo, and so we need only establish it for

sets A with u* A finite.

1. Theorem: The class ® of u*-measurable sets is a a-algebra. If p
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Proof: Trivially, the empty set is measurable. The symmetry of the
definition of measurability in E and E shows that E is measurable
whenever E is.

Let E, and E, be measurable sets. From the measurability of E,,

pH(A) = pHA N E;) + uX(A N Ey)
and
p*A) = u*(ANE)+ pu*ANE,NE)+u*ANnE, nE,

by the measurability of E,. Since

AN[E,VE,]J=[ANE,JU[ANE, NnE,],
we have

WA N [E, UE)]) < u*A N Ey) + u*(A N E, N Ey)

by subadditivity, and so

p*A > u*(AN[E, VE,])+ p*4 n E, n E,).
This means that E, U E, is measurable, since

~(E,VE)=E nE,,

Thus the union of two measurable sets is measurable, and by induc-
tion the union of any finite number of measurable sets is measurable,
showing that ® is an algebra of sets.
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Assume that E = | J E;, where (E,) is a disjoint sequence of mea-
surable sets, and set

Then G, is measurable, and

p*(A) = u*(A N G,) + pu*(A N G,) = p*(4 N G,) + uX(4 N E),

~ ral

_____ o= N, 7 AT ) IR B ™ N T T
since E< G,. Now G, NE,=E, and G, N E, = G,_,, and by the
measurability of E, we have

By induction

p*(A N G,)= 3 pu*(A N E),

i=1

p*(A) = p*(A N E) + }: p*(A N E;)
1
> u*(A N E) + pu*(A4 n E),

since

oo}

ANE< |J(ANE).
i=1
sequence of sets in an

f sets in the algebra, it

Thus E is measurable. Since the union of an
algebra can be replaced by a disjoint union
follows that ® is a o-algebra.

We next demonstrate the finite additivity of i. Let E, and E, be

disjoint measurable sets. Then the measurability of E, implies that

ME, U Ey)=pu*E, VU Ey)

—u¥TE. UEINFYL oXTE. UEINFEN
Mo\l Y &2 Y ) o\ Y ) Y 2

— L3

= u*E, + p*E,

Finite additivity follows by induction.
If E is the disjoint union of the measurable sets {E;}, then
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and so

KE)> Y E).

i=1

But

BE) < . WE)

i=1

Py
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i is
measure since it is nonnegative and ud = u*@ = 0. |

Problems

E U S v H F 993

2. Assume that (E,> is

>
UE;. Then for any set A w

1. Prove the completeness of z1.

2 The Extension Theorem

By a measure on an algebra we mean a nonnegative extended real-
valued set function u defined on an algebra @ of sets such that:

i u©@) =0.
ii. If (A;) is a disjoint sequence of sets in @ whose union is also in

@, then
#( U Ai) = ) u4;.

i=1 i=1

Thus a measure on an algebra @ is a measure if and only if @ is a
o-algebra. The purpose of this section is to show that, if we start
with a measure on an algebra @ of sets, we may extend it to a
measure defined on a o-algebra ® containing @. We shall do this by
using the measure on the algebra to construct an outer measure u*
and show that the measure pz induced by u* is the desired extension
of u. The process by which we construct u* from u is analogous to
that by which we constructed Lebesgue outer measure from the
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lengths of intervals: We define

g
We first establish some lemmas concerning pu*.

2. Lemma: If A € @ and if {A;) is any sequence of sets in @ such

that A < |J A;,then puA < > pA;.

i=1 i=1
»n.__ _ L O _4
rrooj: 5ct

B,=ANA,NA_,N---NA,.

Then B, ®@ and B,< A4,. But 4 is the disjoint union of the
sequence {B,), and so by countable additivity

n—1

w
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defined for al
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sets an =0, we have only to show that it is

o
=
*
=

countably subadditive. Let E< |JE;. If u*E; = oo for any i, we

+ _ 4
1=1

have u*E <Y p*E; = oo. If not, given € > 0, there is for each i a

sequence {A;;>{>, of sets in @ such that E; < |J 4;;and

Y uA;; < w*E; + El
=1 2
Then

a0
PW*E <Y uA;; < ) p*E; + e
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Since € was an arbitrary positive number,
W*E < ) U*E,,
and p* is subadditive. |

5. Lemma: If A € @, then A is measurable with respect to u*.

Proof: Let E be an arbitrary set of finite outer measure and € a
positive number. Then there is a sequence {(A4;) from @ such that

E<J4,and
Y pA; < u*E + €.
By the additivity of 4 on @ we have
WA) = u(4; N A) + w(A; 0 A).

Hence
P*E+€e> Y w(A; N A) + Y w4, n A)
i=1 i=1
> u*(E N A) + u*E N A),
since
EnAclJ 4N A
and

En A< (4;n A).

Since € was an arbitrary positive number,

and A is measurable. |

Tlha ~trdne sevnnarrsma 1K +laaé wxra s ad o ~allad sbho Ascdae-
111C vuLcl llikasulc U tilat wWC 11avC UClilIcUu 1> Calic LIIC OuLwcl
measure induced by u. For a given algebra G of sets we use @, to
denote those sets that are countable unions of sets of @ and use @,

to denote those sets that are countable intersections of sets in @, .

6. Proposition: Let p be a measure on an algebra @, u* the outer

measure induced by pu, and E any set. Then for € > 0, there is a set

A o £ 1uisle T e~ A 2 d
AL W, Wil LL = A dna

u*A < u*E + e
There is also a set B € @ ,; with E < Band uy*E = pu*B.
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Proof: By the definition of u* there is a sequence {(4;> from @
such that E < UAi and

Y uA; < p*E + .
i=1
Set A =JA4;. Then u*4 <) p*A; =) pA,.

To prove the second statement, we note that for each positive
integer n there is a set 4, in @, with E < 4, and u*4, < u*E + 1/n.
Let B=[) A,- Then Be @,; and E < B. Since B< 4,, u*B <
so u*B > u*E by monotonicity. Hence u*B = u*E. ||

An outer measure u* is said to be regular if given any subset E of
X and any € > 0, there is a y*-measurable set 4 with E < A and

e 4
p*A

IA

U*E + €.

It follows from Lemma 5 and Proposition 6 that every outer
measure induced by a measure on an algebra is a regular outer
measure.

T cormn memamle: il mmcae v 2 2l - sl O S o oo L1 .4
II we apply tnis proposition in tne case that £ 1S a measurabie set
of finite measure, we see that E must be the difference of a set B in
I} nnmd Ao cnt AF manngrira A~ Thica ~ixroc 1o thhn aterrntriien ~F tha
\baé allll a >dCUL Ul llivadulT 4C1U0. 111D 51VCD Ud L1IC dSLiucilulc vl L1Iv

measurable sets of finite measure, and the next proposition extends
this to the o-finite case. It can be considered a generalization of the
first principle of Littlewood. It is a key element in the proof of a
number of our theorems. Other forms of this principle are given by
Probiems 7 and 10. Versions of Littiewood’s other principies are
given by Propositions 11.7 and 11.26 and by Problems 11, 11.16, and
11.21c.

7. Proposition: Let u be a a-finite measure on an algebra @, and
let u* be the outer measure generated by u. A set E is u* measurable if
and only if E is the proper difference A ~ B of a set A in Q5 and a set
B with u*B = 0. Each set B with u*B = 0 is contained in a set C in
Q,; with u*C = 0.

Anfe Tha “3f

D.. . aet ~F ¢ mnsmmaitsmnin Fall ccarn o slant
[I'UUJ. 111C 11 }qut Ul LUl

the proposition follows from the fact that
each set in @,; must be measurable, since the measurable sets form a
o-algebra, while each set of u*-measure zero must be measurable,

since i is complete.
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To prove the “only if” part of the proposition, let {X;} be a count-
able disjoint collection of sets in @ with uX; finite and X = | J X,. If
E is measurable, then E is the disjoint union of the measurable sets
E; = X; N E. By Proposition 6 we can find for each positive integer
n,aset A,;in @, such that E; < 4,; and

_ _ 1
PAp < UE; + —.
n2
Set
A" = UAﬂl
i=1

Then E< A4,,and A, ~ E< J[A4,; ~ E;]. Hence

i=1

[ ¢]
- 4 — . Y -, . PR
A, ~ L) s 2 Ay ~ £y
i=1

S |
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Since A, € @,, the set A = [) A, is in @,4, and for each n

n=1
A~Ec A,~E.

Hence

WA~ E) < (A, ~ E) <

S| -

Since this holds for each positive integer n, we must have
AA~E)=0. 1

We summarize the results of this section in the following theorem.

8. Theorem (Caratheodory): Let u be a measure on an algebra @,
and p* the outer measure induced by u. Then the restriction p of u* to

the pu*-measurable sets is an extension of u to a o-algebra containing
Q. If u is finite (or o-finite) so is pu. If u is o-finite, then i is the only
measure on the smallest a-algebra containing @ which is an extension

of u.

Proof: The fact that p is an extension of u from @ to be a measure
on a c-algebra containing @ follows directly from Corollary 3,
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Lemma 5, and Theorem 1, and it is readily verified that j is finite or
o-finite whenever u is.

To show the unicity of u when u is o-finite, we let ® be the smal-
lest o-algebra containing @ and ji some measure on ® that agrees
with g on Q.

Since each set in @, can be expressed as a disjoint countable union
of sets in @, the measure j must agree with 1 on G@,. Let B be any

set in ® with finite outer measure. Then by Proposition 6 there is an
A 1n @, such that B < A and

1% A4 kR
A D

IA

H Hb+€
Since B < A,
UB < 1A = uy*A < u*B + €.
Since € is an arbitrary positive number, we have
uB < u*B

for each B € ®.
Since the class of sets measurable with respect to u* is a g-algebra
containing @, each B in ® must be measurable. If B is measurable

a A A S TRy
dIlU 1‘1 lb lll \L Wllll D < /'l alld [J, \ IJ. D ‘1' €, tnen

u*4A = p*B + p*(A ~ B),
and so
MA~B)<u¥A~B)<e€
if u*B < oo0. Hence
p*B < u*A = A

= B + ji(A ~ B)
< iB + e
Since € is arbitrary, we have
u*B < uB
and so
u*B = [iB.

If u is a o-finite measure, let {X;} be a countable disjoint collection
of sets in @ with X = |J X; and uX; finite. If B is any set in ®, then

B=U (X; N B)
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and this is a countable disjoint union of sets in ®, and so we have

A unl

RB =Y R(X; N B
and
uB =) uX;N B).
Since u*(X; N B) < oo, we have
wX; N B)=jp(X; N B). |

This extension procedure not only extends u to a measure on the

smallest o-algebra ® containing @, but also completes and saturates
the measure. If u is o-finite, the extension to ® is already saturated,
and the extension to the u*-measurable sets is merely the completion
of the extension of z on ®. If u is not o-finite, then the extension to
p*-measurable sets also saturates p. It should be observed that in
this case the extension of u to ® need not be unique (Problem 3),
although any extension i must agree with i1 for each set B of ® for

QAN mas QiL) atbialaial 2222 QAo 22 AaVaA G Naa

which B < o, and we always have 1B < ,u*B We shall return to
the question of extension and unicity in Sections 6 and 7.

It is often convenient to start with a set function on a collection C
of sets having less structure than an algebra of sets. We say that a
collection C of subsets of X is a semialgebra of sets if the intersection
of any two sets in C is again in C and the complement of any set in C

:C n gﬂl I"IC“f\‘ﬂf “ﬂ‘n“ n{‘ Cﬂfc I“ ra If (a IC 2R 2B ¥4 aam1n nn]»\-n I\F cato
1S a finite GI5JOMIL alliUIl U1 50w 11 L. 11 U 15 dlly SCIIMldigCord Oi1 SCLS,

then the collection @ consisting of the empty set and all finite dis-
joint unions of sets in C is an algebra of sets which is called the
algebra generated by C. If u is a set function defined on C, it is
natural to attempt to define a finitely additive set function on @ by
setting

L

n

A b
L HE;

whenever A is the disjoint union of the set E; in C. Since a set 4 in @
may possibly be represented in several ways as a disjoint union of
sets in C, we must be certain that such a procedure leads to a unique
value for pA. The following proposition gives conditions under
which this procedure can be carried out and will give a measure on
the algebra Q.

9. Proposition: Let C be a semialgebra of sets and y a nonnegative
set function defined on C with ud = 0 (if O € C). Then u has a unique
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extension to a measure on the algebra Q@ generated by C if the follow-
ing conditions are satisfied :

i. If a set C in C is the union of a finite disjoint collection {C;} o
sets in C, then uC = 2 ucC;.

If a set C in C is the union of a countable disj
of sets in C, then uC <y ucC;.

o
o
(n
D
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)
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P

Problems

3. Let X be the set of rational numbers and @ the algebra of finite
unions of intervals of the form (a, b] with u(a, b] = oo and ud = 0. The
extension of u to the smallest g-algebra containing @ is not unigue.

4. Prove Proposition 9 by showing:

o A~ r‘. . { :Mﬂ‘ Ao at 1 f A thaoa 13mi~Ar ~
de \.zUllultlUll \l lllll}ll(n ll LU § e § lb L11C ulllUll v

disjoint collections {C;} and {D;} of sets in C, then }_ uC; =Y uD;. [Hint:
uC; = Z WC; N D).]
J

-~
™

-

-~

b. Condition (ii) implies that u is countabiy additive on @ (for finite
additivity and monotonicity already imply the reverse inequality).

5. Let C be a semialgebra of sets and @ the smallest algebra of sets
containing C.

by C, and baé, 1capcu1vc1y

. Let @ be a collection of sets which is closed under finite unions and
finite intersections; an algebra of sets, for example.

a. Show that @ _ is closed under countable unions and finite intersec-

S[e SAURLY Mg 22 VaAUVOLVE BRIV DUV RLIIA VALY WAaiVILS GaiG ARG AR OV

tions.

b. Show that each set in @,; is the intersection of a decreasing
sequence of sets in @,, .

7. Let u be a finite measure on an algebra @, and p* the induced outer
measure. Show that a set E is measurable if and only if for each € > 0 there
isaset A e @;, A< E,such that y*(E ~ A) < €.

8. If we start with an outer measure u* on X and form the induced
measure it on the u*-measurable sets, we can use g to induce an outer
measure u”*

a. Show that for each set E we have u*E > u*E.
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b. For a given set E we have u™E = y*E if and only if there is a
u*-measurable set 4 @ E with u*4 = u*E.

c. Show that u™E = p*E for every E if and only if u* is regular.

d. Show that an outer measure u* is regular if and only if it is
induced by a measure on an algebra.

e. Let X be a set consisting of two points. Construct an outer
measure on X which is not regular.
9. Let u* be a regular outer measure.

a. Show that the measure u induced by u* is complete and saturated.

— b, Let(X, &, p) be a complete measure space. Let i be the extension
of u obtained by the Carathéodory process. Then i is the same as the

tonginon givan 1 raohlem 11 Q¢
18 i W

X wilolvilil 51'\411 111 1 1V Vill 11U
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10. Let u be a measure on an algebra @ and i the extension of it given
by the Caratheodory process. Let E be measurable with respect to i and
RE < co0. Then given € > 0, there is an 4 € @ with

A A E) <e.

11. We say that a function ¢ is @-simple if ¢ = a;x,,, where 4, ¢ Q.
t a measure on @ and p its extension.

a. Given € > 0 and a pu integrable function f, there is an (@-simple
function ¢ such that

( )
Mf—mdu<e

b. Show that the function ¢ in Problem 11.21c can be taken to be
Q-simple.

*3 The Lebesgue-Stieltjes Integral

Let X be the set of real numbers and ® the class of all Borel sets.
A measure u defined on ® and finite for bounded sets is called a
Baire measure (on the real line). To each finite Baire measure we
associate a function F by setting

F(x) = p(— o0, x].

The function F is called the cumulative distribution function of u and
is real-valued and monotone increasing. We have

u(a, b] = F(b) — F(a).
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Since (a, b] is the intersection of the sets (a, b + 1/n], Proposition
11.2 implies that

wa, b] = lim ,u(a, b+ %:l,

n— oo

and so

F(b) = lim F b+l\=F(b+).
\

n-+aoo

Thus a cumulative distribution function is continuous on the right.
Similarly,

b} = limpu(b— 1,5 |
.u _"._;w‘u ns J

7/

— lim F(b) — F( b — -

n—a \ n

— F(b) — F(b—).

Hence F is continuous at b if and only if the set {b} consisting of b
alone has measure zero. Since § = () (— o0, —n], we have

lim F(n) = 0,
and hence
lim F(x) =0,

because of the monotonicity of F. We summarize these properties in
the following lemma:

10. Lemma: If u is a finite Baire measure on the real line, then its
cumulative distribution function F is a monotone increasing bounded
function.which is continuous on the right. Moreover, lim F(x) = 0.

X+ — o

Suppose that we begin with a monotone increasing function F
which is continuous on the right. Then we shall show that there is a
unique Baire measure u such that

p(a, b] = F(b) — F(a) (2)
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for all intervals of the form (a, b], where we define F(c0) = lim F(x)

and F(— o) = lim F(x). We begin with the following lemma, whose

X—* —

proof is left to the reader (Problem 12):

11. Lemma: Let F be a monotone increasing function continuous

on the right. If (a, b1 < U (a;, b;], then

i=1

Fiby=F@ < 3 F(b) = F(@).

If we let C be the semialgebra consisting of all intervalis of the fo
a ) and set y(a, b] = F(b) — F(a), then u is easily seen to

ANe Swu rv AAAAAA AY vRoiay Ovivia v

satisfy condition (i) of Proposition 9 and since Lemma 11 is preci-

Qelv the second condition, we see that u admits a ummle extension to

a measure on the algebra generated by ®. By Theorem 8 this u can

be extended to a og-algebra containing C. Since the class ® of Borel

sets is the smallest g-algebra containing C, we have an extension of u

to a Baire measure. The measure y is o- ﬁnite since X is the union of
tamera and sarh hao Gnite maeacciies

the intervals Ul, i 1_| and each has finite measure. Thus the exten-
sion of u to ® is unique, and we have the following proposition:

12. Proposition: Let F be a monotone increasing function which is
continuous on the right. Then there is a unique Baire measure u such
that for all a and b we have

wla, b] = F(b) — F(a).

13. Corollary: Each bounded monotone function which is contin-

uous on the right i the cumulatiue distribution function of a unique
DAaieos measiure pro ,J L"I ~Y =N
_/uuu: Dadire measure pro '{—ao0j = v

If ¢ is a nonnegative Borel measurable function and F is a mono-
tone increasing function which is continuous on the right, we define
the Lebesgue-Stieltjes integral of ¢ with respect to F to be

[ ¢ dF = ffp du,
where u is the Baire measure having F as its cumulative distribution
function. If ¢ is both positive and negative, we say that it is integra-
ble with respect to F if it is integrable with respect to pu.
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If F i1s any monotone increasing function, then there is a unique
function F* which is monotone increasing, continuous on the right,
and agrees with F wherever F is continuous on the right (Problem
13), and we define the Lebesgue—Stieltjes integral of ¢ with respect to
F by

If F i1 a monotone function. con
il P a9 «“ ALAAVIAV VUV LAV AVALAW VIV Ww\J

agrees with the Riemann-Stieltjes integral whenever the latter is defined.

The Lebesgue-Stieltjes integral is only defined when F is monotone (or
more generally of bounded variation, as in Problem 14c), while the
Riemann-Stieitjes integral can exist when F is not of bounded variation,
say when F is continuous and ¢ is of bounded variation.

Problems

12. Prove Lemma 11. [Choose € > 0. By the continuity on the right of F,
choose 7, > 0 so that F(b; + n;) < F(b;) + €2, and choose § > 0 so that
F(a + 8) < F(a) + €. Then the open intervals (a;, b; + n;) cover the closed
interval [a + 8, b], and the proof proceeds like that of Proposition 3.1. A
little extra care must be taken when (a, b] is infinite.]

13. Let F be a monotone increasing function, and define
F*(x) = lim F(y).
y—x+
Then F* is a monotone increasing function which is continuous on the
right and agrees with F wherever F is continuous on the right. We have
(F*)* = F*, and if F and G are monotone increasing functions which agree
wherever they are both continuous, then F* = G*.

14. a. Show that each bounded function F of bounded variation gives
rise to a finite signed Baire measure v such that
wWa, b] = F(b+) — F(a+).
b. Show that v™ and v~ in the Jordan decomposition correspond to
the positive and negative variations of F.

c. Extend the definition of the Lebesgue-Stieltjes integral | ¢ dF to
functions F of bounded variation.
d. Show that if [¢| < M and if the total variation of F is T, then
|| @ dF| < MT.
15. a. Let F be the cumulative distribution function of the Baire measure
v, and assume that F is continuous. Then for any Borel set E contained in
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the range of F, we have mE = v[F~!(E)], with m Lebesgue measure. [Hint:
This is true for intervals, and the uniqueness part of Theorem 8 can be used
to derive its truth in general.]

b. Generalize to the case of discontinuous cumulative distribution
functions.

16. Let F be a continuous increasing function on [a, b] with F(a) = c,
F(b) = d, and let ¢ be a nonnegative Borel measurable function on [c, d].
Then [® o(F(x)) dF(x) = [¢ ¢(y) dy. [Hint: Use Problem 15a to take care of
the case when ¢ is a characteristic function and generalize first to simple ¢
and then to general ¢.]

17. a. Show that a measure u is absolutely continuous with respect to
Lebesgue measure if and only if its cumulative distribution function is
absolutely continuous.

L Tf nhanls v onnt th eagman T clhocgiie tmeaQiive
D. 1l U lb anUluu,ly conunuous wuu LcapC\A to LOUCYEUL 1HICasulg,

then its Radon-Nikodym derivative is the derivative of its cumulative dis-
tribution function.

c. If F is absolutely continuous, then
[de= ffF’ dx.
J J

18. Riemann’s Convergence Criterion. Let f be a nonnegative monotone
decreasing function on (O ®), g a nonnegative monotone increasing func-

tion on [U, UU}, and < \u,,/ a uuuucsauvc sequcence. ouppuac that for each
x € (0, o) the number of n such that a, > f(x) is at most g(x). Then we have

Za,,<ooifj:fdg<oo.

Let (X, @, p) and (Y, ®, v) be two complete measure spaces, and
consider the direct product X x Yof XandY. If A< X andB<Y,
we call A x B a rectangle. If A € @ and B € ®, we call A x B a mea-
surable rectangle. The collection ® of measurable rectangles is a
semialgebra, since

(AxB)N(CxD)y=(ANC)x(BND)
and

~(A x By=(A x B) U (A x B) U (4 x B).
If A x Bis a measurable rectangle, we set

AMA x B)=uA - vB
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14. Lemma: Let {(4; x B,)} be a countable disjoint collection of
measurable rectangles whose union is a measurable rectangle A x B.

Then
MA x B) =Y MUA; x B).

Proof: Fix a point x € A. Then for each y ¢ B, the point {x, y)>
belongs to exactly one rectangle A4; x B;. Thus B is the disjoint
union of those B; such that x is in the corresponding A;. Hence

()
V)

=

A\NMD

since v is countably additive. Thus by the corollary of the Monotone
Convergence Theorem (11.14), we have

Y [vB,-°xA.-du= fv(B)-xA du

v v

(o]
=

Y vB;- ud; =vB - uA. 1

The lemma implies that 4 satisfies the conditions of Proposition 9
and hence has a unique extension to a measure on the algebra ®'
consisting of all finite disjoint unions of sets in & Theorem 8 allows
us to extend A to be a complete measure on a g-algebra S containing
®. This extended measure is called the product measure of u and v
and is denoted by u x v. If 4 and v are finite (or o-finite), so is u x v.
If X and Y are the real line and u and v are both Lebesgue measure,
then u x v is called two-dimensional Lebesgue measure for the
plane.

The purpose of the next few lemmas is to describe the structure of

the cete which are meaaenrahle with recnect ta the nradinet meacure
L1l OWw LY YY1ililwil Al w ililiwvlivuvuiluviwv yvivii l\lol.}\l\.ll, v LCilw Plvuuvl ALAWEA I A W

pu x v. If E is any subset of X x Y and x a point of X, we define the
x cross section E, by

and similarly for the y cross section for y in Y. The characteristic
function of E, is related to that of E by

XeLY) = Xe(x, Y).
We also have (E), = ~(E,) and (U E,), = UJ(E,) for any collection
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15. Lemma: Let x be a point of X and E a set in®,;. Then E_ is a
measurable subset of Y.

Proof: The lemma is trivially true if E is in the class ® of mea-
surable rectangles. We next show it to be true for E in ®,. Let

on

E = I:J E;, where each E; is a measurable rectangle. Then
i=1

XeY) = xe(x, y)

= SUp xg(X, y)

= SUP 1(gy,(¥).

4

Since each E; is a measurabie rectangie, y, () is a measurable func-
tion of y, and so yr_must also be measurable, whence E, is measur-
~ L1 _
dDIC.

Suppose now that E = ) E; with E; ¢ &, . Then

i=1
XEx = XE(X, )
= inf yg(x, y)

= lnf X(E,‘)x( ,V),

and we see that yp is measurable. Thus E, is measurable for any
Ee® ;. 1

16. Lemma: Let E be a set in ®R,; with u x v(E) < co. Then the
function g defined by
g(x) = vE,

is a measurable function of x and

Jfg dp = p x v(E).

Proof: The lemma is trivially true if E is a measurable rectangle.
We first note that any set in ®, is a disjoint union of measurable
rectangles. Let (E;> be a disjoint sequence of measurable rectangles,
and let E = {J E;. Set

gix) = v[(E),].
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Then each g; is a nonnegative measurable function, and

g=> g

Thus g is measurable, and by the corollary of the Monotone Con-
vergence Theorem (11.14), we have

Jgd#=2 g; dp

Consequently, the lemma holds for E € ®, .

Let E be a set of finite measure in ®,;. Then there is a sequence

‘N of cete m ch that F c F.and F Tt fallows from
{L;, O1 8€ts in ®R,sucn that £;, , < E;and E = | |1_.l 1t IOLIOWS ITOm

PrOposmon 6 that we may take u x v(E 1) < oo. Let g{(x) = v[(E)),]

P
ngdu=u><v(E1)<oo,

we have g,(x) < oo for almost all x. For an x with g,(x) < o0, we

have {(E;),> a decreasing sequence of measurable sets of finite
measure whose intersection is E, .
Thus by Proposition 11.2 we have
g(x) = v(E,) = lim v[(E)),]
g; > g a.c.,

and so g is measurable. Since 0 < g; < g,, the Lebesgue Convergence

Theorem implies that
Jg du = lim jgi du

=1lim u x v(E))
= u x WE).
the last equality following from Proposition 11.2. |

17. Lemma: Let E be a set for which u x v(E)=0. Then for
almost all x we have (E,) =0
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Proof: By Proposition 6 there is a set F in ®,; such that E< F
and u x v(F) = 0. It follows from Lemma 16 that for almost all x we
have w(F,) = 0. But E, < F_, and so vE, = 0 for almost all x since v
is complete. |

18. Proposition: Let E be a measurable subset of X x Y such that
u X v(E) is finite. Then for almost all x the set E, is a measurable
subset of Y. The function g defined by

g(x) = v(E,)

is a measurable function defined for almost all x and

,‘

Igdu u x v(E).

and u x v(F ) =
able, so is G, an

Q-‘:

Since u x v(E) is finite and o u x v(F), we have u x vw(G) = 0.
Thus by Lemma 17 we have vG, = 0 for almost all x. Hence

g(x) =vE, =vF_ ae.;

"’"::

so g is a measurable function by Lemma 16. Again by Lemma 16

Jfg du = p x v(F)
=uxvE). |

The following two theorems enable us to interchange the order of
integration and to calculate integrals with respect to product mea-
sures by iteration.

19. Theorem (Fubini): Let (X, @, u) and (Y, ®, v) be two complete
measure spaces and f an integrable function on X x Y. Then

M ~ar 11 S ii VAR Y ad J 1. VAN Vo R S .
i. For almost all x the function f, defined by f(y) = f(x, y) is an

integrable function on Y.
1. For almost all y the function f” defined by f?(x) = f(x, y) is an
integrable function on X.
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ii. f (x, y) dv(y) is an integrable function on X.

d
™

i, | f(x, y) du(x) is an integrable function on Y.
b
rrr T r rrr m

i, |, nyva dy = Jxxyfd(y X V) = JY LJde#J dv.

D

Pvoonf: Recan

Proo of the svmmetrv hetwe
J . Uwi A4

.
n v and v it enfficec
Vil Jissiziviel vy i1 4

Jv  CLLING .y 1L Ouiliww

ecause of y e t
prove (i), (i1), and the first half of (iii). If the conclusion of the theorem

-
o

holds for each of two functions, it also holds for their difference, and
hence it is sufficient to consider the case when f is nonnegative. Pro-
position 18 asserts that the theorem is true if f is the characteristic
lUIlCll()Il ()l a me&SUfaDIC set OI Hﬂl[e measure, ana HCDCC Ule
theorem must be true if f is a simple function which vanishes outside
a set of finite measure. Proposition 11.7 asserts that each non-
negative integrable function f is the limit of an increasing sequence
{¢,»> of nonnegative simple functions, and, since each ¢, is integra-
ble and simple, it must vanish outside a set of finite measure. Thus f,
is the limit of the increasing sequence {(¢,),> and is measurable. By

the Monotone Convergence Theorem
J Jx, y)any) = lm J PulX, y) avly),
Y Y

and so this integral is a measurable function of x. Again by the
Monotone Convergence Theorem

cre Cr( 7

JU fvadu=lim U (p,,vad/i

X Y JX Y
(‘

= lim ©, du X v)
Jxxy

=J fdu xv). 1
Xxy

In order to apply the Fubini Theorem, one must first verify that f
is integrable with respect to 4 x v; that is, one must show that fis a
measurable function on X x Y and that fifi d(u x v) < oo. The
measurability of fon X x Y is sometimes difficult to establish, but in
many cases we can establish it by topological considerations (cf.

Problem 21). In the case when y and v are o-finite, the integrability
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of f can be determined by iterated integration using the following
theorem:

20. Theorem (Tonelli): Let (X, @, u) and (Y, ®, v) be two o-finite
measure spaces, and let f be a nonnegative measurable function on
X x Y. Then

1. For almost all x the function f, defined by f.(y) = f(x, y) is a
measurable function on Y.
1. For almost all y the function f” defined by f*(x) =f(x, y) is a
— measurable functionon X,

fad

[
[
.

fix v)dvlv)is a measurable function on Y
J A\ ) RV Yy o W RO WU necLion on .

JY

ii. | f(x, y) du(x) is a measurable function on Y.

)
—
I
-
o
1
Q.
Il
E—
\
=y
=
X
=
Il
E—Y
—
Y
S~
a.
e
o

L T e

Proof: For a nonnegative measurable function f the only point in
[HC pI'OOI OI lﬂéOfem 17 ‘v‘v‘uere lllC mtegrammy OI] was USCO was to
infer the existence of an increasing sequence {¢,» of simple functions
el traemialaii s ~rtaida o cnt ~AF Brite mmpnciire a1ial tlas £ 190
CdcCIl valllsSIliIlg OuLsSIac a SCL U1 LG IIICa>ulc >ucll tiat y = 111 @,,.
But if 4 and v are o-finite, then so is u x v, and any nonnegative
measurable function on X X Y can be so approximated by Proposi-

tion 11.7. i

If @ and ® are g-algebras on X and Y, then the smallest o-algebra
containing the measurable rectangles is denoted by @ x ®. Thus the
product measure is defined on a o-algebra containing @ x ®, and

Qinrs 11 X Vv iQ r\kfo:nnr] hy the Clarathédndorv evtancinn nracece 1t
SIIICC {4 X V 15 O0walliCd Uy uUiC LalaidiCOUOLy CAWCISION PIOCESS, it 1§

both complete and saturated. If 4 and v are both o-finite, then the
product measure on @ x ® is already saturated and the measurable
sets for u x v are those which differ from sets in @ x ® by sets of
measure zero.

Many authors prefer to define product measure to be the
restriction of u x v to @ x ®. The advantage of taking 1 x v to be
LUIIlplClC as we have done here, is that this does what we want it to
for Lebesgue measure: The product of n-dimensional Lebesgue
measure with m-dimensional Lebesgue measure is (n + m)-

dimensional Lebesgue measure. Since our hypotheses for the Fubini
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and Tonelli theorems require only measurability with respect to the
complete product measure, they are weaker than requiring measur-
ability with respect to @ x ® The price for using these weaker
hypotheses is the necessity of including the “almost all” phrases in
the conclusion of the theorems. This has to be expected, since chang-
ing f arbitrarily for x in a set of measure zero does not change the
measurability or integrability of f, but f, can be arbitrary for those x.
If however, f is measurable with respect to @ x ®, then f, is measur-
ahle for each x

We have also used the completeness of u to show that

_[ f(x, y) dv(y) 1s measurable, for if u4 were not complete we could
only conclude that this was a function which differed on a subset of a
set of measure zero from a measurable function. If, however, f is
measurabie with respect to & x ®, then 1t turns out that
[ f(x, y) dvw(y) is measurable with respect to @ even if u is not com-
plcu: \pi‘O'v'iuCUJ is uucglauw), but the plUUl of this is surprisingxy
intricate. For a proof see Halmos [5], p. 143.

The examples in the problems show that we cannot omit the
hypothesis of the integrability of f from the Fubini Theorem or the
hypotheses of o-finiteness and nonnegativity from the Tonelli
Theorem. Problem 26 shows the essential role played by the measur-
ability of f in these theorems: If we omit this assumption, even for
bounded functions and finite measures, we may have the iterated
inteorals f I'f f/lﬂ du and f l'f fdu] dv well defined but unequal.

sratvmatas Lad adi o2 g Wil RS 2202% v-- —=2al

Problems

19. Let X = Y be the set of positive integers, @ = ® = ®@(X), and let
v = u be the measure defined by setting u(E) equal to the number of points
in E if E is finite and oo if E is an infinite set. (This measure is called the
counting measure.) State the Fubini and Tonelli Theorems explicitly for this
case.

20, 1et (X. @ u) be anv g-finite measure space and Y the set of p pos itiv

e \€ay, Wy fry UV Qi J VTRV iaavaoul Spave Qe = ~v

integers with v the counting measure (Problem 19). Then Theorem 20 nd
Corollary 11.14 state the same conclusion. However, Corollary 11.14 is
valid even if y is not o-finite, and hence the Tonelli Theorem is true without
o-finiteness if (Y, ®, v) is this special measure space.

21. Let X = Y =[O0, 1], and let u = v be Lebesgue measure. Show that
each open set in X x Y is measurable, and hence each Borel set in X x Y is
measurable.
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22. Let h and g be integrable functions on X and Y, and define
f(x, y) = h(x)g(y). Then fis integrable on X x Y and

J fd(uxv)=Jhdufgdv.
XxY X Y

(Note: We do not need to assume that y and v are o-finite.)

23. Show that Tonelli’s Theorem is still true if, instead of assuming u and
to be o-finite, we merely assume that {{x, y>:f(x, y) # 0} is a set of

.
finita maacnra
HIIINC 11ICasuli v,

24. The following example shows that we cannot remove the hypothesis

that f be nonnegative from the Tonelli Theorem or that f be integrable from
the Fubini Theorem. Let X = Y be the positive integers and u = v be the
counting measure. Let

! 2-27* ifx=y
flx, p)=4{—-2+4+27% fx=y+1
0 otherwise.

25. The following example shows that we cannot remove the hypothesis

from the Tonelli Theorem: Let X = Y be the interval [0, 1], with @ = ®
the class of Borel sets. Let u be Lebesgue measure and v the counting
measure. Then the diagonal A = {{x, y> € X x Y: x = y} is measurable (is
an ®&,;, in fact), but its characteristic function faiis to satisfy any of the
equalities in condition (iii) of the Fubini and Tonelli Theorems.

26. The following example shows that the hypothesis that f be measur-
able with respect to the product measure cannot be omitted from the
Fubini and Tonelli Theorems even if we assume the measurability of f* and
f. and the integrability of | f(x,y)dv(y) and J f(x, y) du(x). Let
X =Y = the set of ordinals less than or equal to the first uncountable
ordinal Q. Let @ = ® be the g-algebra consisting of all countable sets and
their complements. Define u = v by letting uE = 0 if E countable, uE =1
otherwise. Define a subset S of X x Y by S = {{x, y>: x < y}. Then S, and
S, are measurable for each x and y, but if f'is the characteristic function of S

we have
jUf(x, y) du(x)] dv(y) # fo (x, y) dV(y)] dp(x).

If we assume the continuum hypothesis, that is, that X can be put in
one-to-one correspondence with [0, 1], then we can take f to be a function
on the unit square such that f, and f* are bounded and measurable for each
x and y but such that the conclusion of the Fubini and Tonelli Theorems
do not hold.
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27. Show that if (X, @, u) and (Y, ®, v) are two g-finite measure spaces,
then u x v is the only measure on @ x ® which assigns the value u4 vB to
each measurable rectangle 4 x B. Show that a measure on @ x ® with this
property need not be unique, if we do not have g-finiteness.

28. a. Show thatif E ¢ @ x ®, then E, € ® for each x.

b. If fis measurable with respect to @ x ®, then f, is measurable with
respect to ® for each x.

29. Let X =Y =R and

two-dimensional Lebesgl e

ford(u x v).

let u =v = Lebesgue measure. Then u x v is
measure on X x Y = R?, We often wri fc dx d

-

)

“

a. For each measurable subset E of R, let

Show that o(E) is a measurable subset of R2 [Hint: Consider first the cases
when E open, E a G4, E of measure zero, and E mcasurable.]
h, If I' is a measurable function on R

=2 £ H Sevaiiave

F(x, y) f(x — y) is a measurable function on R

c. If fand g are integrable functions on R, then for almost all x the
function ¢ given by ¢(y) = f(x — y)g(y) is integrable. If we denote its inte-
gral by h(x), then A is integrable and

Jv h| < J |l j gl

30. Let f and g be functions in [}(— oo, o), and define f * g to be the
function h defined by h(y) = | f(y — x)g(x) dx.
a. Show thatfx g=g * f.
b. Show that(f * g) * h=f* (g * h).
c. For fe¢ LI, define f by f(s) = | e*'f(t) dt. Then fis a bounded
complex function and
S An
f*g9=1g
31. Let f be a nonnegative integrable function on (— oo, o), and let m, be
two-dimensional Lebesgue measure on R2. Then

Y J/ Y =T J LLNTYY Y/

mAdx. W:0<v<fOW =m,{{x vO:0 < v < flxV = rffr\ dx.
21\~ =J A\ \ a2 J

Let o(t) = m{x: f(x) > t}. Then ¢ is a decreasing function and

fo [
Jo o(t) dt=Jj(x) dx.

32. If {(X;, @;, u))>}-, is a finite collection of measure spaces, we can
form the product measure u, x -+ x u, on the space X, x --- x X, by
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starting with the semialgebra of rectangles of the form R= 4, x --- x 4,
and p(R) =[] u; A;, and using the Carathéodory extension procedure.
Show that if we identify (X, x -+ x X)) x (X,4; x -+ x X,) with
(X x oo x X,) then (uy X =o0 X pp) X (Upyy X o0 X ph) = fiy X *o0 X .

33. A measure u with uX =1 is often called a probability measure. Let
{(X;, @,, uy)} be a collection of probability measure spaces. Show that we
can define a probability measure

when A = X A;. (Note that uA can only be nonzero if all but a countable

AAVSLAIUWL UL LRIV v

number of fhp A hav HA; =1)

5 Integral Operators

In th;e se h'nn we efnr‘v

~ a
LAk 1110 WA LAUJLL VY L\A\JJ (9

linear transformations from I4(v) to I?(n). We let the letters p, q, and
stand for extended real numbers 1 < p < o0, and so on, and use p*
for the conjugate exponent p/(p — 1) so that 1/p + 1/p* = 1. We shall
often denote 1/p, 1/q, and 1/r by a, B, and 7y, respectively. Thus
a”=1—a.

Let (X, @, u) and (Y, ®, v) be two o-finite measure spaces and
k = k(x, y) a nonnegative measurable function on X x Y. We define

r\] aQ
wicio

M% , = sup J J BOOkCx, () diu x v

as h and g range over all functions of norm at most one in I(u) and

Li(v), where y = 1/r and B = 1/q. Since k > 0, it suffices to consider
only nonnegative h and g. If M T s < o0, we say that k is an integral
kernel of covariant type (r, g), and call M¥* , its covariant norm. We
also say that k is an integral kernel of operator type (p, q), where
p = r*. We write

Mcz 8 — M(]—a) 8 — ||k||piq°
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In the notion of covariant type one thinks of k as defining a bilin-
ear form

[h, 91 = ” h(x)k(x, y)g(y) d(p x v)

between the elements of L(y) and I#(v), with M¥ ; the norm of the
bilinear form. The relation of this to the operator version is given by
the following proposition.

21. Proposition: Let k be a nonnegative measurable function on
X x Y of covariant type (p*, q) and g € I4v). Then for almost all
x € X the integral

fx) = jyk(x, Yg(y) dv

exists, and the function f belongs to I?(u) with
”f”p —= Ml/p 1/q ”g”q

Dunnfe Qinra FERT n=*ﬁﬂ;fn thara ¢ a functinan L o ,p‘f“\ it
x UUJ . D111 ’.L 10 o llllll.\.t, Lilvil 10 a 1UlIVLIVLL n G Ly \“} YVYiull
h(x) > 0 everywhere. Since
rrh(ﬂl( (o, Mg dlp x v) < M_ 4l - llgll, <
s ~ J = a,fuip*iidig 3
X X Y
we see that

Jh(x)k(x, gyl dv = h(x) Jk(x, Mgyl dv

for almost all x € X by Tonelli’s Theorem.
Thus f(x) exists for almost all x. Let h be an arbitrary function in
IP*(u). Then

J |n(x)f(x)| ap = ” |h(x)k(x, ¥)g(y)| d(p x v)
X
XxY

by the Fubini Theorem, since |hkg| is integrable. Consequently, hf is
integrable and

| [hfd/l‘ < MY_, glhllplgll,-
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By Lemma 7.27 we have f ¢ If and

This proposition shows that we have defined a linear operator
T: I%v) — I?(u) by taking Tg = f where

f(x) = | k(x, y)g(y) dv.

T

Moreover, the operator norm | T| of T can be shown to be

M, ,= |k

More ge”rfeqrally, we call a measurable function k(x, y) on X x Y

an integral operator of absolute operator type (p, g) if |k| is of oper-
ator type (p, q). The proposition can be rephrased for such kernels:

22. Corollary: Let k(x y) be a measurable function on X x Y of
~Lon N\ ~mAd A Ta(.\ TL,ix s ,.l...-,‘ ¢ 1l - o VYV
absolute operator type u/, gj ana g © La\vj. 1nen jor aimost ai X € A

the integral

f(x) = fk(x, y)g9(y) dv
Jy

exists, and the function f belongs to I?(u) with
Ifllp < Ikl llpqllgll,-

mTL

PR iy | [P LV
1110 10110WI1

~ aafi.l ¢+ [RPNE P2 Dinc—
15 uUdClul Lcvuicii lb auc tU VL. INICd>L,

23. Theorem: Let k be a nonnegative measurable function on
X x Y, and set o

M* , = sup JJ h(x)k(x, Y)g(y) d(u x v),

XxY
where f and g range over the unit balls in L(u) and I3(v), respectively
Then the function log M¥ g is a convex function of y and B in the
square 0 <y <1,0< B <.

Proof: We have to verify that f 0 <A <1, y = Ay, + (1 — A)y,,
and f = AB, + (1 — A)B,, then

M;‘,ﬂ < (M;‘l,ﬁl)l( 72, .82)1‘

Let h and g be arbitrary nonnegative functions in the unit balls of
L(u) and I4(v). Set

h, = h?l/')” h, = hvz/v’ g, = qﬂl/ﬁ, g, = qﬁzlﬂ.
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Then h,, h,, g,, and g, are in the unit balls of I7'(y), [**(u), [#'(v), and
I9%(v), respectively. Also,

Jj hkg = j (hlkg)l(hz kgz)l_l
;"" 34 1-
| [t ] o[ [ 0]

by the Holder inequality for u = 1/4 and u* = 1/(1 — A). Hence

([ _,
JJ hkg < (M 71, ﬁlj quz ﬂz)1 -
and the result follows by taking the supremum over hand g. ||

24. Corollary: The function log M, ;4 is a convex function of o and
Binthe square0 <a<1,0<f < 1.

deeper theorem, also due to Riesz, asserts that for a kernel of mixed
sign (or even complex valued) the operator norm M, ; of the corre-
sponding integral operator is logarithmically convex on the square

0<a<l1, 0<pB<1. The interested reader will find a proof in
nd A

n“ﬁ"‘r\'-r] I\ﬂA Q l‘ JOr
LUIloIa aiia oCiiwail

[19], p. 214.

When (X, @, p) =(Y,®, v) = (R", M, m), where m is Lebesgue
measure, we obtain a special class of integral operators by taking
k(x, y) = k(x — y) for some k € I’(m). Such operators are called con-
volution operators. It is readily verified in this case that k is of covari-
ant types (1, r*) and (r*, 1). It follows from Proposition 21 that k is

also of convariant type (p, q) when

1 —
1_, 1-4 1 A

The nrer‘eding Theorem of Riesz remnreq that k be nonnegative., A

> b o y T i¢tlawvwrAand a
L L)y P YL UL R1aluy, Liluvwuuug, all

[«
-
C

b
r q r

=

for 0 < A4 < 1. This gives us the following propositions.

25. Proposition: Let g, h, and k be functions on R" of class L4, L%,
and I, respectively, with 1/p + 1/q + 1/r = 2. Then

J |h(x)k(x — y)g(¥)l dx dy < ||k, Ikl gl

R2n
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26. Proposition: Let g € I and k € L, with 1/q + 1/r > 1. Then

the function

flx) = L k(x — y)g(y) dy

is defined for almost all x and
1A, < Ikl gl

- 1.

I

) =

where

-
~ | e—

Problems

34. Show that for the operator T defined by Proposition 21 we have
[T =M,,;.

35. Prove Coroliary 22.
36. Prove Proposition 25.
37. Prove Proposition 26.
38. Let g, h, and k be functions on R* of class 4 I?, and L, with
1/p + 1/qg + 1/r < 2. Then h(x)k(x — y)g(y) belongs to I* on R?", where
2 1
u q

1 1
—+ =+ -
D r

*6 Inner Measure

Let 4 be a measure on an algebra @ and p* the induced outer

measure for E compatible with . We can also define an inner
measure y, which assigns to a given set E the smallest measure com-
patible with u:

Definition: Let yu be a measure on an algebra @ and u* the induced
outer measure. We define the inner measure ., induced by u by setting

py E = sup [uA — u*(4 ~ E)],

where the supremum is taken over all sets A€ Q for which
u*(A ~ E) < o0.



