CHAPTER

3

CONVEXITY

This chapter deals primarily {though not exclusively) with the most impor-
tant class of topological vector spaces, namely, the locally convex ones. The
highlights, from the theoretical as well as the applied standpoints, are
{a) the Hahn-Banach theorems (assuring a supply of continuous linear func-
tionals that is adequate for a highly developed duality theory), (b) the
Banach-Alaoglu compactness theorem in dual spaces, and {c) the Krein-
Milman theorem about extreme points. Applications to various problems in
analysis are postponed to Chapter 5.

The Hahn-Banach Theorems

The plural is used here because the term “Hahn-Banach theorem” is cus-
tomarily applied to several closely related results. Among these are the
dominated extension theorems 3.2 and 3.3 {in which no topology is involved),
the separation theorem 3.4, and the continuous extension theorem 3.6.
Another separation theorem (which implies 3.4) is stated as Exercise 3.

3.1 Definitions The dual space of a topological vector space X is the
vector space X* whose elements are the continuous linear functionals on X.
Note that addition and scalar multiplication are defined in X* by

AL+ A)x=Ax+A,x, {xA)x = a - Ax.

It is clear that these operations do indeed make X* into a vector space.
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CHAPTER 3: CONVEXITY 57

It will be necessary to use the obvious fact that every complex vector
space is also a real vector space, and it will be convenient to use the follow-
ing {temporary) terminology: An additive functional A on a complex vector
space X 1s called real-linear (complex-linear) if A(oax) = aAx for every x € X
and for every real (complex) scalar «. Our standing rule that any statement
about vector spaces in which no scalar field is mentioned applies to both
cases is unaffected by this temporary terminology and is still in force.

If u is the real part of a complex-linear functional f on X, then u is
real-linear and
{1 (x) = u{x) — iufix) {xe X)
because z = Re z — i Re (iz) for every z € (.

Conversely, if u: X - R is real-linear on a complex vector space X
and if f 1s defined by (1), a straightforward computation shows that f is
complex-linear.

Suppose now that X is a complex topological vector space. The above
facts imply that a complex-linear functional on X is in X* if and only if its
real part is continuous, and that every continuous real-linear u: X —» R is
the real part of a unique f € X'*

3.2 Theorem Suppose

{a) M is a subspace of a real vector space X,
(b) p: X — R satisfies

nix + v) < n{x) 4+ n{v)
Y VS — F J J

)
=
I~W

fxeX,ye X, t=0,
{©) f: M —> R is linear and f(x) < p(x) on M.

T hen there exists a linear A: X — R such that
Ax = f(x) {(xe M)

and

PROOF. If M # X, choose x; € X, x, ¢ M, and define
M,={x+1tx;:xeM,teR}
It is clear that M, is a vector space. Since

Jf(x\—{—ffv):ffx—l—v‘igp(x-l-y\<_n(x_
1S FAWY 4\ F i H ] = IR
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we have
(1) JX)—px —x)<ply +x)—fp)  (x.ye M)
Let o be the least upper bound of the left side of (1), as x ranges over
M. Then
2 f¥)—a<plx—x) (xeM)
and
3) fO)+e<ply+x,) (eM)
Define f; on M, by
{4) filx + tx)) = f(x) + ta {x e M, t € R).

Then f; = fon M, and f] 1s linear on M,.

Take t > 0, replace x by t~'x in (2), replace y by t "'y in (3), and
multiply the resulting inequalities by t. In combination with {4), this
proves that f; < pon M,.

The second part of the proof can be done by whatever one’s
favorite method of transfinite induction is; one can use well-ordering,
or Zorn’s lemma, or Hausdorff’s maximality theorem.

Let 2 be the collection of all ordered pairs (M’, '), where M’ is
a subspace of X that contains M and f’ is a linear functional on M’
that extends f and satisfies f* < p on M’'. Partially order £ by declar-
ing (M, f') <(M", f") to mean that M' =« M” and f” =f' on M'. By
Hausdorff’s maximality theorem there exists a maximal totally
ordered subcollection Q of 2.

Let @ be the collection of all M’ such that (M’, f') € Q. Then @ is
totally ordered by set inclusion, and the union M of all members of @
is therefore a subspace of X. If x € M then x € M’ for some M’ € @;
define Ax = f'(x), where f’ is the function which occurs in the pair
(M'.f) e Q.

It is now easy to check that A is well defined on M, that A is
linear, and that A < p. If M were a proper subspace of X, the first
part of the proof would give a further extension of A, and this would
contradict the maximality of Q. Thus M = X.

Finally, the inequality A < p implies that

—p(—x) < —A{—x) = Ax
for all x € X. This completes the proof. /11

3.3 Theorem Suppose M is a subspace of a vector space X, p is a semi-
norm on X, and f is a linear functional on M such that

| £{x)| < p(x) {x ¢ M)
1J "/ — ) \ A
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Then f extends to a linear functional A on X that satisfies

|Ax| < p(x) (x € X).

PROOF. If the scalar field is R, this is contained in Theorem 3.2, since p
now satisfies p( — x) = p(x).

Assume that the scalar field is €. Put u = Re f. By Theorem 3.2
there is a real-linear U on X such that U =uon M and U < p on X.
Let A be the complex-linear functional on X whose real part is U. The
discussion in Section 3.1 implies that A = fon M.

Finally, to every x € X corresponds an a € ¢, |a| = 1, such that
aAx = |Ax|. Hence

|Ax| = Aax) = Ufax) < plax) = p(x). 111/
Corollary. If X is a normed space and x, € X, there exists A € X* such
that
Axg = ||x,| and |Ax| < ||x|| for all x € X.

PROOF. If x, =0, take A=0. If x; #0, apply Theorem 3.3, with
p(x) = ||x|, M the one-dimensional space generated by x,, and

flaxo) = allxo| on M. 111/

34 Theorem Suppose A and B are disjoint, nonempty, convex sets in a
topological vector space X.
(@) If A is open there exist A € X* and y € R such that

Re Ax <y < Re Ay

for every x € A and for every y € B.
(by If A is compact, B is closed, and X is locally convex, then there exist
A e X* v, e R,y, € R, such that
Re Ax <y, <y, <Re Ay

for every x € A and for every y € B.

Note that this is stated without specifying the scalar field; if it is R,
then Re A = A, of course.

PROOF. It is enough to prove this for real scalars. For if the scalar field
is ¢ and the real case has been proved, then there is a continuous
real-linear A, on X that gives the required separation; if A is the

Ll 1% r 2L LAa



60 PART I: GENERAL THEORY

unique complex-linear functional on X whose real part is A,, then
A € X*. (See Section 3.1.) Assume real scalars.

(a) Fix A, e A, bye B.Put xq =by —ag;put C=4 — B + x,.
Then C is a convex neighborhood of 0 in X. Let p be the Minkowski
functional of C. By Theorem 1.35, p satisfies hypothesis (b) of
Theorem 3.2. Since A N B = (J, x, ¢ C, and so p(x,) > 1.

Define f(tx,) =t on the subspace M of X generated by x,. If
t > 0 then

fltxg) =t < tp(x,) = pltxo);

if t <0 then f(tx;) < 0 < p(tx,). Thus f < p on M. By Theorem 3.2, f
extends to a linear functional A on X that also satisfies A < p. In
particular, A < 1 on C, hence A > —1 on —C, so that |A| < 1 on the
neighborhood C n {(—C) of 0. By Theorem 1.18, A € X*.

If now o € 4 and b € B, we have

Aa—Ab+1=Ala—-b+x;)<pla—b+x,) <1

since Ax, = 1,a — b + x, € C, and C is open. Thus Aa < Ab.

It follows that A(A) and A(B) are disjoint convex subsets of R,
with A{A) to the left of A(B). Also, A(A4) is an open set since 4 is open
and since every nonconstant linear functional on X is an open
mapping. Let y be the right end point of A(A4) to get the conclusion of
part {a).

(b) By Theorem 1.10 there is a convex neighborhood V of 0 in
X such that (4 + V) n B = J. Part {(a), with A + V in place of A,
shows that there exists A € X* such that A(4 + V) and A(B) are dis-

nt g ~f D nth [ PANPSY At tha laft ~AF AN
JU1uL convex suopscets of n, wWitil 1“1-1 T ¥} Uycu andag o ui€ it 61 A WA,

Since A{A) is a compact subset of A(4A + V), we obtain the conclusion

of {b). 111/

Corollary. If X is a locally convex space then X* separates points on
X.

PROOF. If x, € X, x, € X, and x, # Xx,, apply (b) of Theorem 3.4 with
A= {x}, B={x,}. /11

3.5 Theorem Suppose M is a subspace of a locally convex space X, and
Xo € X. If X4 is not in the closure of M, then there exists A € X* such that
Axy = 1 but Ax = 0 for every x € M.

= M, there exists
us A(M) is a proper

PROOF. By (b) of Theorem 3.4, with A = {
A € X* such that Ax; and A(M) are disjoi

TEeT T hE -7
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subspace of the scalar field. This forces A(M) = {0} and Ax, # 0. The
desired functional is obtained by dividing A by Ax,. /1

Remark. This theorem is the basis of a standard method of treating
certain approximation problems: In order to prove that an x, € X lies
in the closure of some subspace M of X it suffices (if X is locally
convex) to show that Ax, = 0 for every continuous linear functional
A on X that vanishes on M.

3.6 Theorem If fis a continuous linear functional on a subspace M of a
locally convex space X, then there exists A € X* such that A = fon M.

Remark. For normed spaces this is an immediate corollary of
Theorem 3.3. The general case could also be obtained from 3.3, by
relating the continuity of linear functionals to seminorms (see Exercise
8, Chapter 1). The proof given below shows that Theorem 3.6 depends
only on the separation property of Theorem 3.5.

PROOF. Assume, without loss of generality, that f is not identically O
on M. Put

My ={xe M: f(x)=0}

and pick x, € M such that f(x,;) = 1. Since f'is continuous, x, is not in
the M-closure of M, and since M inherits its topology from X, it
follows that x, is not in the X-closure of M, .

Theorem 3.5 therefore assures the existence of a A € X* such
that Ax, = 1l and A =0 on M,.

If x € M, then x — f(x)x, € M, since f{x,) = 1. Hence

Ax —f(x) = Ax — f(x)Axo = Alx — f{x)x,) = 0.
Thus A = fon M. 11/

We conclude this discussion with another useful corollary of the
separation theorem.

3.7 Theorem Suppose B is a convex, balanced, closed set in a locally
convex space X, x, € X, but x, ¢ B. Then there exists A € X* such that
|Ax| < 1forall x € B, but Axy > 1.

PROOF. Since B is closed and convex, we can apply {b) of Theorem 34
with A_!rlfnoh__n/\ e X* such tha

s 7 22

t A.x.. = ref® lies outside
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the closure K of A,{(B). Since B is balanced, so is K. Hence there
exists 5, 0 <s<r, so that |z|] <s for all ze K. The functional
A = s~ 'e A, has the desired properties. /1]

Weak Topologies

3.8 Topological preliminaries The purpose of this section is to explain
and illustrate some of the phenomena that occur when a set is topologized
in several ways.

Let 7, and 7, be two topologies on a set X, and assume 7, < 7,; that
1s, every t,-open set is also 7,-open. Then we say that t, is weaker than 7,,
or that 7, is stronger than t1,. [Note that (in accordance with the meaning of
the inclusion symbol <) the terms “weaker” and “stronger” do not
exclude equality.] In this situation, the identity mapping on X is continuous
from (X, 7,) to (X, 1,) and is an open mapping from (X, 7,) to (X, 1,).

As a first illustration, let us prove that the topology of a compact
Hausdorff space has a certain rigidity, in the sense that it cannot be
weakened without losing the Hausdorff separation axiom and cannot be
strengthened without losing compactness:

(@) If 1, = 1, are topologies on a set X, if 1, is a Hausdorff topology, and if
T, is compact, then 7, = 1,.

To see this, let F <« X be 7,-closed. Since X is 7,-compact, so is F.
Since 1, < 1,, it follows that F is 7,-compact. (Every 7,-open cover of F is
also a 1,-open cover.) Since 7, is a Hausdorff topology, it follows that F is
7,-closed.

As another illustration, consider the quotient topology t, of X/N, as
defined in Section 1.40, and the quotient map n: X — X/N. By its very
definition, 7, 1s the strongest topology on X/N that makes n continuous,
and it is the weakest one that makes n an open mapping. Explicitly, if 7’
and 7" are topologies on X/N, and if n is continuous relative to 7 and open
relative to 77, then 7’ < 7 = 1",

Suppose next that X is a set and &% is a nonempty family of mappings
f: X = Y,, where each Y; is a topological space. (In many important cases,
Y, is the same for all fe #.) Let 7 be the collection of all unions of finite
intersections of sets f ~!(V), with fe & and V open in Y,;. Then 7 is a
topology on X, and it is in fact the weakest topology on X that makes every
fe % continuous: If v is any other topology with that property, then
1 < 1. This 7 is called the weak topology on X induced by %, or, more
succinctly, the % -topology of X.

The best-known example of this situation is undoubtedly the usual
way in which one topologizes the cartesian product X of a collection of
topological spaces X, . If n,(x) denotes the ath coordinate of a point x € X,
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then n, maps X onto X, and the product topology 7 of X is, by definition,
its {n,}-topology, the weakest one that makes every n, continuous. Assume
now that every X, is a compact Hausdorff space. Then 1 1s a compact topol-
ogy on X (by Tychonoff’s theorem), and proposition {a@) implies that
cannot be strengthened without spoiling Tychonoff’s theorem.

In the last sentence a special case of the following proposition was
tacitly used:

(b) If # is a family of mappings f: X — Y,, where X is a set and each Y, is
aH ausdorﬂ space, and If F separates points on X, then the & -topology

£ Y 7 vodarf tannloagy
O A is a Jjuuouur_/_; Luyu;uy_y

For if p # g are points of X, then f(p) # f(g) for some fe %, the
points f{p) and f{q) have disjoint neighborhoods in Y, whose inverse images
under f are open (by definition) and disjoint.

Here is an application of these ideas to a metrization theorem.

{¢) If X is a compact topological space and if some sequence {f,} of contin-
uous real-valued functions separates points on X, then X is metrizable.

Let t be the given topology of X. Suppose, without loss of generality,
that | f,| <1 for all n, and let 7, be the topology induced on X by the
metric

d(p, q) = Z 277 ) = Sl D]

This is indeed a metric, since {f,} separates points. Since each f, is
7-continuous and the series converges uniformly on X x X, d is a
t-continuous function on X x X. The balls

B(p)={qe X:d(p, q) <t}

are therefore z-open. Thus 7, = 1. Since 1, is induced by a metric, 7, is a
Hausdorff topology, and now (a) implies that 7 = 1.

The following lemma has applications in the study of vector topol-
ogies. In fact, the case n =1 was needed {and proved) at the end of
Theorem 3.6.

39 Lemma Suppose A,, ..., A, and A are linear functionals on a vector
space X. Let

N={x:Ajx=-=A,x=0}L

T he following three properties are then equivalent :

(@) There are scalars a,, ..., a, such that

A=aAy + - +a,A

ni{*n:
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(b)

(©)
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T here exists y < oo such that

|Ax| <y max |A;x]| {(x € X).

l1<i<n

Ax = 0 for every x € N.

PROOF. It is clear that {a) implies (b) and that (b) implies {c). Assume {(¢)
holds. Let ®@ be the scalar field. Define n: X — @" by

x) = (A X, ..., A, X)

If n(x) = n(x"), then (c¢) implies Ax = Ax’. Hence f{n{x)) = Ax defines a
linear functional f on n{(X). Extend f to a linear functional F on ®",
This means that there exist «; € @ such that

Fluy, ..., u,) =oqu; + -+ o,u,.
Thus
x) = Z cxiAixa

i=1

which is {a). /11!

Ax = F(r(x)) = F(A;x, ..., A

n

3.10 Theorem Suppose X is a vector space and X' is a separating vector
space of linear functionals on X. Then the X'-topology v makes X into a
locally convex space whose dual space is X'.

The assumptions on X’ are, more explicitly, that X’ is closed under

addition and scalar multiplication and that Ax, # Ax, for some A ¢ X’
whenever x; and x, are distinct points of X,

PROOF. Since R and ¢ are Hausdorff spaces, (b) of Section 3.8 shows
that 7’ is a Hausdorff topology. The linearity of the members of X’

shows that 7’ is translation-invariant. If A, ..., A, € X', if r, > 0, and
if
(1) V={x:|Ax|<r, for 1<i<nl,

then V' is convex, balanced, and V € 7’. In fact, the collection of all V
of the form (1) is a local base for 7. Thus 7’ is a locally convex topol-
ogy on X,

If (1) holds, then 1V + 1V = V. This proves that addition is
continuous. Suppose x € X and « is a scalar. Then x € sV for some
s>0.If|f —a| <rand y — x € rV then

By —ax=(8 — v + o{v — x)
PJ A JJS ' S s
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lies in V, provided that r is so small that
ris+nr 4+ |x|r<l1.

Hence scalar multiplication is continuous.

We have now proved that 1" is a locally convex vector topology.
Every A € X' is 7’-continuous. Conversely, suppose A is a 7'-con-
tinuous linear functional on X. Then | Ax| < 1 for all x in some set V
of the form (1). Condition (b) of Lemma 3.9 therefore holds; hence so
does (@): A = o;A;. Since A; € X' and X' is a vector space, A € X
This completes the proof. /1]

Note: The first part of this proof could have been based on Theorem
1.37 and the separating family of seminorms p,(A € X') given by p,(x) =
|Ax|.

3.11 The weak topology of a topological vector space Suppose X is
a topological vector space (with topology 1) whose dual X* separates points
on X. (We know that this happens in every locally convex X. It also
happens in some others; sce Exercise 5.) The X *-topology of X is called the
weak topology of X.

We shall let X, denote X topologized by this weak topology z,,.
Theorem 3.10 implies that X, is a locally convex space whose dual is
also X'*.

Since every A € X* is t-continuous and since 7,, is the weakest topol-
ogy on X with that property, we have 7, = 7. In this context, the given

topology t will often be called the original topology of X.

Self-explanatory expressions such as original neighborhood, weak
neighborhood, original closure, weak closure, originally bounded, weakly
bounded, etc., will be used to make it clear with respect to which topology
these terms are to be understood.!

For instance, let {x,} be a sequence in X. To say that x, — 0 originally
means that every original neighborhood of 0 contains all x, with sufficiently
large n. To say that x, —» 0 weakly means that every weak neighborhood of
0 contains all x, with sufficiently large n. Since every weak neighborhood of

' When X is a Fréchet space (hence, in particular, when X is a Banach space) the original
topology of X is usually called its srrong iopology. In that context, the terms “strong” and
“strongly ” will be used in place of “original” and *originally.” For locally copvex spaces in
general, the term *strong topology” has been given a specific technical meaning. See [15], pp.
256-258; also [14], p. 169. It seems therefore advisable to use “original ” in the present general

discussion
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0 contains a neighborhood of the form
(1) V={x:|A;x|<r, for 1<i<n},

where A; € X* and r; > 0, it is easy to see that x, — 0 weakly if and only if
Ax, — 0 for every A € X*.

Hence every originally convergent sequence converges weakly. (The
converse is usually false; see Exercises 5 and 6.)

Similarly, a set E < X is weakly bounded {that is, E is a bounded
subset of X ) if and only if every V as in (1) contains tE for some
t = t{V) > 0. This happens if and only if there corresponds to each A € X*
a number y(A) < oo such that | Ax| < y(A) for every x € E. In other words,
a set Ec X is weakly bounded if and only if every A € X* is a bounded
function on E.

Let V again be as in (1), and put

N={x:Ax=-=A,x=0}

Since x - (A;x, ..., A,x) maps X into ¢ with null space N, we see
that dim X < n + dim N. Since N < V, this leads to the following conclu-
sion.

If X is infinite-dimensional then every weak neighborhood of 0 contains
an infinite-dimensional subspace; hence X , is not locally bounded.

This implies in many cases that the weak topology is strictly weaker
than the original one. Of course, the two may coincide: Theorem 3.10
implies that (X ), = X ,,.

We now come to a more interesting result.

3.12 Theorem Suppose E is a convex subset of a locally convex space X.
Then the weak closure E,, of E is equal to its original closure E.

PrROOF. E, is weakly closed, hence originally closed, so that £ c E,.
To obtain the opposite inclusion, choose x, € X, x, ¢ E. Part (b) of
the separation theorem 3.4 shows that there exist A € X* and y € R
such that, for every x € E,

Re Ax, <y < Re Ax.
The set {x: Re Ax <y} is therefore a weak neighborhood of x, that
does not intersect E. Thus x, is not in E,,. This proves E, < E.  ////

Corollaries. For convex subsets of a locally convex space,

(a) originally closed equals weakly closed, and
(b) originally dense equals weakly dense.
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The proofs are obvious. Here is another noteworthy consequence of
Theorem 3.12,

3.13 Theorem Suppose X is a metrizable locally convex space. If {x,} is
a sequence in X that converges weakly to some x € X, then there is a
sequence {y;} in X such that

(@) eachy;is a convex combination of finitely many x,, and
(b) y;— x originally.

Conclusion (a) says, more explicitly, that there exist numbers «;, > 0,
such that

and, for each i, only finitely many «;, are #0.

PROOF. Let H be the convex hull of the set of all x,; let K be the weak
closure of H. Then x € K. By Theorem 3.12, x is also in the original
closure of H. Since the original topology of X 1s assumed to be
metrizable, it follows that there is a sequence {y;} in H that converges
originally to x. /11

To get a feeling for what is involved here, consider the following
example.

Let K be a compact Hausdorff space (the unit interval on the real line
is a sufficiently interesting one), and assume that fandf, (n =1, 2, 3, ...) are
continuous complex functions on K such that f(x) - f(x) for every x € K,
as n— oo, and such that | f,(x)| < 1 for all n and all x € K. Theorem 3.13
asserts that there are convex combinations of the f, that converge uniformly
to f.

To see this, let C(K) be the Banach space of all complex continuous
functions on K, normed by the supremum. Then strong convergence is the
same as uniform convergence on K. If y is any complex Borel measure
on K, Lebesgue’s dominated convergence theorem implies that | f, du —
| fdu. Hence f, »f weakly, by the Riesz representation theorem which
identifies the dual of C(K) with the space of all regular complex Borel mea-
sures on K. Now Theorem 3.13 can be applied.

After this short detour we now return to our main line of develop-
ment.

3.14 The weak*-topology of a dual space Let X again be a topologi-

In
cal vector space whose dual is X* For the definitions that follow, it is

aL3% LAl L AAw AR
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irrelevant whether X* separates points on X or not. The important obser-
vation to make is that every x € X induces a linear functional f, on X*,

defined by
f. A = Ax,

and that {f,: x € X} separates points on X*.

The linearity of each f, is obvious; if f, A =f, A’ for all x € X, then
Ax = A'x for all x, and so A = A’ by the very definition of what it means
for two functions to be equal.

We are now in the situation described by Theorem 3.10, with X* in
place of X and with X 1n place of X"

The X-topology of X* is called the weak*-topology of X*
{pronunciation: weak star topology).

Theorem 3.10 implies that this is a locally convex vector topology on
X* and that every linear functional on X* that is weak*-continuous has the
form A — Ax for some x € X.

The weak*-topologies have a very important compactness property to
which we now turn our attention. Various pathological features of the
weak- and weak*-topologies are described in Exercises 9 and 10.

Compact Convex Sets

3.15 The Banach-Alaoglu theorem If V is a neighborhood of 0 in a
topological vector space X and if

K={AeX* |Ax|<1 forevery xeV}

Note: K is sometimes called the polar of V. It 1s clear that K 1s
convex and balanced, because this is true of the unit disc in ¢ (and of the
interval [—1, 1] in R). There is some redundancy in the definition of K,
since every linear functional on X that is bounded on V is continuous,
hence 1s in X*.

PROOF. Since neighborhoods of 0 are absorbing, there corresponds to
each x € X a number y(x) < oo such that x € y(x)V. Hence

(1) |Ax| <3(x) (xe X, AeK)

Let D, be the set of all scalars a such that | x| < y(x). Let 7 be the
product topology on P, the cartesian product of all D, one for each
x € X. Since each D, is compact, so is P, by Tychonoff’s theorem. The
elements of P are the functions f on X (linear or not) that satisfy

) fEI<9x)  (x € X).
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Thus K < X* n P. It follows that K inherits two topologies:
one from X* (its weak*-topology, to which the conclusion of the
theorem refers) and the other, 7, from P. We will see that

(a) these two topologies coincide on K, and
(b) K is a closed subset of P.

Since P is compact, (b) implies that K is z-compact, and then (a)
implies that K is weak*-compact.
Fix some A, € K. Choose x; € X, for 1 <i < n; choose 6 > 0.

Put
(3) W, ={AeX* |Ax; — Agx;| <& for 1<i<n}
and
4 W,={feP:|f(x)—Agx;| <8 for 1<i<n}

Let n, x;, and § range over all admissible values. The resulting sets W,
then form a local base for the weak*-topology of X* at A, and the
sets W, form a local base for the product topology 7 of P at A,. Since
K« P n X*, we have

WinK=W nK.

This proves (a).

Next, suppose f, 1s in the z-closure of K. Choose x € X, y € X,
scalars « and f, and ¢ > 0. The set of all fe P such that | f —f, | < ¢
at x, at y, and at ax + fy is a t-neighborhood of f,. Therefore K
contains such an f. Since this f'is linear, we have

Joloex + By) — of o(x) — Bfo(¥)
= (fo —SfNax + By) + a(f — folx) + B(f — foly),

so that
| folex + By) — afo(x) — Bfo(W)| < (1 + || + |8 ])e.

Since ¢ was arbitrary, we see that f, is linear. Finally, if x € V and
¢ > 0, the same argument shows that there is an fe K such that
| f(x) — fo(x)] < &. Since | f(x)| < 1, by the definition of K, it follows
that | fo(x)| < 1. We conclude that f, € K. This proves (b) and hence
the theorem. /1]

When X is separable (i.e, when there is a countable dense set in X),
then the conclusion of the Banach-Alaoglu theorem can be strengthened by
combining it with the following fact:
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316 Theorem If X is a separable topological vector space, if K = X*,
and if K is weak*-compact, then K is metrizable, in the weak*-topology.

Warning: It does not follow that X* itself is metrizable in its weak*-
topology. In fact, this is false whenever X is an infinite-dimensional Banach
space. See Exercise 135.

PROOF. Let {x,} be a countable dense set in X. Put f(A) = Ax,, for
A € X*. Each f, i1s weak*-continuous, by the definition of the weak*-
topology. If f(A) =f(A’) for all n, then Ax, = A’x, for all n, which
implies that A = A’, since both are continuous on X and coincide on
a dense set.

Thus {f,} is a countable family of continuous functions that
separates points on X *, The metrizability of K now follows from (c) of
Section 3.8. /11

317 Theorem If V is a neighborhood of 0 in a separable topological
vector space X, and if {A,} is a sequence in X* such that

|A, x| <1 (xeV,n=1,23,..)
then there is a subsequence {A,} and there isa A € X* such that

Ax = lim A x (x € X).

i—+ oo

In other words, the polar of V is sequentially compact in the weak*-
topology.

PROOF. Combine Theorems 3.15 and 3.16. /1

The next application of the Banach-Alaoglu theorem involves the
Hahn-Banach theorem and a category argument.

3.18 Theorem In a locally convex space X, every weakly bounded set is
originally bounded, and vice versa.

Part (d) of Exercise 5 shows that the local convexity of X cannot be
omitted from the hypotheses.

PROOF. Since every weak neighborhood of 0 in X is an original neigh-
borhood of 0, it is obvious from the definition of “bounded” that
every originally bounded subset of X is weakly bounded. The con-
verse is the nontrivial part of the theorem.
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Suppose E = X i1s weakly bounded and U is an original neigh-
borhood of 0 in X,

Since X i1s locally convex, there is a convex, balanced, original
neighborhood V of 0 in X such that V< U. Let K = X* be the polar

of V:

(1) K={AeX* |Ax|<1 forall xeV}.
We claim that

(2) V={xeX:|Ax| <1 forall AeK}.

It is clear that V is a subset of the right side of (2) and hence so is ¥,
since the right side of (2) is closed. Suppose x, € X but x, ¢ V.
Theorem 3.7 (with Vin place of B) then shows that Ax, > 1 for some
A € K. This proves (2).

Since E is weakly bounded, there corresponds to each A € X* a
number y(A) < oo such that

(3) |Ax| <¥(A)  (x € E).

Since K is convex and weak*-compact (Theorem 3.15) and since the
functions A — Ax are weak*-continuous, we can apply Theorem 2.9
(with X* in place of X and the scalar field in place of Y) to conclude
from (3) that there is a constant y < oo such that

4) |Ax| <y  (xe E AeK).

Now (2) and (4) show that y !x e Ve U for all x € E. Since V is
balanced,

(5) EctVetU  (t>1y).

Thus E is originally bounded. /11

Corollary. If X is a normed space, if E = X, and if
(6) sup |Ax| < o0 (A e X%

xekE

then there exists y < oo such that

(7 Ixl <y  (x€E)

PROOF. Normed spaces are locally convex; (6) says that E is weakly
bounded, and (7) says that E is originally bounded. /1

We now turn to the question: What can one say about the convex
hull H of a compact set K? Even in a Hilbert space, H need not be closed,

. . . . —
and there are citnatione 1in which H i1e not comna
1A% ULRIWD W CAlw JILWCALINVLLY 1) FYRIAWIL A2 1D 11VL UULLJ.P(.I
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Fréchet spaces the latter pathology does not occur (Theorem 3.20). The
proof of this will depend on the fact that a subset of a complete metric
space i1s compact if and only if it is closed and totally bounded (Appendix
Ad),

3.19 Definitions (a) If X is a vector space and E < X, the convex hull
of E will be denoted by co(E). Recall that co(E) is the intersection of all
conveXx subsets of X which contain E. Equivalently, co(E) is the set of all
finite convex combinations of members of E.

() If X is a topological vector space and E < X, the closed convex
hull of E, written co(E), is the closure of co(E).

(¢) A subset E of a metric space X is said to be totally bounded if E
lies 1n the union of finitely many open balls of radius ¢, for every ¢ > 0.

The same concept can be defined in any topological vector space,
metrizable or not:

(d) A set E in a topological vector space X is said to be totally

bounded if to every neighborhood V of 0 in X corresponds a finite set F
suchthat Ec F + V.

If X happens to be a metrizable topological vector space, then these
two notions of total boundedness coincide, provided we restrict ourselves to
invariant metrics that are compatible with the topology of X. (The proof of
this is as in Section 1.25.)

3.20 Theorem

(@ If A,, ..., A, are compact convex sets in a topological vector space X,
then co(A, v '+ u A,)is compact.

(b) If X is a locally convex topological vector space and E = X is totally
bounded, then co(E) is totally bounded.

(¢) If X is a Frechet space and K < X is compact, then co(K) is compact.
(d) If K is a compact set in R", then co(K) is compact.

PROOF. (a) Let S be the simplex in R” consisting of all s = (sy, --., S,)
with 5,>0, s;+--+s,=1. Put A=A4, x--- x A,. Define
f:Sx A— X by

(1) fls, ) =sa, + " +5,a,

and put K = f(§ x A).
It is clear that K is compact and that K < co(4; v -+ U A,).
We will see that this inclusion is actually an equality.



CHAPTER 3: CONVEXITY 73

If (s,a)and (t, b)arein Sx Aand f x>0, >0, a+f =1,
then

() oaf (s, @) + Bf (t, b) = f(u, ¢),
where u = as + ft € S and ¢ € A, because

as; a, + ft; b,

€A
as; + Bt

3) ¢ = . (<i<n).

This shows that K is convex. Since A; « K for each i [take s;, = 1 in
(1), s; = 0 for j # i], the convexity of K implies that co(4, v -+ U
A,) c K. This proves (a).

(b) Let U be a neighborhood of 0 in X. Choose a convex neigh-
borhood V of 0 in X such that V + V < U. Then E< F + V for
some finite set F < X. Hence E < co(F) + V. The latter set is convex.
It follows that

4) co(E)yc co(F)+ V.

But co(F) is compact [a special case of (ag)], and therefore co(F) <
F, + V for some finite set F;, = X. Thus

) cEyc F, +V +V cF, +U.

Since U was arbitrary, co(E) is totally bounded.

(¢) Closures of totally bounded sets are totally bounded in every
metric space, and hence are compact in every complete metric space
(Appendix A4). So if K is compact in a Fréchet space, then K is obvi-
ously totally bounded; hence co(K) is totally bounded, by (b), and

| NSO SN

therefore co{K) is compact.

(d) Let S be the simplex in R"*! consisting of all t = (¢, ...,
t,+1) With ;>0 and ) ;= 1. Let K be compact, K = R". By the
proposition that follows, x € co(K) if and only if
(6) X=Xy 41X+
for some t € S and x; € K (1 < i <n + 1). In other words, co(K) 1s the
image of § x K"*! under the continuous mapping
(7) (6 Xps ooy Xpp 1) D Xy + 7+ Ly 1 Xy g

Hence co(K) is compact. 1

Proposition. If E < R" and x € co(E), then x lies in the convex hull of
some subset of E which contains at most n + 1 points.

PROOF. It is enough to show that if k> n and x=>'"" t,x; is a
convex combination of some k + 1 vectors x; € R", then x is actually a
convex combination of some k of these vectors.
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Assume, with no loss of generality, that t;, > 0for 1 <i<k + L
The null space of the linear map

k+1 k+1
@) (‘11’---aak+1)“’(zl:aixn El:ai)a
which sends R**! into R" x R, has positive dimension, since k > n.
Hence there exists (a,, ..., @, +,), with some a; # 0, so that Z a;x; =0
and Z a;, = 0. Since t; > 0 for all i, there is a constant 4 such that
| Aa;| <t; for all i and Aa; = ¢; for at least one j. Setting ¢; = t; — Aa,,
we conclude that x = ) ¢;x; and that at least one ¢ ; 1s 0; note also
that  ¢;=) t; =1 and that ¢, > 0 for all i. /1

The following analogue of part (b) of the separation theorem 3.4 will
be used in the proof of the Krein-Milman theorem.

3.21 Theorem Suppose X is a topological vector space on which X*
separates points. Suppose A and B are disjoint, nonempty, compact, convex
sets in X. Then there exists A € X* such that

(1) sup Re Ax < inf Re Ay.

xeA yeB

Note that part of the hypothesis is weaker than in (b) of Theorem 3.4
(since local convexity of X implies that X* separates points on X); to make
up for this, it is now assumed that both 4 and B are compact.

PROOF. Let X, be X with its weak topology. The sets 4 and B are
evidently compact in X . They are aiso ciosed in X, (because X, i1s a
Hausdorff space). Since X, is locally convex, (b) of Theorem 3.4 can
be applied to X, in place of X; it gives us a A € (X, )* that satisfies
(1). But we saw in Section 3.11 (as a consequence of Theorem 3.10)
that (X, )* = X* [/

3.22 Extreme points Let K be a subset of a vector space X. A non-
empty set S < K is called an extreme set of K if no point of S is an internal
point of any line interval whose end points are in K, except when both end
points are in S. Analytically, the condition can be expressed as follows: If
xeK,yeK,0<t<1,and

(I —px+tyels,

thenx € Sand y € S.

The extreme points of K are the extreme sets that consist of just one
point.

The set of all extreme points of K will be denoted by E(K).
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The following two theorems show that under certain conditions E(K)
is quite a large set.

3.23 The Krein-Milman theorem Suppose X is a topological vector
space on which X* separates points. If K is a nonempty compact convex set in
X, then K is the closed convex hull of the set of its extreme points.,

In symbols, K = co( E(K)).

PROOF. Let 2 be the collection of all compact extreme sets of K. Since
K e 2, 2 # (5. We shall use the following two properties of £:

(@) The intersection S of any nonempty subcollection of P is a member
of P, unless S = .

b)) IfSe P Ae X* uisthe maximum of Re A on S, and
Sa={xe S:Re Ax = u},
then S, € 2.

The proof of (a) is immediate. To prove (b), suppose tx +
(1—ty=zeS,, xeK,ye K, 0<t <1 Sinceze S and § € &, we
have x € Sand y € S. Hence Re Ax < 4, Re Ay < u. Since Re Az = u
and A is linear, we conclude: Re Ax = 4 = Re Ay. Hence x € §,, and
y € S, . This proves (b).

Choose some S € 2. Let 2’ be the collection of all members of
# that are subsets of S. Since § € ', 2’ is not empty. Partially order
Z' by set inclusion, let Q be a maximal totally ordered subcollection
of ', and let M be the intersection of all members of Q. Since Q is
a collection of compact sets with the finite intersection property,
M # . By (a), M € 2. The maximality of Q implies that no proper
subset of M belongs to 2. It now follows from (b) that every A e X*
is constant on M. Since X* separates points on X, M has only one
point. Therefore M is an extreme point of K.

We have now proved that

(1) EK)n S+

for every S € 2. In other words, every compact extreme set of K con-
tains on extreme point of K.

Since K is compact and convex (the assumed convexity of K will
now be used for the first time), we have

@) Zo(E(K)) < K

and this shows that ¢o(E(K)) is compact.
Assume, to reach a contradiction, that some x, € K is not
in 7o(E(K)). Theorem 3.21 furnishes then a A e X* such that
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Re Ax < Re Ax, for every x € co(E(K)). If K, is defined as in (b), then
K € 2. Our choice of A shows that K, is disjoint from ¢o( E(K)), and
this contradicts (1). /11

Remark. The convexity of K was used only to show that co(E(K)) is
compact. If X were assumed to be locally convex, the compactness of
co(E(K)) would not be needed, since one could use (b) of Theorem 3.4
in place of Theorem 3.21. The above argument proves then that K <
co(E(K)). The following version of the Krein-Milman theorem is thus
obtained:

324 Theorem If K is a compact subset of a locally convex space then
K < co(E(K)).

Equivalently, ¢o(K) = co(E(K)).
It may happen in this situation that co(K) has extreme points which

are not in K. (See Exercise 33.) The next theorem shows that this pathology
cannot occur if ¢o(K) is compact. Therefore it occurs in no Fréchet space,
by (c¢) of Theorem 3.20.

3.25 Milman’s theorem If K is a compact set in a locally convex space
X, and if co(K) is also compact, then every extreme point of co(K) lies in K.

PROOF. Assume that some extreme point p of ¢o(K) is not in K. Then
there is a convex balanced neighborhood V of 0 in X such that

1) P+V)AK=0.
Choose x;, ..., x;in K so that K < { )] (x; + V). Each set
2) A=K +V) (<i<n

is convex and also compact, since 4; < co(K). Also, K < 4, U --- U
A, . Part (a) of Theorem 3.20 shows therefore that

(3) co(Kycco(A; v U A)=co(A; U - U A

But the opposite inclusion holds also, because A; < co(K) for each i.
Thus

4) co(K)=co(A; v -~ U A)).

In particular, p = t;y, + -+ + tyyy, Where each y; lies in some
A, each t; is positive, and ) ¢; = 1. The grouping

[y, +  + NN
t2+"'+lN

(5) p=ty1 +{ -1y
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exhibits p as a convex combination of two points of ¢o(K), by (4).
Since p 1s an extreme point of ¢o(K), we conclude from (5) that y, = p.
Thus, for some i,

(6) ped,cx,+ VK +V,

which contradicts (1). [Note that 4; < x; + ¥, by (2), because V is
convex. | /111

Vector-Valued Integration

Sometimes it is desirable to be able to integrate functions f that are defined
on some measure space Q (with a real or complex measure u) and whose
values lie in some topological vector space X. The first problem is to associ-
ate with these data a vector in X that deserves to be called

ffd#,
Q

i.e., which has at least some of the properties that integrals usually have.
For instance, the equation

A(deu)=f(/\f)du
Q Q

ought to hold for every A € X*, because it does hold for sums, and because
integrals are (or ought to be) limits of sums in some sense or other. In fact,
our definition will be based on this single requirement.

Many other approaches to vector-valued integration have been
studied in great detail; in some of these, the integrals are defined more
directly as limits of sums (see Exercise 23).

3.26 Definition Suppose p is a measure on a measure space Q, X is a
topological vector space on which X* separates points, and f 1s a function
from Q into X such that the scalar functions Af are integrable with respect
to u, for every A € X*; note that Afis defined by

(1) A} =Afl@) (g€

If there exists a vector y € X such that

(2) Ay = j (Af) dy
Q

for every A € X*, then we define

3) [‘fdlu=y.

Vi
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Remarks. It is clear that there is at most one such y, because X*
separates points on X. Thus there is no uniqueness problem.

Existence will be proved only in the rather special case (sufficient
for many applications) in which @ is compact and f is continuous. In
that case, f(Q) is compact, and the only other requirement that will be
imposed is that the closed convex hull of f(Q) should be compact. By
Theorem 3.20, this additional requirement is automatically satisfied
when X is a Fréchet space.

Recall that a Borel measure on a compact (or locally compact) Haus-
dorff space Q is a measure defined on the g-algebra of all Borel sets in Q;
this is the smallest g-algebra that contains all open subsets of Q. A probabil-
ity measure is a positive measure of total mass 1.

3.27 Theorem Suppose

(@) X is a topological vector space on which X * separates points, and
(b) uis a Borel probability measure on a compact Hausdorff space Q.

If f: Q0 — X is continuous and if co(f(Q)) is compact in X, then the
integral

(1) y=ffd#
Q

exists, in the sense of Definition 3.26,
Moreover, y € co(f(Q)).

Remark. If v is any positive Borel measure on @, then some scalar
multiple of v is a probability measure. The theorem therefore holds
(except for its last sentence) with v in place of u. It can then be
extended to real-valued Borel measures (by the Jordan decomposition
theorem) and (if the scalar field of X is €) to complex ones.

Exercise 24 gives another generalization.

PROOF. Regard X as a real vector space. Put H = co(f(Q2)). We have
to prove that there exists y € H such that

@) Ay = L(Af ) du

for every A € X*.
Let L = {A,, ..., A,} be a finite subset of X* Let E, be the set
of all y € H that satisfy (2) for every A € L. Each E, is closed (by the

continuity of A) and is therefore compact, since H is compact. If no E,
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is empty, the collection of all E; has the finite intersection property.
The intersection of all E; is therefore not empty, and any y in it
satisfies (2) for every A € X*. It is therefore enough to prove E; # .

Regard L = (A4, -.., A,) as a mapping from X into R", and put
K = L(f(Q)). Define

(3) m; = f AS)ydp  (1<i<n).
[

We claim that the point m = (m,, ..., m,) lies in the convex hull of K.

If t =(ty,..., t,) € R" is not in this hull, then [by Theorem 3.20
and (b) of Theorem 3.4 and the known form of the linear functionals
on R"] there are real numbers ¢, ..., ¢, such that

4) z": ciu; < zn: C; t;
=1 i=1
ifu=(u,,...,u,) € K. Hence
(5) Z A f(@ < Zl at;  (ge Q)
i=1 i=

Since p is a probability measure, integration of the left side of (5) gives
Y em; <Y ¢t;. Thus t #m.

This shows that m lies in the convex hull of K. Since
K = L(f(Q)) and L is linear, 1t follows that m = Ly for some y in the
convex hull H of f(Q). For this y we have

£ A as _ oaas A £y J0 (1 = o )
(©) Ny =m; = J Wi jpap Usiz=hn
Q
Hence y € E; . This completes the proof. /11

3.28 Theorem Suppose

(@) X is a topological vector space on which X* separates points,
(b) Q is a compact subset of X, and

the closed convex hull H of Q is compact.

Then y € H if and only if there is a reqular Borel probability measure u

on Q such that

y= f x dp(x).
Q

Remarks. The integral is to be understood as in Definition 3.26, with
fixy = x
J ) b
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Recall that a positive Borel measure on Q is said to be regular if
(2} E) = sup {(K): K < E} = inf {4(G): E = G}

for every Borel set E < Q, where K ranges over the compact subsets
of E and G ranges over the open supersets of E.

The integral (1) represents every y € H as a “weighted average”
of 0, or as the “center of mass”™ of a certain unit mass distributed
over Q.

We stress once more that (c) follows from (b) if X is a Fréchet
space.

PROOF. Regard X again as a real vector space. Let C(Q) be the Banach
space of all real continuous functions on @, with the supremum norm.
The Riesz representation theorem identifies the dual space C(Q)* with
the space of all real Borel measures on @ that are differences of
regular positive ones. With this identification in mind, we define a
mapping

3) ¢: C(Q* - X

by

(4) ) = Jx dpx).
Q

Let P be the set of all regular Borel probability measures on Q.
The theorem asserts that ¢(P) = A

For each x € @, the unit mass 4, concentrated at x belongs to P.
Since qb(éx)m x, we see that Q < ¢(P). Since ¢ is linear and P is

t fallawe that H —~ AP whara IJ tha 2R ) | T,
UUIIVUA, lL IUIIU YYD L].lal. AL = W\l }, wiliiviv (1 ID LllU UUI].VUA llu].l. U]. z JJ)’

Theorem 3.27, ¢(P) = H. Therefore all that remains to be done is to
show that ¢(P)is closed in X.

This is a consequence of the following two facts:

(i) P is weak*-compact in C(Q)*.

(ii) The mapping ¢ defined by (4) is continuous if C(Q)* is given its
weak*-topology and if X is given its weak topology.

Once we have (i) and (ii), it follows that ¢(P) is weakly compact,
hence weakly closed, and since weakly closed sets are strongly closed,
we have the desired conclusiosn.

To prove (i), note that
i
J hdui <1if|h] < 1}
Q

(5) Pc {.u:
and that this larger set is weak*-compact, by the Banach-Alaoglu
theorem. It is therefore enough to show that P is weak*-closed.
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If h e C(Q)and h = 0, put

(6) Ek={,uzjhdp20}.
e

Since p— [ hdu is continuous, by the definition of the weak*-
topology, each E, is weak*-closed. So is the set

7 E={p:]ldu=l}.
Q

Since P is the intersection of E and the sets E,, P is weak*-closcd.

To prove (ii) it is enough to prove that ¢ is continuous at ine
origin, since ¢ is linear. Every weak neighborhood of 0 in X contains
a set of the form

(8) W={yeX:|A,y|<r, for 1<i<n},
where A; € X* and r; > 0. The restrictions of the A, to Q lie in C(Q).
Hence

\
JAidJu!<ri for lsisn}
Q

©) V= {# e C(Q)*:

is a weak*-neighborhood of 0 in C(Q)*. But

(10) f A dp = A,-( f x d#(X)) = A ln),

e Q
by Definition 3.26. It follows from (8), (9), and (10) that ¢(V) < W.
Hence ¢ is continuous. /1]

The following simple inequality sharpens the last assertion in the
statement of Theorem 3.27.

3.29 Theorem Suppose Q is a compact Hausdorff space, ¥ is a Banach
space, f: Q — X is continuous, and u is a positive Borel measure v Q. Then

deu Sflfll dy.
Q Q

PROOF. Put y = [ fdu. By the corollary to Thecrem 3.3, there is a
A € X* such that Ay = ||yl and |Ax| < | x] for all x € X. In particu-
lar,

IAfS) < 1S9
for all s € Q. By Theorem 3.27, it follows that

-~

Iyl = Ay = { A du < | 171 du 0

o JQ
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Holomorphic Functions

In the study of Banach algebras, as well as in some other contexts, it is
useful to enlarge the concept of holomorphic function from complex-valued
ones to vector-valued ones. (Of course, one can also generalize the domains,
by going from ¢ to " and even beyond. But this is another story.) There
are at least two very natural definitions of “holomorphic™ available in this
general setting, a “weak ” one and a “strong” one. They turn out to define
the same class of functions if the values are assumed to lie in a Fréchet
space.

3.30 Definition Let Q be an open set in ¢ and let X be a complex
topological vector space.

(@) A function f: Q — X is said to be weakly holomorphic in Q if Af is
holomorphic in the ordinary sense for every A € X*.

(b) A function f: Q — X 1s said to be strongly holomorphic in Q if
o I =SE)

W —2z

w2z

exists (in the topology of X) for every z € Q.

Note that the above quotient is the product of the scalar (w — z)~!
and the vector f(w) — f(z) in X.

The continuity of the functionals A that occur in (a) makes it obvious
that every strongly holomorphic function is weakly holomorphic. The con-
verse is true when X is a Fréchet space, but it is far from obvious. (Recall

that wr—-nl(lv convergent seguences may very well fail to converge nrmnnqllv )

The Cauchy theorem will play an important role in this proof, as w1ll
Theorem 3.18.

The index of a point z € ¢ with respect to a closed path I" that does
not pass through z will be denoted by Indy (z). We recall that

1
Indr (Z) = —2_1 [ —
r

All paths considered here and later are assumed to be piecewise contin-
uously differentiable, or at least rectifiable.

331 Theorem Let Q be open in ¢, let X be a complex Fréchet space,
and assume that

[ Q-X

is weakly holomorphic. The following conclusions hold :

(a) fis strongly continuous in Q.
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(b) The Cauchy theorem and the Cauchy formula hold: If T is a closed path
in Q such that Indp (w) = O for every w ¢ Q, then

(1) ff(C) ¢ =0,
r

and
1

(2) f(2)=§—.J(C—Z)-1f(C) da
i

if z€ Qand Indp (z) = 1. If I, and I, are closed paths in Q such that
Indr, (W) = Indp, (W)

for every w ¢ Q, then

(3) J f©Q) dg =J f(©) dc.
I'y I'z

(¢) fis strongly holomorphic in Q.

The integrals in (b) are to be understood in the sense of Theorem 3.27.
Either one can regard d{ as a complex measure on the range of I' (a
compact subset of ), or one can parametrize I" and integrate with respect
to Lebesgue measure on a compact interval in R.

4 A ={zeC:|z|<r}

Then A,, < Q for some r > 0. Let I' be the positively oriented bound-
ary of A,,.
Fix A € X*. Since Afis holomorphic,

(A2 — (A0 _ 1 f A 4

z 2mi

r (€ —z)

if 0<|z|<2r. Let M(A) be the maximum of |Af| on A,,. If
0 <jz| <r, it follows that

(5)

(6) |27 'ALf(2) = F(0)]] < v~ 'M(A).
The set of all quotients
(7 {i@:—f@:oqﬂgr}

A - P
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is therefore weakly bounded in X. By Theorem 3.18, this set is also
strongly bounded. Thus if V is any (strong) neighborhood of 0 in X,
there exists t < oo such that

(8) f(z) —f(0) e ztV O<|z|<r)

Consequently, f(z) — f(0) strongly, as z — 0. [It may be of some inter-
est to observe that the proof of (a) used only the local convexity of X.
Neither metrizability nor completeness has played a role so far.]

This was the crux of the matter. The rest is now almost auto-
matic.

(b) By (a) and Theorem 3.27, the integrals in (1) to (3) exist.
These three formulas are correct (by the theory of ordinary holo-
morphic functions) if f is replaced in them by Af, where A is any
member of X*. The formulas are therefore correct as stated, by Defi-
nition 3.26.

(¢) Assume, as in the proof of (a), that A,, = Q, and choose I
as in (a). Define

1
©) y=s5- J (2@ de.
T Jr
The Cauchy formula (2) shows, after a small computation, that
0
(10) 10-10_ ...
zZ

ifO iz« . wher~

1

(1) 9(z) = ! [2re®(2re’® — 2)] = f(2re'®) db.

1
-

2‘43

)
b

Let V be a convex balanced neighborhood of 0 in X. Put

= {f(0): |{| = 2r}. Then K is compact, so that K < tV. for some

t <oo.If s=tr~2and |z| <r, it follows that the integrand (11) lies in
sV for every 6. Thus g(z) € sVif |z| < r. The left side of (10) therefore
converges strongly to y, as z — 0. /11

The following extension of Liouville’s theorem concerning bounded

entire functions does not even depend on Theorem 3.31. It can be used In
the study of spectra in Banach algebras. (See Exercise 10, Chapter 10.)

3.32

Theorem Suppose X is a complex topological vector space on which

X* separates points. Suppose f: ¢ — X is weakly holomorphic and () is a
weakly bounded subset of X. Thenf is constant.
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PROOF. For every A € X*, Af is a bounded (complex-valued) entire
function. If z € ¢, it follows from Liouville’s theorem that

Af(z) = Af(0).

Since X* separates points on X, this implies f(z) = f(0), for every
ze (. /17

Part (d) of Exercise 5 describes a weakly bounded set which is not
originally bounded, in an F-space X on which X* separates points.
Compare with Theorem 3.18.

Exercises

1. Call a set H < R" a hyperplane if there exist real numbers a,, ..., a,, ¢ (with
a; # 0 for at least one i) such that H consists of all points x = (x,, ..., x,) that
satisfy Y a;x; = c.

Suppose E is a convex set in R", with nonempty interior, and y is a
boundary point of E. Prove that there is a hyperplane H such that y € H and E
lies entirely on one side of H. (State the conclusion more precisely.) Suggestion:
Suppose 0 is an interior point of E, let M be the one-dimensional subspace that
contains y, and apply Theorem 3.2,

2. Suppose IZ = X[~ 1, 1]), with respect to Lebesgue measure. For each scalar «,
let E, be the set of all continuous functions f on [—1, 1] such that f(0) = «.
Show that each E, is convex and that each is dense in I?. Thus E, and E, are
disjoint convex sets (if « # f) which cannot be separated by any continuous
linear functiona! A on 2. Hint: What is A(Ea}q

3. Suppose X is a real vector space (without topology). Call a point x, € A — X an
internal point of A if A — x, 1s an absorbing set.

(a) Suppose A and B are disjoint convex sets in X, and 4 has an internal point.
Prove that there is a nonconstant linear functional A on X such that
A(A) n~ A(B) contains at most one point. (The proof is similar to that of
Theorem 3.4.)

(b) Show (with X = R?, for example) that it may not be possible to have A(A)
and A(B) disjoint, under the hypotheses of (a).

4. Let /* be the space of all real bounded functions x on the positive integers. Let
7 be the translation operator defined on £ by the equation

(tx)(n) = x(n + 1) n=1,23..)

Prove that there exists a linear functional A on % (called a Banach limit) such
that

(@) Atx = Ax, and

(b) lim inf x(n) < Ax < lim sup x(n)

for everv x e /%.

T
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Suggestion: Define

X))+ -+ x(n)
a n

A x

n

M={xe/": lim A,x = Ax exists}

n-+o0

p(x) =lim sup A, x
n—*+ o0
and apply Theorem 3.2.
For 0 < p < oo, let £7 be the space of all functions x (real or complex, as the

case may be) on the positive integers, such that

Z [ x(m|P < oo.
n=1
For 1 < p < oo, define ||x|, = {} | x(n)|?}'/”, and define || x|, = sup, | x(n)|.
(@) Assume | < p < oo, Prove that | x|/, and ||x||,, make #? and /* into Banach
spaces. If p~! + g~ ! = 1, prove that (£7)* = #4, in the following sense: There
is a one-to-one correspondence A « y between (£7)* and ¢4, given by

Ax =Y x(mymn)  (x € /7).

(b) Assume 1 < p < oo and prove that /? contains sequences that converge
weakly but not strongly.

(c) On the other hand, prove that every weakly convergent sequence in ¢! con-
verges strongly, in spite of the fact that the weak topology of £! is different
from its strong topology (which is induced by the norm).

(d) If 0 < p < 1, prove that /*, metrized by

N =
7

1
s Y s

Al
a{x

i1[~18

| x(m) — Y

n=1
is a locally bounded F-space which is not locally convex but that (/°)*
nevertheless separates points on #7. (Thus there are many convex open sets
in /7 but not enough to form a base for its topology.) Show that (£7)* = />,
in the same sense as in (a). Show also that the set of all x with £|x(n)| < 1is
weakly bounded but not originally bounded.

(¢) For 0 < p <1, let 7, be the weak*-topology induced on #® by £?; see (a) and
(d. If 0 <p<r<1, show that v, and 7, are different topologies (is one
weaker than the other?) but that they induce the same topology on each
norm-bounded subset of /*. Hint: The norm-closed unit ball of £ is
weak*-compact.

Put f,(t) =™ (—m<t<m); let I! =I’(—n, w), with respect to Lebesgue

measure. If | < p < o0, prove that f, —» 0 weakly in I, but not strongly.

L*([0, 1]) has its norm topology (]| f]| . is the essential supremum of | /| ) and its

weak*-topology as the dual of ['. Show that C, the space of all continuous

functions on [0, 1], is dense in I* in one of these topologies but not in the
other. (Compare with the corollaries to Theorem 3.12.) Show the same with

“clogsed” in place of “dense.”
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Let C be the Banach space of all complex continuous functions on [0, 1], with
the supremum norm. Let B be the closed unit ball of C. Show that there exist
continuous linear functionals A on C for which A(B) is an open subset of the
complex plane; in particular, | A | attains no maximum on B,

Let E — I’(—m, 7) be the set of all functions

fm. "(t) — eimt + meint’

where m, n are integers and 0 < m < n. Let E, be the set of all g € I? such that

some sequence in E converges weakly to g. (E, is called the weak sequential

closure of E.)

(a) Find all g € E,.

(b) Find all g in the weak closure E,, of E.

(c) Show that 0 € E,, but 0 is not in E,, although 0 lies in the weak sequential
closure of E,.

This example shows that a weak sequential closure need not be weakly
sequentially closed. The passage from a set to its weak sequential closure is
therefore not a closure operation, in the sense in which that term is usually used
in topology. (See also Exercise 28.)

Represent ¢! as the space of all real functions x on S = {(m, n): m> 1, n> 1},
such that

[xl]y =Y |x(m, n)| < co.

Let ¢, be the space of all real functions y on § such that y(m, n)—> 0 as
m + n— oo, with norm [ly|| . = sup | y(m, n)|.

Let M be the subspace of ¢! consisting of all x € £ that satisfly the equa-
tions

mx(m, 1) = > x(m, n) m=1,2,3,..).
n=2

(a) Prove that ! = (¢,)*. (See also Exercise 24, Chapter 4.)

(b) Prove that M is a norm-closed subspace of /.

(c) Prove that M is weak*-dense in /' [relative to the weak*-topology given
by (a)].

(d) Let B be the norm-closed unit ball of #'. In spite of (¢), prove that the
weak*-closure of M ~ B contains no ball. Suggestion: If 6 > 0 and m > 2/0,
then

x|

o
| x(m, )| < — <=
m 2

if x e M n B, although x(m, 1) = J for some x € 6B. Thus 4B is not in the
weak*-closure of M n B. Extend this to balls with other centers.

(e) Put x4(m, 1) = m™2, xo(m, n) = 0 when n > 2. Prove that no sequence in M is
weak*-convergent to x,, in spite of (c). Hint: Weak*-convergence of {x;} to
xo implies that x(m, n) — xo(m, n) for all m, n, as j — co, and that {||x;{|,} is
bounded.

Let X be an infinite-dimensional Fréchet space. Prove that X*, with its weak*-
topology, is of the first category in itself.

SUpAI R Yy 4 1 A% ALLO% MRl Y Lo
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Show that the norm-closed unit ball of ¢, is not weakly compact; recall that
(co)* = £ (Exercise 10).
Put f(t) = N1 Y | ™ Prove that fy — 0 weakly in I2(—=, 7).
By Theorem 3.13, some sequence of convex combinations of the fy con-

verges to 0 in the IZ-norm. Find such a sequence. Show that gy = N~ !(f, + ---
+ fy) will not do.
(@) Suppose Q is a locally compact Hausdorff space. For each compact K < Q

define a seminorm py on C(), the space of all complex continuous functions

on Q, by
px(f) =sup {|f(x)|: x € K}.

Give C(Q) the topology induced by this collection of seminorms. Prove that
to every A e C()* correspond a compact K < Q and a complex Borel
measure y on K such that

Af = ffdu [/ e CQ]].

(b) Suppose Q is an open set in ¢. Find a countable collection I" of measures
with compact support in Q such that H(Q) (the space of all holomorphic
functions in Q) consists of exactly those f € C(Q) which satisfy | fdu = 0 for
everyuel.

Let X be a topological vector space on which X* separates paints. Prove that

the weak*-topology of X* is metrizable if and only if X has a finite or countable

Hamel basis. (See Exercise 1, Chapter 2 for the definition.)

. Prove that the closed unit ball of I! (relative to Lebesgue measure on the unit

interval) has no extreme points but that every point on the “surface” of the unit
ball in IZ (1 < p < o0) is an extreme point of the ball.

Determine the extreme points of the closed unit ball of C, the space of all con-
tinuous functions on the unit interval, with the supremum norm. (The answer
depends on the choice of the scalar field.)

Let K be the smallest convex set in R? that contains the points (1, 0, 1), (1, O,
— 1}, and (cos 6, sin 6, 0), for 0 < 6 < 2n. Show that K is compact but that the
set of all extreme points of K is not compact. Does such an example exist in R*?
Suppose K is a compact convex set in R". Prove that every x € K is a convex
combination of at most n + 1 extreme points of K. Suggestion: Use induction
on n. Draw a line from some extreme point of K through x to where it leaves K.
Use Exercise 1.

Let {u,,u,,u5,...} be a sequence of pairwise orthogonal unit vectors in a
Hilbert space. Let K consist of the vectors 0 and n™'u, (n > 1). Show that (a) K
is compact; (b) co(K) is bounded; (c) co(K) is not closed. Find all extreme points
of co(K).

If 0 <p<1, every f € I? (except f = 0) is the arithmetic mean of two functions
whose distance from O is less than that of f. (See Section 1.47.) Use this to
construct an explicit example of a countable compact set K in I? (with O as its
only limit point) which has no extreme point.

If 0 < p< 1, show that /? contains a compact set K whose convex hull is

.

unbounded. This happens in spite of the fact that (£7)* separates points on /7;
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see Exercise 5. Suggestion: Define x, € £ by
x,(n) =nP~ 1, x,(m)=0 it m+# n.
Let K consist of 0, x,, X5, X5,.... If
In=N"1x + -+ xp),

show that {yy} is unbounded in 7.

Suppose p is a Borel probability measure on a compact Hausdorff space Q, X is
a Fréchet space, and f: @ — X is continuous. A partition of Q is, by definition, a
finite collection of disjoint Borel subsets of Q whose union 1s Q. Prove that to
every neighborhood V of 0 in X there corresponds a partition {E,} such that the
difference

z= ffdu — 2 WE)f(s)
fe) i

lies in V for every choice of s; € E;. (This exhibits the integral as a strong limit
of “Riemann sums.”) Suggestion: Take V convex and balanced. If A € X* and if
[Ax| < 1 for every x € V, then | Az| < 1, provided that the sets E; are chosen so
that f(s) — f(¢) € V whenever s and ¢ lie in the same E,.

In addition to the hypotheses of Theorem 3.27, assume that T is a continuous
linear mapping of X into a topological vector space Y on which Y* separates
points, and prove that

Tffdu=f(Tf) du.
¢ Q

Hint: AT € X*forevery A € Y*
Let E be the set of all extreme points of a compact set K in a topological vector

space X on which X* separates points. Prove that to every y € K corresponds a
regular Borel probability measure u on Q = E such that

y= fx du(x).
Q

. Suppose Q is a region in ¢, X is a Fréchet space, and /: Q - X is holomorphic.

(a) State and prove a theorem concerning the power series representation of f,
that is, concerning the formulaf(z) = } (z — a)"c,, where ¢, € X.

(b) Generalize Morera’s theorem to X-valued holomorphic functions.

(c) For a sequence of complex holomorphic functions in Q, uniform con-
vergence on compact subsets of @ implies that the limit is holomorphic.
Does this generalize to X-valued holomorphic functions?

Suppose {«;} is a bounded set of distinct complex numbers, f(z) = 35’ ¢, z" is an

entire function with every ¢, 7 0, and

gdz) = fla;2).

Prove that the vector space generated by the functions g, is dense in the Fréchet
space H({) defined in Section 1.45.
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Suggestion: Assume p is a measure with compact support such that
j g; du = 0 for all . Put

P(w) = ff (wz) du(z)  (w € ().

Prove that ¢(w) = 0 for all w. Deduce that | z" du(z) =0forn=1,2,3,.... Use

Exercise 14.

Describe the closed subspace of H({) generated by the functions g, if some

of the ¢, are 0.

Suppose X is a Fréchet space (or, more generally, a metrizable locally convex

space). Prove the following statements:

(a) X* is the union of countably many weak*-compact sets E,.

(b) If X is separable, each E, is metrizable. The weak*-topology of X* is there-
fore separable, and some countable subset of X* separates points on X.
(Compare with Exercise 15.)

(c) If K is a weakly compact subset of X and if x, € K is a weak limit point of
some countable set E < K, then there is a sequence {x,} in E which con-
verges weakly to x,. Hint: Let Y be the smallest closed subspace of X that
contains E. Apply (b) to Y to conclude that the weak topology of K n Y is
metrizable.

Remark: The point of (¢) is the eXistence of convergent subsequences
rather than subnets. Note that there exist compact Hausdorff spaces in
which no sequence of distinct points converges. For an example, see Exercise
18, Chapter 11.

Let C(K) be the Banach space of all continuous complex functions on the

compact Hausdorff space K, with the supremum norm. For p € K, define A, €

C(K)* by A, /= f(p). Show that p— A is a homeomorphism of K into C(K)*,

equipped with its weak*-topology. Part (c) of Exercise 28 can therefore not be

extended to weak*-compact sets.

. Suppose that p is an extreme point of some convex set K, and that p=

tyX, + - +t,x,, where ¥ t,=1,¢,> 0 and x; € K for all i. Prove that x; = p
for all i.

Suppose that A4,, ..., A, are convex sets in a vector space X. Prove that every
x € cofd; v -+ U A,) can be represented in the form

X=ta + " +1t,a,,

with g, € A;and ¢, > Oforall 1, ¢, = 1.

Let X be an infinite-dimensional Banach space and let S = {x € X: jjx|| = 1} be
the unit sphere of X. We want to cover § with finitely many closed balls, none
of which contains the origin of X. Can this be done in (a) every X, (b) some X,
(¢)yno X?

Let C(I) be the Banach space of all continuous complex functions on the closed
unit interval I, with the supremum norm. Let M = C(I)*, the space of all
complex Borel measures on I. Give M the weak*-topology induced by C(I).

For each t € I, let e, € M be the “evaluation functional ” defined by e, f =
f(t), and define A e M by Af = [} f(s) ds.

¥ LS LS9 38 L e
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(a) Show that t — e, is a continuous map from I into M and that K = {e,: t € I}
is a compact st in M.

(b) Show that A e co(K).

(¢) Find all y € Zo(K).

(d) Let X be the subspace of M consisting of all finite linear combinations

coA +cie, + " +c, e,

with complex coefficients c;. Note that co(K) = X and that X n ¢o(K) is
the closed convex hull of K within X. Prove that A is an extreme point of
X n ©0(K), even though A is not in K.



