
6 Different payoffs

Summary

Most of the concrete examples of options considered so far have been the standard
examples of calls and puts. Such options have liquid markets, their prices are fairly
well determined and margins are competitive. Any option that is not one of these
vanilla calls or puts is called an exotic option. Such options are introduced to extend
a bank’s product range or to meet hedging and speculative needs of clients. There
are usually no markets in these options and they are bought and sold purely ‘over the
counter’. Although the principles of pricing and hedging exotics are exactly the same
as for vanillas, risk management requires care. Not only are these exotic products
much less liquid than standard options, but they often have discontinuous payoffs
and so can have huge ‘deltas’ close to the expiry time making them difficult to hedge.

This chapter is devoted to examples of exotic options. The simplest exotics to
price and hedge are packages, that is, options for which the payoff is a combination
of our standard ‘vanilla’ options and the underlying asset. We already encountered
such options in §1.1. We relegate their valuation to the exercises. The next simplest
examples are European options, meaning options whose payoff is a function of the
stock price at the maturity time. The payoffs considered in §6.1 are discontinuous
and we discover potential hedging problems. In §6.2 we turn our attention to
multistage options. Such options allow decisions to be made or stipulate conditions
at intermediate dates during their lifetime. The rest of the chapter is devoted to
path-dependent options. In §6.3 we use our work of §3.3 to price lookback and
barrier options. Asian options, whose payoff depends on the average of the stock
price over the lifetime of the option, are discussed briefly in §6.4 and finally §6.5 is
a very swift introduction to pricing American options in continuous time.

6.1 European options with discontinuous payoffs

We work in the basic Black–Scholes framework. That is, our market consists of a
riskless cash bond whose value at time t is Bt = ert and a single risky asset whose
price, {St }t≥0, follows a geometric Brownian motion.

In §5.2 we established explicit formulae for both the price and the hedging
portfolio for European options within this framework. Specifically, if the payoff of
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140 different payoffs

the option at the maturity time T is CT = f (ST ) then for 0 ≤ t ≤ T the value of the
option at time t is

Vt = F(t, St ) = EQ
[

e−r(T −t) f (ST )

∣∣∣Ft

]

= e−r(T −t)
∫ ∞

−∞
f

(
St exp

((
r −

σ 2

2

)
(T − t) + σ y

√
T − t

))

×
1

√
2π

exp

(
−

y2

2

)
dy, (6.1)

where Q is the martingale measure, and the claim f (ST ) can be replicated by a
portfolio consisting at time t of φt units of stock and ψt = e−r t (Vt − φt St ) cash
bonds where

φt =
∂ F

∂x
(t, x)

∣∣∣∣
x=St

. (6.2)

Mathematically, other than the issue of actually evaluating the integrals, that would
appear to be the end of the story. However, as we shall see, rather more careful
consideration of our assumptions might lead us to doubt the usefulness of these
formulae when the payoff is a discontinuous function of ST .

Digitals and
pin risk

Example 6.1.1 (Digital options) The payoff of a digital option, also sometimes
called a binary option or a cash-or-nothing option, is given by a Heaviside function.
For example, a digital call option with strike price K at time T has payoff

CT =
{

1 if ST ≥ K ,

0 if ST < K

at maturity. Find the price and the hedge for such an option.

Solution: In order to implement the formula (6.1) we must establish the range of y
for which

St exp

((
r −

σ 2

2

)
(T − t) + σ y

√
T − t

)
> K .

Rearranging we see that this holds for y > d where

d =
1

σ
√

T − t

(
log

(
K

St

)
−

(
r −

σ 2

2

)
(T − t)

)
.

Writing ï for the normal distribution function and substituting in equation (6.1) we
obtain

Vt = e−r(T −t)
∫ ∞

d

1
√

2π
e−y2/2dy = e−r(T −t)

∫ −d

−∞

1
√

2π
e−y2/2dy

= e−r(T −t)ï(−d) = e−r(T −t)ï(d2),
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where

d2 =
1

σ
√

T − t

(
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K

)
+

(
r −

σ 2

2

)
(T − t)

)
,

as in Example 5.2.2.
Now we turn to the hedge. By (6.2), the stock holding in our replicating portfolio

at time t is

φt = e−r(T −t) 1

St

1
√

2π(T − t)σ

× exp

(
−

1

2(T − t)σ 2

(
log

(
St

K

)
+

(
r −

σ 2

2

)
(T − t)

)2
)

.

Now as t ↑ T , this converges to 1/K times the delta function concentrated on ST =
K . Consider what this means for the replicating portfolio as t ↑ T . Away from St =
K , φt is close to zero, but if St is close to K the stock holding in the portfolio will be
very large. Now if near expiry the asset price is close to K , there is a high probability
that its value will cross the value St = K many times before expiry. But if the asset
price oscillates around the strike price close to expiry our prescription for the hedging
portfolio will tell us to rapidly buy and sell large numbers of the underlying asset.
Since markets are not the perfect objects envisaged in our Black–Scholes model and
we cannot instantaneously buy and sell, risk from small asset price changes (not to
mention transaction costs) can easily outweigh the maximum liability that we are
exposed to by having sold the digital. This is known as the pin risk associated with
the option. ÿ

If we can overcome our misgivings about the validity of the Black–Scholes price
for digitals, then we can use them as building blocks for other exotics. Indeed, since
the option with payoff 1[K1,K2](ST ) at time T can be replicated by buying a digital
with strike K2 and maturity T and selling a digital with strike K1 and maturity T ,
in theory we could price any European option by replicating it by (possibly infinite)
linear combinations of digitals.

6.2 Multistage options

Some options either allow decisions to be made or stipulate conditions at intermedi-
ate dates during their lifetime. An example is the forward start option of Exercise 3
of Chapter 2. To illustrate the procedure for valuation of multistage options, we find
the Black–Scholes price of a forward start.

Example 6.2.1 (Forward start option) Recall that a forward start option is a con-
tract in which the holder receives, at time T0, at no extra cost, an option with
expiry date T1 > T0 and strike price equal to ST0 . If the risk-free rate is r find
the Black–Scholes price, Vt , of such an option at times t < T1.
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Solution: First suppose that t ∈ [T0, T1]. Then by time t we know ST0 and so the
value of the option is just that of a European call option with strike ST0 and maturity
T1, namely

Vt = e−r(T1−t)EQ
[(

ST1 − ST0

)
+

∣∣∣Ft

]
,

where Q is a probability measure under which the discounted price of the underlying
is a martingale. In particular, at time T0, using Example 5.2.2,

VT0 = ST0ï(d1) − ST0e−r(T1−T0)ï(d2)

where
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(
r + σ 2

2

)
(T1 − T0)

σ
√

T1 − T0
and d2 =

(
r − σ 2

2

)
(T1 − T0)

σ
√

T1 − T0
.

In other words

VT0 = ST0

{
ï
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r +
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2

)√
T1 − T0

σ

)
− e−r(T1−T0)ï

((
r −
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2

)√
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σ

)}

= cST0

where c = c(r, σ, T0, T1) is independent of the asset price.
To find the price at time t < T0, observe that the portfolio consisting of c units of

the underlying over the time interval 0 ≤ t ≤ T0 exactly replicates the option at time
T0. Thus for t < T0, the price is given by cSt . In particular, the time zero price of the
option is

V0 = S0

{
ï

((
r +

σ 2

2

) √
T1 − T0

σ

)
− e−r(T1−T0)ï

((
r −

σ 2

2

) √
T1 − T0

σ

)}
.

ÿ

General
strategy

Notice that, in order to price the forward start option, we worked our way back from
time T1. This reflects a general strategy. For a multistage option with maturity T1 and
conditions stipulated at an intermediate time T0, we invoke the following procedure.

Valuing multistage options:
1 Find the payoff at time T1.
2 Use Black–Scholes to value the option for t ∈ [T0, T1].
3 Apply the contract conditions at time T0.
4 Use Black–Scholes to value the option for t ∈ [0, T0].

We put this into action for two more examples.

Example 6.2.2 (Ratio derivative) A ratio derivative can be described as follows.
Two times 0 < T0 < T1 are fixed. The derivative matures at time T1 when its payoff
is ST1/ST0 . Find the value of the option at times t < T1.
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Solution: First suppose that t ∈ [T0, T1]. At such times ST0 is known and so

Vt =
1

ST0

EQ
[

e−r(T1−t)ST1

∣∣∣Ft

]

where, under Q, the discounted asset price is a martingale. Hence Vt = St/ST0 .
In particular, VT0 = 1. Evidently the value of the option for t < T0 is therefore
e−r(T0−t). ÿ

Both forward start options and ratio derivatives, in which the strike price is set to be
a function of the stock price at some intermediate time T0, are examples of cliquets.

Compound
options

A rather more complex class of examples is provided by the compound options.
These are ‘options on options’, that is options in which the rôle of the underlying is
itself played by an option. There are four basic types of compound option: call-on-
call, call-on-put, put-on-call and put-on-put.

Example 6.2.3 (Call-on-call option) To describe the call-on-call option we must
specify two exercise prices, K0 and K1, and two maturity times T0 < T1. The
‘underlying’ option is a European call with strike price K1 and maturity T1. The
call-on-call contract gives the holder the right to buy the underlying option for price
K0 at time T0. Find the value of such an option for t < T0.

Solution: We know how to price the underlying call. Its value at time T0 is given by
the Black–Scholes formula as

C
(
ST0 , T0; K1, T1

)
= ST0ï

(
d1

(
ST0 , T1 − T0, K1

))

− K0e−r(T1−T0)ï
(
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(
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))

where
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(
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)
=

log
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)
+

(
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2

)
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σ
√
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and d2
(
St0 , T1 − T0, K1

)
= d1

(
St0 , T1 − T0, K1

)
− σ

√
T1 − T0. The value of the

compound option at time T0 is then

V
(
T0, ST0

)
=

(
C

(
ST0 , T0; K1, T1

)
− K0

)
+ .

Now we apply Black–Scholes again. The value of the option at times t < T0 is

V (t, St ) = e−r(T0−t)EQ
[(

C(ST0 , T0, K1, T1) − K0
)
+

∣∣∣F S
t

]
(6.3)

where the discounted asset price is a martingale under Q. Using that

ST0 = St exp

(
σ Z

√
T0 − t +

(
r −

1

2
σ 2

)
(T0 − t)

)
,
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where, under Q, Z ∼ N (0, 1), equation (6.3) now gives an analytic expression for the
value in terms of the cumulative distribution function of a bivariate normal random
variable. We write

f (y) = S0 exp

(
σ y

√
T0 − t +

(
r −

1

2
σ 2

)
(T0 − t)

)

and define x0 implicitly by

x0 = inf {y ∈ R : C( f (y), T0; K1, T1) ≥ K0} .

Now
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)
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(
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)
+ σ y

√
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log(S0/K1) + σ y

√
T0 − t + rT1 − σ 2T0 + 1
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σ
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and
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√
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σ
√
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we obtain

V (t, St ) = e−r(T0−t)
∫ ∞

x0

(
f (y)ï(d̂1(y)) − K0e−r(T1−T0)ï(d̂2(y)) − K0

)

×
1

√
2π

e−y2/2dy.

ÿ

6.3 Lookbacks and barriers

We now turn to our first example of path-dependent options, that is options for which
the history of the asset price over the duration of the contract determines the payout
at expiry.

As usual we use {St }0≤t≤T to denote the price of the underlying asset over the
duration of the contract. In this section we shall consider options whose payoff at
maturity depends on ST and one or both of the maximum and minimum values taken
by the asset price over [0, T ].

Notation: We write

S∗(t) = min {Su : 0 ≤ u ≤ t} ,

S∗(t) = max {Su : 0 ≤ u ≤ t} .
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Definition 6.3.1 (Lookback call) A lookback call gives the holder the right to buy
a unit of stock at time T for a price equal to the minimum achieved by the stock up
to time T . That is the payoff is

CT = ST − S∗(T ).

Definition 6.3.2 (Barrier options) A barrier option is one that is activated or
deactivated if the asset price crosses a preset barrier. There are two basic types:

1 knock-ins

(a) the barrier is up-and-in if the option is only active if the barrier is hit from below,
(b) the barrier is down-and-in if the option is only active if the barrier is hit from

above;

2 knock-outs

(a) the barrier is up-and-out if the option is worthless if the barrier is hit from below,
(b) the barrier is down-and-out if the option is worthless if the barrier is hit from

above.

Example 6.3.3 A down-and-in call option pays out (ST − K )+ only if the stock
price fell below some preagreed level c some time before T , otherwise it is worthless.
That is, the payoff is

CT = 1{S∗(T )≤c}(ST − K )+.

As always we can express the value of such an option as a discounted expected value
under the martingale measure Q. Thus the value at time zero can be written as

V (0, S0) = e−rT EQ [CT ] (6.4)

where r is the riskless borrowing rate and the discounted stock price is a Q-
martingale. However, in order to actually evaluate the expectation in (6.4) for barrier
options we need to know the joint distribution of (ST , S∗(T )) and (ST , S∗(T )) under
the martingale measure Q. Fortunately we did most of the work in Chapter 3.

Joint
distribution
of the stock
price and its
minimum

In Lemma 3.3.4 we found the joint distribution of Brownian motion and its
maximum. Specifically, if {Wt }t≥0 is a standard P-Brownian motion, writing Mt =
max0≤s≤t Ws , for a > 0 and x ≤ a

P [Mt ≥ a, Wt ≤ x] = 1 − ï

(
2a − x

√
t

)
.

By symmetry, writing mt = min0≤s≤t Ws , for a < 0 and x ≥ a,

P [mt ≤ a, Wt ≥ x] = 1 − ï

(
−2a + x

√
t

)
,

or, differentiating, if a < 0 and x ≥ a

P [mT ≤ a, WT ∈ dx] = pT (0, −2a + x)dx = pT (2a, x)dx
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where
pt (x, y) =

1
√

2π t
exp

(
−|x − y|2/2t

)
.

Combining these results with (two applications of) the Girsanov Theorem will allow
us to calculate the joint distribution of (ST , S∗(T )) and of (ST , S∗(T )) under the
martingale measure Q.

As usual, under the market measure P,

St = S0 exp (νt + σ Wt )

where {Wt }t≥0 is a P-Brownian motion. Let us suppose, temporarily, that ν = 0
so that St = S0 exp(σ Wt ) and moreover S∗(t) = S0 exp(σmt ) and S∗(t) =
S0 exp(σ Mt ). In this special case then the joint distribution of the stock price and its
minimum (resp. maximum) can be deduced from that of (Wt , mt ) (resp. (Wt , Mt )).
Of course, in general, ν will not be zero either under the market measure P or under
the martingale measure Q. Our strategy will be to use the Girsanov Theorem not only
to switch to the martingale measure but also to switch, temporarily, to an equivalent
measure under which St = S0 exp(σ Wt ).

Lemma 6.3.4 Let {Yt }t≥0 be given by Yt = bt + Xt where b is a constant and
{Xt }t≥0 is a Q-Brownian motion. Writing Y∗(t) = min{Yu : 0 ≤ u ≤ t},

Q [Y∗(T ) ≤ a, YT ∈ dx] =

{
pT (bT, x)dx if x < a,

e2ab pT (2a + bT, x)dx if x ≥ a,

where, as above, pt (x, y) is the Brownian transition density function.

Proof: By the Girsanov Theorem, there is a measure P, equivalent to Q, under which
{Yt }t≥0 is a P-Brownian motion and

dP

dQ

∣∣∣∣
Fr

= exp

(
−bXT −

1

2
b2T

)
.

Notice that this depends on {Xt }0≤t≤T only through XT . The Q-probability of the
event {Y∗(T ) ≤ a, YT ∈ dx} will be the P-probability of that event multiplied by
dQ
dP

∣∣
Fr

evaluated at YT = x . Now

dQ

dP
= exp

(
bXT +

1

2
b2T

)
= exp

(
bYT −

1

2
b2T

)

and so for a < 0 and x ≥ a

Q [Y∗(T ) ≤ a, YT ∈ dx] = P [Y∗(T ) ≤ a, YT ∈ dx] exp

(
bx −

1

2
b2T

)

= pT (2a, x) exp

(
bx −

1

2
b2T

)
dx

= e2ab pT (2a + bT, x)dx . (6.5)



147 6.3 lookbacks and barriers

Evidently for x ≤ a, {Y∗(T ) ≤ a, YT ∈ dx} = {YT ∈ dx} and so for x ≤ a

Q [Y∗(T ) ≤ a, YT ∈ dx] = Q [YT ∈ dx]

= Q [bT + XT ∈ dx]

= pT (bT, x)dx

and the proof is complete. ÿ

Differentiating (6.5) with respect to a, we see that, in terms of joint densities, for
a < 0

Q [Y∗(T ) ∈ da, YT ∈ dx] =
2e2ab

T
|x − 2a|pT (2a + bT, x)dx da for x ≥ a.

The joint density evidently vanishes if x < a or a > 0. In Exercise 13 you are asked
to find the joint distribution of YT and Y ∗(T ) under Q.

An
expression
for the price

From Chapter 5, under the martingale measure Q, St = S0 exp (σYt ) where

Yt =
(r − 1

2σ 2)

σ
t + Xt

and {Xt }t≥0 is a Q-Brownian motion. So by applying these results with b = (r −
1
2σ 2)/σ we can now evaluate the price of any option maturing at time T whose
payoff depends just on the stock price at time T and its minimum (or maximum)
value over the lifetime of the contract. If the payoff is CT = g(S∗(T ), ST ) and r is
the riskless borrowing rate then the value of the option at time zero is

V (0, S0) = e−rT EQ [g (S∗(T ), ST )]

= e−rT
∫ 0

a=−∞

∫ ∞

x=a
g

(
S0eσ x , S0eσa)

Q [Y∗(T ) ∈ da, YT ∈ dx] .

Example 6.3.5 (Down-and-in call option) Find the time zero price of a down-and-
in call option whose payoff at time T is

CT = 1{S∗(T )≤c} (ST − K )+

where c is a (positive) preagreed constant less than K .

Solution: Using St = S0 exp(σYt ) we rewrite the payoff as

CT = 1{Y∗(T )≤ 1
σ

log(c/S0)}

(
S0eσYT − K

)
+

.

Writing b = (r − 1
2σ 2)/σ , a = 1

σ
log(c/S0) and x0 = 1

σ
log(K/S0) we obtain

V (0, S0) = e−rT
∫ ∞

x0

(
S0eσ x − K

)
Q (Y∗(T ) ≤ a, YT ∈ dx) .
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Using the expression for the joint distribution of (Y∗(T ), YT ) obtained above yields

V (0, S0) = e−rT
∫ ∞

x0

(
S0eσ x − K

)
e2ab pT (2a + bT, x)dx .

We have used the fact that, since c < K , x0 ≥ a. First observe that

e−rT
∫ ∞

x0

K e2ab pT (2a + bT, x)dx = K e−rT e2ab
∫ ∞

(x0−2a−bT )/
√

T

1
√

2π
e−y2/2dy

= K e−rT e2ab
∫ (2a+bT −x0)/

√
T

−∞

1
√

2π
e−y2/2dy

= K e−rT
(

c

S0

) 2r
σ2 −1

ï

(
2a + bT − x0√

T

)

= K e−rT
(

c

S0

) 2r
σ2 −1

ï

(
log(F/K ) − 1

2σ 2T

σ
√

T

)

where F = erT c2/S0.
Similarly,

e−rT
∫ ∞

x0

S0eσ x e2ab pT (2a + bT, x)dx

= S0e−rT e2ab
∫ ∞

x0

1
√

2πT
exp

(
−

(x − (2a + bT ))2 − 2σ xT

2T

)
dx

= S0e−rT e2ab
∫

(x0−(2a+bT )−σ T )/
√

T

1
√

2π
e−y2/2dy

× exp

(
1

2
σ 2T + 2aσ + bσ T

)

= e−rT
(

c

S0

) 2r
σ2 −1

Fï

(
log(F/K ) + 1

2σ 2T

σ
√

T

)
.

Comparing this with Example 5.2.2

V (0, S0) =
(

c

S0

) 2r
σ2 −1

C

(
c2

S0
, 0; K , T

)
,

where C(x, t; K , T ) is the price at time t of a European call option with strike K
and maturity T if the stock price at time t is x . ÿ

The price of a barrier option can also be expressed as the solution of a partial
differential equation.

Example 6.3.6 (Down-and-out call) A down-and-out call has the same payoff as
a European call option, (ST − K )+, unless during the lifetime of the contract the
price of the underlying asset has fallen below some preagreed barrier, c, in which
case the option is ‘knocked out’ worthless.
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Writing V (t, x) for the value of such an option at time t if St = x and assuming
that K > c, V (t, x) solves the Black–Scholes equation for (t, x) ∈ [0, T ] × [c, ∞)

subject to the boundary conditions

V (T, ST ) = (ST − K )+,

V (t, c) = 0, t ∈ [0, T ],

V (t, x)

x
→ 1, as x → ∞.

The last boundary condition follows since as St → ∞, the probability of the asset
price hitting level c before time T tends to zero.

Exercise 16 provides a method for solving the Black–Scholes partial differential
equation with these boundary conditions.

Of course more and more complicated barrier options can be dreamt up. For ex-
ample, a double knock-out option is worthless if the stock price leaves some interval
[c1, c2] during the lifetime of the contract. The probabilistic pricing formula for such
a contract then requires the joint distribution of the triple (ST , S∗(T ), S∗(T )). As in
the case of a single barrier, the trick is to use Girsanov’s Theorem to deduce the joint
distribution from that of (WT , mT , MT ) where {Wt }t≥0 is a P-Brownian motion and
{mt }t≥0, {Mt }t≥0 are its running minimum and maximum respectively. This in turn
is given by

P [WT ∈ dy, a < mT , MT < b] =
∑

n∈Z

{
pT (2n(a−b), y)−p(2n(b−a), y−2a)

}
dy;

see Freedman (1971) for a proof. An explicit pricing formula will then be in the form
of an infinite sum. In Exercise 20 you obtain the pricing formula by directly solving
the Black–Scholes differential equation.

Probability
or pde?

As we have seen in Exercise 7 of Chapter 5 and we see again in the exercises at
the end of this chapter, the Black–Scholes partial differential equation can be solved
by first transforming it to the heat equation (with appropriate boundary conditions).
This is entirely parallel to our probabilistic technique of transforming the expectation
price to an expectation of a function of Brownian motion.

6.4 Asian options

The payoff of an Asian option is a function of the average of the asset price over the
lifetime of the contract. For example, the payoff of an Asian call with strike price K
and maturity time T is

CT =
(

1

T

∫ T

0
St dt − K

)

+
.

Evidently CT ∈ FT and so our Black–Scholes analysis of Chapter 5 gives the value
of such an option at time zero as

V0 = EQ

[
e−rT

(
1

T

∫ T

0
St dt − K

)

+

]
. (6.6)
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However, evaluation of this integral is a highly non-trivial matter and we do not
obtain the nice explicit formulae of the previous sections.

There are many variants on this theme. For example, we might want to value a
claim with payoff

CT = f

(
ST ,

1

T

∫ T

0
St dt

)
.

In §7.2 we shall develop the technology to express the price of such claims (and
indeed slightly more complex claims) as solutions to a multidimensional version of
the Black–Scholes equation. Moreover (see Exercise 12 of Chapter 7) one can also
find an explicit expression for the hedging portfolio in terms of the solution to this
equation. However, multidimensional versions of the Black–Scholes equation are
much harder to solve than their one-dimensional counterpart and generally one must
resort to numerical techniques.

The main difficulty with evaluating (6.6) directly is that, although there are
explicit formulae for all the moments of the average process 1

T

∫ T
0 St dt , in contrast

to the lognormal distribution of ST , we do not have an expression for the distribution
function. A number of approaches have been suggested to overcome this, including
simply approximating the distribution of the average process by a lognormal distri-
bution with suitably chosen parameters.

A very natural approach is to replace the continuous average by a discrete
analogue obtained by sampling the price of the process at agreed times t1, . . . , tn
and averaging the result. This also makes sense from a practical point of view as
calculating the continuous average for a real asset can be a difficult process. Many
contracts actually specify that the average be calculated from such a discrete sample
– for example from daily closing prices. Mathematically, the continuous average
1
T

∫ T
0 St dt is replaced by 1

n

∑n
i=1 Sti . Options based on a discrete sample can be

treated in the same way as multistage options, although evaluation of the price rapidly
becomes impractical (see Exercise 21).

A further approximation is to replace the arithmetic average by a geometric
average. That is, in place of 1

n

∑n
i=1 Sti we consider

(∏n
i=1 Sti

)1/n . This quantity
has a lognormal distribution (Exercise 22) and so the corresponding approximate
pricing formula for the Asian option can be evaluated exactly. (You are asked to find
the pricing formula for an Asian call option based on a continuous version of the
geometric average in Exercise 23.) Of course the arithmetic mean of a collection of
positive numbers always dominates their geometric mean and so it is no surprise that
this approximation consistently under-prices the Asian call option.

6.5 American options

A full treatment of American options is beyond our scope here. Explicit formulae
for the prices of American options only exist in a few special cases and so one must
employ numerical techniques. One approach is to use our discrete (binomial tree)
models of Chapter 2. An alternative is to reformulate the price as a solution to a
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partial differential equation. We do not give a rigorous derivation of this equation,
but instead we use the results of Chapter 2 to give a heuristic explanation of its form.

The discrete
case

As we saw in Chapter 2, the price of an American call option on non-dividend-paying
stock is the same as that of a European call and so we concentrate on the American
put. This option gives the holder the right to buy one unit of stock for price K at any
time before the maturity time T .

As we illustrated in §2.2, in our discrete time model, if V (n, Sn) is the value of
the option at time nδt given that the asset price at time nδt is Sn then

V (n, Sn) = max
{
(K − Sn)+, EQ

[
e−rδt V (n + 1, Sn+1)

∣∣Fn
]}

,

where Q is the martingale measure. In particular, V (n, Sn) ≥ (K −Sn)+ everywhere.
We saw that for each fixed n the possible values of Sn are separated into two ranges
by a boundary value that we shall denote by S f (n): if Sn > S f (n) then it is
optimal to hold the option whereas if Sn ≤ S f (n) it is optimal to exercise. We call
{S f (n)}0≤n≤N the exercise boundary.

In Example 2.4.7 we found a characterisation of the exercise boundary. We
showed that the discounted option price can be written as Ṽn = M̃n − Ãn where
{M̃n}0≤n≤N is a Q-martingale and { Ãn}0≤n≤N is a non-decreasing predictable
process. The option is exercised at the first time nδt when Ãn+1 ú= 0. In summary,
within the exercise region Ãn+1 ú= 0 and Vn = (K − Sn)+, whereas away from the
exercise region, that is when Sn > S f (n), V (n, Sn) = Mn .

The strategy of exercising the option at the first time when Ãn+1 ú= 0 is optimal in
the sense that if we write TN for the set of all possible stopping times taking values
in {0, 1, . . . , N } then

V (0, S0) = sup
τ∈TN

EQ
[

e−rτ (K − Sτ )+
∣∣F0

]
.

Since the exercise time of any permissible strategy must be a stopping time, this
says that as holder of the option one can’t do better by choosing any other exercise
strategy. That this optimality characterises the fair price follows from a now familiar
arbitrage argument that you are asked to provide in Exercise 24.

Continuous
time

Now suppose that we formally pass to the continuous limit as in §2.6. We expect
that in the limit too V (t, St ) ≥ (K − St )+ everywhere and that for each t we can
define S f (t) so that if St > S f (t) it is optimal to hold on to the option, whereas if
St ≤ S f (t) it is optimal to exercise. In the exercise region V (t, St ) = (K − St )+
whereas away from the exercise region V (t, St ) = Mt where the discounted process
{M̃t }0≤t≤T is a Q-martingale and Q is the measure, equivalent to P, under which
the discounted stock price is a martingale. Since {M̃t }0≤t≤T can be thought of as
the discounted value of a European option, this tells us that away from the exercise
region, V (t, x) must satisfy the Black–Scholes differential equation.

We guess then that for {(t, x) : x > S f (t)} the price V (t, x) must satisfy the
Black–Scholes equation whereas outside this region V (t, x) = (K − x)+. This
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can be extended to a characterisation of V (t, x) if we specify appropriate boundary
conditions on S f . This is complicated by the fact that S f (t) is a free boundary – we
don’t know its location a priori.

An arbitrage argument (Exercise 25) says that the price of an American put option
should be continuous. We have checked already that V (t, S f (t)) = (K − S f (t))+.
Since it is clearly not optimal to exercise at a time t < T if the value of the option is
zero, in fact we have V (t, S f (t)) = K − S f (t). Let us suppose now that V (t, x) is
continuously differentiable with respect to x as we cross the exercise boundary (we
shall omit the proof of this). Then, since

V (t, x) = (K − x) for x ≤ S f and
V (t, x) ≥ (K − x) for x > S f ,

we must have that at the exercise boundary ∂V
∂x ≥ −1. Suppose that ∂V

∂x > −1 at
some point of the exercise boundary. Then by reducing the value of the stock price at
which we choose to exercise from S f to S∗

f we can actually increase the value of the
option at (t, S f (t)). This contradicts the optimality of our exercise strategy. It must
be that ∂V

∂x = −1 at the exercise boundary.
We can now fully characterise V (t, x) as a solution to a free boundary value

problem:

Proposition 6.5.1 (The value of an American put) We write V (t, x) for the value of
an American put option with strike price K and maturity time T and r for the riskless
borrowing rate. V (t, x) can be characterised as follows. For each time t ∈ [0, T ]
there is a number S f (t) ∈ (0, ∞) such that for 0 ≤ x ≤ S f (t) and 0 ≤ t ≤ T ,

V (t, x) = K − x and
∂V

∂t
+

1

2
σ 2x2 ∂2V

∂x2
+ r x

∂V

∂x
− r V < 0.

For t ∈ [0, T ] and S f (t) < x < ∞

V (t, x) > (K − x)+ and
∂V

∂t
+

1

2
σ 2x2 ∂2V

∂x2
+ r x

∂V

∂x
− r V = 0.

The boundary conditions at x = S f (t) are that the option price process is
continuously differentiable with respect to x, is continuous in time and

V (t, S f (t)) = (K − S f (t))+,
∂V

∂x
(t, S f (t)) = −1.

In addition, V satisfies the terminal condition

V (T, ST ) = (K − ST )+.

The free boundary problem of Proposition 6.5.1 is easier to analyse as a linear
complementarity problem. If we use the notation

LBS f =
∂ f

∂t
+

1

2
σ 2x2 ∂2 f

∂x2
+ r x

∂ f

∂x
− r f,
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then the free boundary value problem can be restated as

LBS V (t, x) (V (t, x) − (K − x)+) = 0,

subject to LBS V (t, x) ≤ 0, V (t, x)−(K −x)+ ≥ 0, V (T, x) = (K −x)+, V (t, x) →
∞ as x → ∞ and V (t, x), ∂V

∂x (t, x) are continuous.
Notice that this reformulation has removed explicit dependence on the free

boundary. Variational techniques can be applied to solve the problem and then
the boundary is recovered from that solution. This is beyond our scope here. See
Wilmott, Howison & Dewynne (1995) for more detail.

An explicit
solution

We finish this chapter with one of the rare examples of an American option for which
the price can be obtained explicitly.

Example 6.5.2 (Perpetual American put) Find the value of a perpetual American
put option on non-dividend-paying stock, that is a contract that the holder can choose
to exercise at any time t in which case the payoff is (K − St )+.

Solution(s): We sketch two possible solutions to this problem, first via the free
boundary problem of Proposition 6.5.1 and second via the expectation price.

Since the time to expiry of the contract is always infinite, V (t, x) is a function of
x alone and the exercise boundary must be of the form S f (t) = α for all t > 0 and
some constant α. The option will be exercised as soon as St ≤ α. The Black–Scholes
equation reduces to an ordinary differential equation:

1

2
σ 2x2 d2V

dx2
+ r x

dV

dx
− r V = 0, for all x ∈ (α, ∞). (6.7)

The general solution to equation (6.7) is of the form v(x) = c1xd1 + c2xd2 for some
constants c1, c2, d1 and d2. Fitting the boundary conditions

V (α) = K − α, lim
x↓α

dV

dx
= −1 and lim

x→∞
V (x) = 0

gives

V (x) =

{
(K − α)

(
α
x

)2rσ−2
, x ∈ (α, ∞),

(K − x), x ∈ [0, α],

where

α =
2rσ−2 K

2rσ−2 + 1
.

An alternative approach to this problem would be to apply the results of §3.3. As we
argued above, the option will be exercised when the stock price first hits level α for
some α > 0. This means that the value will be of the form

V (0, S0) = EQ
[
e−rτα (K − α)+

]
,
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where τα = inf{t > 0 : St ≤ α}. We rewrite this stopping time in terms of the time
that it takes a Q-Brownian motion to hit a sloping line. Since

St = S0 exp

((
r −

1

2
σ 2

)
t + σ Xt

)

where {Xt }t≥0 is a standard Brownian motion under the martingale measure Q, the
event {St ≤ α} is the same as the event

{
−σ Xt −

(
r −

1

2
σ 2

)
t ≥ log

(
S0

α

)}
.

The process {−Xt }t≥0 is also a standard Q-Brownian motion and so, in the notation
of §3.3, the time τα is given by Ta,b with

a =
1

σ
log

(
S0

α

)
, b =

r − 1
2σ 2

σ
.

We can then read off EQ
[
e−rτα

]
from Proposition 3.3.5 and maximise over α to

yield the result. ÿ

Exercises

1 Let K1 and K2 be fixed real numbers with 0 < K1 < K2. A collar option has payoff

CT = min{max{ST , K1}, K2}.

Find the Black–Scholes price for such an option.

2 What is the maximum potential loss associated with taking the long position in a
forward contract? And with taking the short position?
Consider the derivative whose payoff at expiry to the holder of the long position is

CT = min{ST , F} − K ,

where F is the standard forward price for the underlying stock and K is a constant.
Such a contract is constructed so as to have zero value at the time at which it is struck.
Find an expression for the value of K that should be written into such a contract.
What is the maximum potential loss for the holder of the long or short position now?

3 The digital put option with strike K at time T has payoff

CT =
{

0, ST ≥ K ,

1, ST < K .

Find the Black–Scholes price for a digital put. What is the put–call parity for digital
options?
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4 Digital call option In Example 6.1.1 we calculated the price of a digital call. Here is
an alternative approach:

(a) Use the Feynman–Kac stochastic representation to find the partial differential
equation satisfied by the value of a digital call with strike K and maturity T .

(b) Show that the delta of a standard European call option solves the partial
differential equation that you have found in (a).

(c) Hence or otherwise solve the equation in (a) to find the value of the digital.

5 An asset-or-nothing call option with strike K and maturity T has payoff

CT =
{

ST , ST ≥ K ,

0, ST < K .

Find the Black–Scholes price and hedge for such an option. What happens to the
stock holding in the replicating portfolio if the asset price is near K at times close to
T ? Comment.

6 Construct a portfolio consisting entirely of cash-or-nothing and asset-or-nothing
options whose value at time T is exactly that of a European call option with strike K
at maturity T .

7 In §6.1 we have seen that for certain options with discontinuous payoffs at maturity,
the stock holding in the replicating portfolio can oscillate wildly close to maturity.
Do you see this phenomenon if the payoff is continuous?

8 Pay-later option This option, also known as a contingent premium option, is a
standard European option except that the buyer pays the premium only at maturity of
the option and then only if the option is in the money. The premium is chosen so that
the value of the option at time zero is zero. This option is equivalent to a portfolio
consisting of one standard European call option with strike K and maturity T and
−V digital call options with maturity T where V is the premium for the option.

(a) What is the value of holding such a portfolio at time zero?
(b) Find an expression for V .
(c) If a speculator enters such a contract, what does this suggest about her market

view?

9 Ratchet option A two-leg ratchet call option can be described as follows. At time
zero an initial strike price K is set. At time T0 > 0 the strike is reset to ST0 , the value
of the underlying at time T0. At the maturity time T1 > T0 the holder receives the
payoff of the call with strike ST0 plus ST1 − ST0 if this is positive. That is, the payoff
is (ST1 − ST0)+ + (ST0 − K )+.
If (ST0 − K ) is positive, then the intermediate profit (ST0 − K )+ is said to be ‘locked
in’. Why? Value this option for 0 < t < T1.
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10 Chooser option A chooser option is specified by two strike prices, K0 and K1, and
two maturity dates, T0 < T1. At time T0 the holder has the right to buy, for price K0,
either a call or a put with strike K1 and maturity T1.

What is the value of the option at time T0? In the special case K0 = 0 use put–
call parity to express this as the sum of the value of a call and a put with suitably
chosen strike prices and maturity dates and hence find the value of the option at time
zero.

11 Options on futures In our simple model where the riskless rate of borrowing is
deterministic, forward and futures prices coincide. A European call option with strike
price K and maturity T0 written on an underlying futures contract with delivery date
T1 > T0 delivers to the holder, at time T0, a long position in the futures contract and
an amount of money (F(T0, T1) − K )+, where F(T0, T1) is the value of the futures
contract at time T0. Find the value of such an option at time zero.

12 Use the method of Example 6.2.3 to find the value of a put-on-put option.

By considering the portfolio obtained by buying one call-on-put and selling one
put-on-put (with the same strikes and maturities) obtain a put–call parity relation
for compound options. Hence write down prices for all four classes of compound
option.

13 Let {Yt }t≥0 be given by Yt = bt + Xt where b is a constant and {Xt }t≥0 is a Q-
Brownian motion. Writing Y ∗(t) = max{Yu : 0 ≤ u ≤ t}, find the joint distribution
of (YT , Y ∗(T )) under Q.

14 What is the value of a portfolio consisting of one down-and-in call and one down-
and-out call with the same strike price and maturity?

15 Find the value of a down-and-out call with barrier c and strike K at maturity T if
c > K .

16 One approach to finding the value of the down-and-out call of Example 6.3.6 is to
express it as an expectation under the martingale measure and exploit our knowledge
of the joint distribution of Brownian motion and its minimum. Alternatively one
can solve the partial differential equation directly and that is the purpose of this
exercise.

(a) Use the method of Exercise 7 of Chapter 5 to transform the equation for the price
into the heat equation. What are the boundary conditions for this heat equation?

(b) Solve the heat equation that you have obtained using, for example, the ‘method
of images’. (If you are unfamiliar with this technique, then try Wilmott, Howison
& Dewynne (1995).)

(c) Undo the transformation to obtain the solution to the partial differential equation.
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17 An American cash-or-nothing call option can be exercised at any time t ∈ [0, T ]. If
exercised at time t its payoff is

1 if St ≥ K ,

0 if St < K .

When will such an option be exercised? Find its value.

18 Suppose that the down-and-in call option of Example 6.3.5 is modified so that if the
option is never activated, that is the stock price never crosses the barrier, then the
holder receives a rebate of Z . Find the price of this modified option.

19 A perpetual option is one with no expiry time. For example, a perpetual American
cash-or-nothing call option can be exercised at any time. If exercised at time t , its
payoff is 1 if St ≥ K and 0 if St < K . What is the probability that such an option is
never exercised?

20 Formulate the price of a double knock-out call option as a solution to a partial dif-
ferential equation with suitably chosen boundary conditions. Mimic your approach
in Exercise 16 to see that this too leads to an expression for the price as an infinite
sum.

21 Calculate the value of an Asian call option, with strike price K , in which the average
of the stock price is calculated on the basis of just two sampling times, 0 and T ,
where T is the maturity time of the contract.
Find an expression for the value of the corresponding contract when there are three
sampling times, 0, T/2 and T .

22 Suppose that {St }t≥0 is a geometric Brownian motion under P. Let 0 ≤ t1 ≤ t2 ≤
· · · ≤ tn be fixed times and define

Gn =

(
n∏

i=1

Sti

)1/n

.

Show that Gn has a lognormal distribution under P.

23 An asset price {St }t≥0 is a geometric Brownian motion under the market measure P.
Define

YT = exp

(
1

T

∫ T

0
log St dt

)
.

Suppose that an Asian call option has payoff (YT − K )+ at time T . Find an explicit
formula for the price of such an option at time zero.

24 Use an arbitrage argument to show that if V (0, S0) is the fair price of an American
put option on non-dividend-paying stock with strike price K and maturity T , then
writing TT for the set of all possible stopping times taking values in [0, T ]

V (0, S0) = sup
τ∈TT

EQ
[

e−rτ (K − Sτ )+
∣∣F0

]
.
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25 Consider the value of an American put on non-dividend-paying stock. Show that
if there were a discontinuity in the option value (as a function of stock price) that
persisted for more than an infinitesimal time then a portfolio consisting entirely of
options would offer an arbitrage opportunity.
Remark: This does not mean that all option prices are continuous. If there is an
instantaneous change in the conditions of a contract (as in multistage options) then
discontinuities certainly can occur.

26 Find the value of a perpetual American call option on non-dividend-paying stock.
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Summary

Having applied our basic Black–Scholes model to the pricing of some exotic options,
we now turn to more general market models.

In §7.1 we replace the (constant) parameters that characterised our basic Black–
Scholes model by previsible processes. Under appropriate boundedness assumptions,
we then repeat our analysis of Chapter 5 to obtain the fair price of an option as the
discounted expected value of the claim under a martingale measure. In general this
expectation must be evaluated numerically. We also make the connection with a gen-
eralised Black–Scholes equation via the Feynman–Kac Stochastic Representation
Theorem.

Our models so far have assumed that the market consists of a single stock and
a riskless cash bond. More complex equity products can depend on the behaviour
of several separate securities and, in general, the prices of these securities will
not evolve independently. In §7.2 we extend some of the fundamental results of
Chapter 4 to allow us to manipulate systems of stochastic differential equations
driven by correlated Brownian motions. For markets consisting of many assets we
have much more freedom in our choice of ‘reference asset’ or numeraire and so
we revisit this issue before illustrating the application of the ‘multifactor’ theory by
pricing a ‘quanto’ product.

We still have no satisfactory justification for the geometric Brownian motion
model. Indeed, there is considerable evidence that it does not capture all features
of stock price evolution. A first objection is that stock prices occasionally ‘jump’
at unpredictable times. In §7.3 we introduce a Poisson process of jumps into
our Black–Scholes model and investigate the implications for option pricing. This
approach is popular in the analysis of credit risk. In §1.5 we saw that, if a model is
to be free from arbitrage and complete, there must be a balance between the number
of sources of randomness and the number of independent stocks. We reiterate this
here. We see more evidence that the Black–Scholes model does not reflect the true
behaviour of the market in §7.4. It seems a little late in the day to condemn the model
that has been the subject of all our efforts so far and so we ask how much it matters

159



160 bigger models

if we use the wrong model. We also very briefly discuss models with stochastic
volatility that have the potential to better reflect true market behaviour.

This chapter is intended to do no more than indicate some of the topics that might
be addressed in a second course in financial calculus. Much more detail can be found
in some of the suggestions for further reading in the bibliography.

7.1 General stock model

In our classical Black–Scholes framework we assume that the riskless borrowing rate
is constant and that the returns of the stock follow a Brownian motion with constant
drift. In this section we consider much more general models to which we can apply
the Black–Scholes analysis although, in practice, even for vanilla options the prices
that we obtain must now be evaluated numerically. The key assumption that we retain
is that there is only one source of randomness in the market, the Brownian motion
that drives the stock price (cf. §7.3).

The model Writing {Ft }t≥0 for the filtration generating the driving Brownian motion, we
replace the riskless borrowing rate, r , the drift µ and the volatility σ in our basic
Black–Scholes model by {Ft }t≥0-predictable processes {rt }t≥0, {µt }t≥0 and {σt }t≥0.
In particular, rt , µt and σt can depend on the whole history of the market before time
t . Our market model is then as follows.

General stock model: The market consists of a riskless cash bond, {Bt }t≥0,
and a single risky asset with price process {St }t≥0 governed by

d Bt = rt Bt dt, B0 = 1,

d St = µt St dt + σt St dWt ,

where {Wt }t≥0 is a P-Brownian motion generating the filtration {Ft }t≥0 and
{rt }t≥0, {µt }t≥0 and {σt }t≥0 are {Ft }t≥0-predictable processes.

Evidently a solution to these equations should take the form

Bt = exp

(∫ t

0
rsds

)
, (7.1)

St = S0 exp

(∫ t

0

(
µs −

1

2
σ 2

s

)
ds +

∫ t

0
σsdWs

)
, (7.2)

but we need to make some boundedness assumptions if these expressions are to make
sense. So to ensure the existence of the integrals in equations (7.1) and (7.2) we
assume that

∫ T
0 |rt |dt ,

∫ T
0 |µt |dt and

∫ T
0 σ 2

t dt are all finite with P-probability one.
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A word of warning is in order. In order to ‘calibrate’ such a model to the market we
must choose the parameters {rt }t≥0, {µ}t≥0 and {σt }t≥0 from an infinite-dimensional
space. Unless we restrict the possible forms of these processes, this presents a major
obstacle to implementation. In §7.4 we examine the effect of model misspecification
on pricing and hedging strategies. Now, however, we set this worry aside and repeat
the Black–Scholes analysis for our general class of market models.

A martingale
measure

We must mimic the three steps to replication that we followed in the classical setting.
The first of these is to find an equivalent probability measure, Q, under which the
discounted stock price, {S̃t }t≥0, is a martingale.

Exactly as before, we use the Girsanov Theorem to find a measure, Q, under
which the process {W̃t }t≥0 defined by

W̃t = Wt +
∫ t

0
γsds

is a standard Brownian motion. The discounted stock price, {S̃t }t≥0 defined as S̃t =
St/Bt , is governed by the stochastic differential equation

d S̃t = (µt − rt ) S̃t dt + σt S̃t dWt

= (µt − rt − σtγt ) S̃t dt + σt S̃t dW̃t ,

and so we choose γt = (µt − rt )/σt . To ensure that {S̃t }t≥0 really is a Q-martingale
we make two further boundedness assumptions. First, in order to apply the Girsanov
Theorem, we insist that

EP

[
exp

(∫ T

0

1

2
γ 2

t dt

)]
< ∞.

Second we require that {S̃t }t≥0 is a Q-martingale (not just a local martingale) and so
we assume a second Novikov condition:

EQ

[
exp

(∫ T

0

1

2
σ 2

t dt

)]
< ∞.

Under these extra boundedness assumptions {S̃t }t≥0 then is a martingale under the
measure Q defined by

dQ

dP

∣∣∣∣
Ft

= L(γ )
t = exp

(
−

∫ t

0
γsdWs −

∫ t

0

1

2
γ 2

s ds

)
.

Second step
to
replication

That completes the first step in our replication strategy. The second is to form the
(Q, {Ft }t≥0)-martingale {Mt }t≥0 given by

Mt = EQ
[

B−1
T CT

∣∣∣Ft

]
.
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Replicating a
claim

The third step is to show that our market is complete, that is any claim CT can be
replicated. First we invoke the martingale representation theorem to write

Mt = M0 +
∫ t

0
θudW̃u

and consequently, provided that σt never vanishes,

Mt = M0 +
∫ t

0
φsd S̃s,

where {φt }t≥0 is {Ft }t≥0-predictable.
Guided by our previous work we guess that a replicating portfolio should consist

of φt units of stock and ψt = Mt − φt St units of cash bond at time t . In Exercise 1
it is checked that such a portfolio is self-financing. Its value at time t is

Vt = φt St + ψt Bt = Bt Mt .

In particular, at time T , VT = BT MT = CT , and so we have a self-financing,
replicating portfolio. The usual arbitrage argument tells us that the fair value of the
claim at time t is Vt , that is the arbitrage price of the option at time t is

Vt = BtE
Q

[
B−1

T CT

∣∣∣Ft

]
= EQ

[
e−

∫ T
t ruduCT

∣∣∣Ft

]
.

The
generalised
Black–
Scholes
equation

In general such an expectation must be evaluated numerically. If rt , µt and σt

depend only on (t, St ) then one approach to this is first to express the price as
the solution to a generalised Black–Scholes partial differential equation. This is
achieved with the Feynman–Kac Stochastic Representation Theorem. Specifically,
using Example 4.8.6, Vt = F(t, St ) where F(t, x) solves

∂ F

∂t
(t, x) +

1

2
σ 2(t, x)x2 ∂2 F

∂x2
(t, x) + r(t, x)x

∂ F

∂x
(t, x) − r(t, x)F(t, x) = 0,

subject to the terminal condition corresponding to the claim CT , at least provided

∫ T

0
EQ

[(
σ(t, x)

∂ F

∂x
(t, x)

)2
]

ds < ∞.

For vanilla options, in the special case when r , µ and σ are functions of t alone, the
partial differential equation can be solved explicitly. As is shown in Exercise 3 the
procedure is exactly that used to solve the usual Black–Scholes equation. The price
can be found from the classical Black–Scholes price via the following simple rule:
for the value of the option at time t replace r and σ 2 by

1

T − t

∫ T

t
r(s)ds and

1

T − t

∫ T

t
σ 2(s)ds

respectively.
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7.2 Multiple stock models

So far we have assumed that the market consists of a riskless cash bond and a
single ‘risky’ asset. However, the need to model whole portfolios of options or
more complex equity products leads us to seek models describing several securities
simultaneously. Such models must encode the interdependence between different
security prices.

Correlated
security
prices

Suppose that we are modelling the evolution of n risky assets and, as ever, a single
risk-free cash bond. We assume that it is not possible to exactly replicate one of the
assets by a portfolio composed entirely of the others. In the most natural extension
of the classical Black–Scholes model, considered individually the price of each
risky asset follows a geometric Brownian motion, and interdependence of different
asset prices is achieved by taking the driving Brownian motions to be correlated.
Equivalently, we take a set of n independent Brownian motions and drive the asset
prices by linear combinations of these; see Exercise 2. This suggests the following
market model.

Multiple asset model: Our market consists of a cash bond {Bt }0≤t≤T and n
different securities with prices {S1

t , S2
t , . . . , Sn

t }0≤t≤T , governed by the system
of stochastic differential equations

d Bt = r Bt dt,

d Si
t = Si

t

(
n∑

j=1

σi j (t)dW j
t + µi (t)dt

)
, i = 1, 2, . . . , n, (7.3)

where {W j
t }t≥0, j = 1, . . . , n, are independent Brownian motions. We

assume that the matrix σ = (σi j ) is invertible.

Remarks:

1 This model is called an n-factor model as there are n sources of randomness. If there
are fewer sources of randomness than stocks then there is redundancy in the model
as we can replicate one of the stocks by a portfolio composed of the others. On the
other hand, if we are to be able to hedge any claim in the market, then, roughly
speaking, we need as many ‘independent’ stocks as sources of randomness. This
mirrors Proposition 1.6.5.

2 Notice that the volatility of each stock in this model is really a vector. Since the
Brownian motions {W j

t }t≥0, j = 1, . . . , n, are independent, the total volatility of

the process {Si
t }t≥0 is

{√∑n
j=1 σ 2

i j (t)
}

t≥0
. ÿ
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Of course we haven’t checked that this model really makes sense. That is, we need
to know that the system of stochastic differential equations (7.3) has a solution.
In order to verify this and to analyse such multifactor market models we need
multidimensional analogues of the key results of Chapter 4.

Multifactor
Itô formula

The most basic tool will be an n-factor version of the Itô formula. In the same way as
we used the one-factor Itô formula to find a description (in the form of a stochastic
differential equation) of models constructed as functions of Brownian motion, here
we shall build new multifactor models from old. Our basic building blocks will be
solutions to systems of stochastic differential equations of the form

d Xi
t = µi (t)dt +

n∑

j=1

σi j (t)dW j
t , i = 1, . . . , n, (7.4)

where {W j
t }t≥0, j = 1, . . . , n, are independent Brownian motions. We write {Ft }t≥0

for the σ -algebra generated by {W j
t }t≥0, j = 1, . . . , n. Our work of Chapter 4 gives

a rigorous meaning to (the integrated version of) the system (7.4) provided {µi (t)}t≥0

and {σi j (t)}t≥0, 1 ≤ i ≤ n, 1 ≤ j ≤ n, are {Ft }t≥0-predictable processes with

E

[∫ t

0

(
n∑

j=1

(
σi j (s)

)2 + |µi (s)|

)
ds

]
< ∞, t > 0, i = 1, . . . , n.

Let us write {Xt }t≥0 for the vector of processes {X1
t , X2

t , . . . , Xn
t }t≥0 and define a

new stochastic process by Zt = f (t, Xt ). Here we suppose that f (t, x) : R+×Rn →
R is sufficiently smooth that we can apply Taylor’s Theorem, just as in §4.3, to find
the stochastic differential equation governing {Zt }t≥0. Writing x = (x1, . . . , xn), we
obtain

d Zt =
∂ f

∂t
(t, Xt )dt +

n∑

i=1

∂ f

∂xi
(t, Xt )d Xi

t +
1

2

n∑

i, j=1

∂2 f

∂xi∂x j
(t, Xt )d Xi

t d X j
t + · · · .

(7.5)

Since the Brownian motions {W i
t }t≥0 are independent we have the multiplication

table

× dW i
t dW j

t dt

dW i
t dt 0 0

dW j
t 0 dt 0

dt 0 0 0

for i ú= j (7.6)

and this gives d Xi
t d X j

t =
∑n

k=1 σikσ jkdt . The same multiplication table tells us
that d Xi

t d X j
t d Xk

t is o(dt) and so substituting into equation (7.5) we have provided
a heuristic justification of the following result.
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Theorem 7.2.1 (Multifactor Itô formula) Let {Xt }t≥0 = {X1
t , X2

t , . . . , Xn
t }t≥0

solve

d Xi
t = µi (t)dt +

n∑

j=1

σi j (t)dW j
t , i = 1, 2, . . . , n,

where {W i
t }t≥0, i = 1, . . . , n, are independent P-Brownian motions. Further sup-

pose that the real-valued function f (t, x) on R+ × Rn is continuously differentiable
with respect to t and twice continuously differentiable in the x-variables. Then
defining Zt = f (t, Xt ) we have

d Zt =
∂ f

∂t
(t, Xt )dt +

n∑

i=1

∂ f

∂xi
(t, Xt )d Xi

t +
1

2

n∑

i, j=1

∂2 f

∂xi∂x j
(t, Xt )Ci j (t)dt

where Ci j (t) =
∑n

k=1 σik(t)σ jk(t).

Remark: Notice that if we write σ for the matrix (σi j ) then Ci j =
(
σσ t

)
i j where σ t

is the transpose of σ . ÿ

We can now check that there is a solution to the system of equations (7.3).

Example 7.2.2 (Multiple asset model) Let {W i
t }t≥0, i = 1, . . . , n, be independent

Brownian motions. Define {S1
t , S2

t , . . . , Sn
t }t≥0 by

Si
t = Si

0 exp

(∫ t

0

(
µi (s) −

1

2

n∑

k=1

σ 2
ik(s)

)
ds +

∫ t

0

n∑

j=1

σi j (s)dW j
s

)
;

then {S1
t , S2

t , . . . , Sn
t }t≥0 solves the system (7.3).

Justification: Defining the processes {Xi
t }t≥0 for i = 1, 2, . . . , n by

d Xi
t =

(
µi (t) −

1

2

n∑

k=1

σ 2
ik(t)

)
dt +

n∑

j=1

σi j (t)dW j
t

we see that Si
t = f i (t, Xt ) where, writing x = (x1, . . . , xn), f i (t, x) ÿ Si

0exi .
Applying Theorem 7.2.1 gives

d Si
t = Si

0 exp(Xi
t )d Xi

t +
1

2
Si

0 exp(Xi
t )Cii (t)dt

= Si
t

{(
µi (t) −

1

2

n∑

k=1

σ 2
ik(t)

)
dt +

n∑

j=1

σi j (t)dW j
t +

1

2

n∑

k=1

σik(t)σik(t)dt

}

= Si
t

{
µi (t)dt +

n∑

j=1

σi j (t)dW j
t

}

as required. ÿ
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Remark: Exactly as in the single factor models, although we can write down
arbitrarily complicated systems of stochastic differential equations, existence and
uniqueness of solutions are far from guaranteed. If the coefficients are bounded and
uniformly Lipschitz then a unique solution does exist, but such results are beyond
our scope here. Instead, once again, we refer to Chung & Williams (1990) or Ikeda
& Watanabe (1989). ÿ

Integration
by parts

We can also use the multiplication table (7.6) to write down an n-factor version of
the integration by parts formula.

Lemma 7.2.3 If

d Xt = µ(t, Xt )dt +
n∑

i=1

σi (t, Xt )dW i
t

and

dYt = ν(t, Yt )dt +
n∑

i=1

ρi (t, Yt )dW i
t

then

d(Xt Yt ) = Xt dYt + Yt d Xt +
n∑

i=1

σi (t, Xt )ρi (t, Yt )dt.

Change of
measure

Pricing and hedging in the multiple stock model will follow a familiar pattern. First
we find an equivalent probability measure under which all of the discounted stock
prices {S̃i

t }t≥0, i = 1, . . . , n, given by S̃i
t = e−r t Si

t , are martingales. We then
use a multifactor version of the Martingale Representation Theorem to construct a
replicating portfolio.

Construction of the martingale measure is, of course, via a multifactor version of
the Girsanov Theorem.

Theorem 7.2.4 (Multifactor Girsanov Theorem) Let {W i
t }t≥0, i = 1, . . . , n, be

independent Brownian motions under the measure P generating the filtration {Ft }t≥0

and let {θi (t)}t≥0, i = 1, . . . , n, be {Ft }t≥0-previsible processes such that

EP

[
exp

(
1

2

∫ T

0

n∑

i=1

θ2
i (s)ds

)]
ds < ∞. (7.7)

Define

Lt = exp

(
−

n∑

i=1

(∫ T

0
θi (s)dW i

s +
1

2

∫ T

0
θ2

i (s)ds

))

and let P(L) be the probability measure defined by

dP(L)

dP

∣∣∣∣∣
Ft

= Lt .
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Then under P(L) the processes {Xi
t }t≥0, i = 1, . . . , n, defined by

Xi
t = W i

t +
∫ t

0
θi (s)ds

are all martingales.

Sketchofproof: The proof mimics that in the one-factor case. It is convenient to write
Lt =

∏n
i=1 Li

t where

Li
t = exp

(
−

∫ t

0
θi (s)dW i

s −
1

2

∫ t

0
θ2

i (s)ds

)
.

That {Lt }t≥0 defines a martingale follows from (7.7) and the independence of the
Brownian motions {W i

t }t≥0, i = 1, . . . , n.
To check that {Xi

t }t≥0 is a (local) P(L)-martingale we find the stochastic differen-
tial equation satisfied by {Xi

t Lt }t≥0. Since

d Li
t = −θi (t)Li

t dW i
t ,

repeated application of our product rule gives

d Lt = −Lt

n∑

i=1

θi (t)dW i
t .

Moreover,
d Xi

t = dW i
t + θi (t)dt,

and so another application of our product rule gives

d(Xi
t Lt ) = Xi

t d Lt + Lt dW i
t + Ltθi (t)dt − Ltθi (t)dt

= −Xi
t Lt

n∑

i=1

θi (t)dW i
t + Lt dW i

t .

Combined with the boundedness condition (7.7), this proves that {Xi
t Lt }t≥0 is a

P-martingale and hence {Xi
t }t≥0 is a P(L)-martingale. P(L) is equivalent to P so

{Xi
t }t≥0 has quadratic variation [Xi ]t = t with P(L)-probability one and once

again Lévy’s characterisation of Brownian motion confirms that {Xi
t }t≥0 is a P(L)-

Brownian motion as required. ÿ

A martingale
measure

As promised we now use this to find a measure Q, equivalent to P, under which
the discounted stock price processes {S̃i

t }t≥0, i = 1, . . . , n, are all martingales. The
measure Q will be one of the measures P(L) of Theorem 7.2.4. We just need to
identify the appropriate drifts {θi }t≥0.

The discounted stock price {S̃i
t }t≥0, defined by S̃i

t = B−1
t Si

t , is governed by the
stochastic differential equation

d S̃i
t = S̃i

t (µi (t) − r) dt + S̃i
t

n∑

j=1

σi j (t)dW j
t

= S̃i
t

(
µi (t) − r −

n∑

j=1

θ j (t)σi j (t)

)
dt + S̃i

t

n∑

j=1

σi j (t)d X j
t ,



168 bigger models

where as in Theorem 7.2.4

d X j
t = θ j (t)dt + dW j

t .

The discounted stock price processes will (simultaneously) be (local) martingales
under Q = P(L) if we can make all the drift terms vanish. That is, if we can find
{θ j (t)}t≥0, j = 1, . . . , n, such that

µi (t) − r −
n∑

j=1

θ j (t)σi j (t) = 0 for all i = 1, . . . , n.

Dropping the dependence on t in our notation and writing

µ = (µ1, . . . , µn) , θ = (θ1, . . . , θn) , 1 = (1, . . . , 1) and σ =
(
σi j

)
,

this becomes

µ − r1 = θσ. (7.8)

A solution certainly exists if the matrix σ is invertible, an assumption that we made
in setting up our multiple asset model.

In order to guarantee that the discounted price processes are martingales, not just
local martingales, once again we impose a Novikov condition:

EQ

[
exp

(∫ t

0

1

2

n∑

j=1

σ 2
i j (t)dt

)]
< ∞ for each i.

Replicating
the claim

At this point we guess, correctly, that the value of a claim CT ∈ FT at time t < T is
its discounted expected value under the measure Q. To prove this we show that there
is a self-financing replicating portfolio and this we infer from a multifactor version
of the Martingale Representation Theorem.

Theorem 7.2.5 (Multifactor Martingale Representation Theorem) Let

{W i
t }t≥0, i = 1, . . . , n,

be independent P-Brownian motions generating the filtration {Ft }t≥0. Let
{M1

t , . . . , Mn
t }t≥0 be given by

d Mi
t =

n∑

j=1

σi j (t)dW j
t ,

where

E

[
exp

(
1

2

∫ T

0

n∑

j=1

σi j (t)
2dt

)]
< ∞.

Suppose further that the volatility matrix
(
σi j (t)

)
is non-singular (with probability

one). Then if {Nt }t≥0 is any one-dimensional
(
P, {Ft }t≥0

)
-martingale there exists an

n-dimensional {Ft }t≥0-previsible process {φt }t≥0 = {φ1
t , . . . , φn

t }t≥0 such that

Nt = N0 +
n∑

j=1

∫ t

0
φ

j
s d M j

s .
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A proof of this result is beyond our scope here. It can be found, for example, in
Protter (1990). Notice that the non-singularity of the matrix σ reflects our remark
about non-vanishing quadratic variation after the proof of Theorem 4.6.2.

We are now in a position to verify that our guess was correct: the value of a
claim in the multifactor world is its discounted expected value under the martingale
measure Q.

Let CT ∈ FT be a claim at time T and let Q be the martingale measure obtained
above. We write

Mt = EQ
[

B−1
T CT

∣∣∣Ft

]
.

Since, by assumption, the matrix σ =
(
σi j

)
is invertible, the n-factor Martin-

gale Representation Theorem tells us that there is an {Ft }t≥0-previsible process
{φ1

t , . . . , φn
t }t≥0 such that

Mt = M0 +
n∑

j=1

∫ t

0
φ

j
s d S̃ j

s .

Our hedging strategy will be to hold φi
t units of the i th stock at time t for each

i = 1, . . . , n, and to hold ψt units of bond where

ψt = Mt −
n∑

j=1

φ
j
t S̃ j

t .

The value of the portfolio is then Vt = Bt Mt , which at time T is exactly the value of
the claim, and the portfolio is self-financing in that

dVt =
n∑

j=1

φ
j
t d S j

t + ψt d Bt .

In the absence of arbitrage the value of the derivative at time t is

Vt = BtE
Q

[
B−1

T CT

∣∣∣Ft

]
= e−r(T −t)EQ [CT |Ft ]

as predicted.

Remark: The multifactor market that we have constructed is complete and arbitrage-
free. We have simplified the exposition by insisting that the number of sources
of noise in our market is exactly matched by the number of risky tradable assets
that we are modelling. More generally, we could model k risky assets driven by d
sources of noise. Existence of a martingale measure corresponds to existence of a
solution to (7.8). It is uniqueness of the martingale measure that provides us with the
Martingale Representation Theorem and hence the ability to replicate any claim. For
a complete arbitrage-free market we then require that d ≤ k and that σ has full rank.
That is, the number of independent sources of randomness should exactly match the
number of ‘independent’ risky assets trading in our market. ÿ
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The multi-
dimensional
Black–
Scholes
equation

In Exercise 7 you are asked to use a delta-hedging argument to obtain this price
as the solution to the multidimensional Black–Scholes equation. This partial dif-
ferential equation can also be obtained directly from the expectation price and a
multidimensional version of the Feynman–Kac stochastic representation. We quote
the appropriate version of this useful result here.

Theorem 7.2.6 (Multidimensional Feynman–Kac stochastic representation) Let
σ(t, x) = (σi j (t, x)) be a real symmetric n × n matrix, ï : Rn → R and
µi : R+ × Rn → R, i = 1, . . . , n, be real-valued functions and r be a constant. We
suppose that the function F(t, x), defined for (t, x) ∈ R+ × Rn, solves the boundary
value problem

∂ F

∂t
(t, x) +

n∑

i=1

µi (t, x)
∂ F

∂xi
(t, x) +

1

2

n∑

i, j=1

Ci j (t, x)
∂2 F

∂xi∂x j
(t, x) − r F(t, x) = 0,

F(T, x) = ï(x),

where Ci j (t, x) =
∑n

k=1 σik(t, x)σ jk(t, x).
Assume further that for each i = 1, . . . , n, the process {Xi

t }t≥0 solves the
stochastic differential equation

d Xi
t = µi (t, Xt )dt +

n∑

j=1

σi j (t, Xt )dW j
t

where Xt = {X1
t , . . . , Xn

t }. Finally, suppose that
∫ T

0
E

[
n∑

j=1

(
σi j (s, Xs)

∂ F

∂xi
(s, Xs)

)2
]

ds < ∞, i = 1, . . . , n.

Then
F(t, x) = e−r(T −t)E [ï(XT )| Xt = x] .

Corollary 7.2.7 Let St = {S1
t , . . . , Sn

t } be as above and CT = ï(ST ) be a claim
at time T . Then the price of the claim at time t < T ,

Vt = e−r(T −t)EQ [ï(ST )|Ft ] = e−r(T −t)EQ [ï(ST )| St = x] ÿ F(t, x)

satisfies

∂ F

∂t
(t, x) +

1

2

n∑

i, j=1

Ci j (t, x)xi x j
∂2 F

∂xi∂x j
(t, x) + r

n∑

i=1

xi
∂ F

∂xi
(t, x) − r F(t, x) = 0,

F(T, x) = ï(x).

Proof: The process {St }t≥0 is governed by

d Si
t = r Si

t dt +
n∑

j=1

σi j (t, St )S j
t d X j

t ,

where {X j
t }t≥0, j = 1, . . . , n, are Q-Brownian motions, so the result follows from

an application of Theorem 7.2.6. ÿ
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Numeraires The more assets there are in our market, the more freedom we have in choosing our
‘numeraire’ or ‘reference asset’. Usually it is chosen to be a cash bond, but in fact
it could be any of the tradable assets available. In the context of foreign exchange
we checked that we could use as reference the riskless bond in either currency and
always obtain the same value for a claim. Here we consider two numeraires in the
same market, but they may have non-zero volatility.

Suppose that our market consists of n + 2 tradable assets whose prices we denote
by {B1

t , B2
t , S1

t , . . . , Sn
t }t≥0. We compare the prices obtained for a derivative by

two traders, one of whom chooses {B1
t }t≥0 as numeraire and the other of whom

chooses {B2
t }t≥0. We always assume our multidimensional geometric Brownian

motion model for the evolution of prices, but now neither of the processes {Bi
t }t≥0

necessarily has finite variation.
If we choose {B1

t }t≥0 as numeraire then we first find an equivalent measure, Q1,
under which the asset prices discounted by {B1

t }t≥0, that is
{

B2
t

B1
t
,

S1
t

B1
t
, . . . ,

Sn
t

B1
t

}

t≥0

,

are all Q1-martingales. The value that we obtain for a derivative with payoff CT at
time T is then

V 1
t = B1

t EQ1

[
CT

B1
T

∣∣∣∣∣Ft

]

(see Exercise 7).
If instead we had chosen {B2

t }t≥0 as our numeraire then the price would have been

V 2
t = B2

t EQ2

[
CT

B2
T

∣∣∣∣∣Ft

]

where Q2 is an equivalent probability measure under which
{

B1
t

B2
t
,

S1
t

B2
t
, . . . ,

Sn
t

B2
t

}

t≥0

are all martingales. We have not proved that such a measure Q2 is unique, but if
a claim can be replicated we obtain the same price for any measure Q2 with this
property.

Suppose that we choose Q2 so that its Radon–Nikodym derivative with respect to
Q1 is given by

dQ2

dQ1

∣∣∣∣∣
Ft

=
B2

t

B1
t
.

Notice that since Q1 is a martingale measure for an investor choosing {B1
t }t≥0 as

numeraire, we know that {B2
t /B1

t }t≥0 is a Q1-martingale. Recall that if

dQ

dP

∣∣∣∣
Ft

= ζt , for all t > 0,
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then, for 0 ≤ s ≤ t ,

EQ [ Xt |Fs] = EP

[
ζt

ζs
Xt

∣∣∣∣Fs

]
.

We first apply this to check that {Si
t /B2

t }t≥0 is a Q2-martingale for each i =
1, . . . , n.

EQ2
[

Si
t

B2
t

∣∣∣∣Fs

]
= EQ1

[
B2

t

B1
t

B1
s

B2
s

Si
t

B2
t

∣∣∣∣∣Fs

]

= EQ1

[
B1

s

B2
s

Si
t

B1
t

∣∣∣∣∣Fs

]

=
B1

s

B2
s

Si
s

B1
s

=
Si

s

B2
s
,

where the last line follows since B1
s and B2

s are Fs-measurable and {Si
t /B1

t }t≥0 is
a Q1-martingale. In other words, {Si

t /B2
t }t≥0 is a Q2-martingale as required. That

{B1
t /B2

t }t≥0 is a Q2-martingale follows in the same way.
The price for our derivative given that we chose {B2

t }t≥0 as numeraire is then

V 2
t = EQ2

[
B2

t

B2
T

CT

∣∣∣∣∣Ft

]

= EQ1

[
B2

T

B1
T

B1
t

B2
t

B2
t

B2
T

CT

∣∣∣∣∣Ft

]

= EQ1

[
B1

t

B1
T

CT

∣∣∣∣∣Ft

]
= V 1

t .

In other words, the choice of numeraire is unimportant – we always arrive at the
same price.

Quantos We now apply our multifactor technology in an example. We are going to price a
quanto forward contract.

Definition 7.2.8 A financial asset is called a quanto product if it is denominated
in a currency other than that in which it is traded.

A quanto forward contract is also known as a guaranteed exchange rate forward. It
is most easily explained through an example.

Example 7.2.9 BP, a UK company, has a Sterling denominated stock price that
we denote by {St }t≥0. For a dollar investor, a quanto forward contract on BP
stock with maturity T has payoff (ST − K ) converted into dollars according to
some prearranged exchange rate. That is the payout will be $E(ST − K ) for some
preagreed E, where ST is the Sterling asset price at time T .

As in our foreign exchange market of §5.3 we shall assume that there is a riskless
cash bond in each of the dollar and Sterling markets, but now we have two random
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processes to model, the stock price, {St }t≥0 and the exchange rate, that is the value of
one pound in dollars which we denote by {Et }t≥0. This will then require a two-factor
model.

Black–Scholes quanto model: We write {Bt }t≥0 for the dollar cash bond and
{Dt }t≥0 for its Sterling counterpart. Writing Et for the dollar worth of one
pound at time t and St for the Sterling asset price at time t , our model is

Dollar bond Bt = ert ,

Sterling bond Dt = eut ,

Sterling asset price St = S0 exp
(
νt + σ1W 1

t

)
,

Exchange rate Et = E0 exp
(
λt + ρσ2W 1

t +
√

1 − ρ2σ2W 2
t

)
,

where {W 1
t }t≥0 and {W 2

t }t≥0 are independent P-Brownian motions and r , u,
ν, λ, σ1, σ2 and ρ are constants.

In this model the volatilities of {St }t≥0 and {Et }t≥0 are σ1 and σ2 respectively
and {W 1

t , ρW 1
t +

√
1 − ρ2W 2

t }t≥0 is a pair of correlated Brownian motions with
correlation coefficient ρ. There is no extra generality in replacing the expressions for
St and Et by

St = S0 exp
(
νt + σ11W̃ 1

t + σ12W̃ 2
t

)
,

Et = E0 exp
(
λt + σ21W̃ 1

t + σ22W̃ 2
t

)
,

for independent Brownian motions {W̃ 1
t , W̃ 2

t }t≥0.

Pricing a
quanto
forward
contract

What is the value of K that makes the value at time zero of the quanto forward
contract zero?

As in our discussion of foreign exchange, the first step is to reformulate the
problem in terms of the dollar tradables. We now have three dollar tradables: the
dollar worth of the Sterling bond, Et Dt ; the dollar worth of the stock, Et St ; and
the dollar cash bond, Bt . Choosing the dollar cash bond as numeraire, we first find
the stochastic differential equations governing the discounted values of the other two
dollar tradables. We write Yt = B−1

t Et Dt and Zt = B−1
t Et St . Since

d Et =
(

λ +
1

2
σ 2

2

)
Et dt + ρσ2 Et dW 1

t +
√

1 − ρ2σ2 Et dW 2
t ,

application of our multifactor integration by parts formula gives

d(Et Dt ) = uEt Dt dt +
(

λ+
1

2
σ 2

2

)
Et Dt dt +ρσ2 Et Dt dW 1

t +
√

1 − ρ2 σ2 Et Dt dW 2
t

and

dYt =
(

λ +
1

2
σ 2

2 + u − r

)
Yt dt + Yt

(
ρσ2dW 1

t +
√

1 − ρ2σ2dW 2
t

)
.
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Similarly, since

d St =
(

ν +
1

2
σ 2

1

)
St dt + σ1St dW 1

t ,

d (Et St ) =
(

ν +
1

2
σ 2

1

)
Et St dt + σ1 Et St dW 1

t

+
(

λ +
1

2
σ 2

2

)
St Et dt + ρσ2St Et dW 1

t

+
√

1 − ρ2σ2St Et dW 2
t + ρσ1σ2St Et dt

and so

d Zt =
(

ν +
1

2
σ 2

1 + λ +
1

2
σ 2

2 + ρσ1σ2 − r

)
Zt dt

+ (σ1 + ρσ2) Zt dW 1
t +

√
1 − ρ2σ2 Zt dW 2

t .

Now we seek a change of measure to make these two processes martingales. Our
calculations after the proof of Theorem 7.2.4 reduce this to finding θ1, θ2 such that

λ +
1

2
σ 2

2 + u − r − θ1ρσ2 − θ2

√
1 − ρ2σ2 = 0

and

ν +
1

2
σ 2

1 + λ +
1

2
σ 2

2 + ρσ1σ2 − r − θ1 (σ1 + ρσ2) − θ2

√
1 − ρ2σ2 = 0.

Solving this pair of simultaneous equations gives

θ1 =
ν + 1

2σ 2
1 + ρσ1σ2 − u

σ1

and

θ2 =
λ + 1

2σ 2
2 + u − r − ρσ2θ1√

1 − ρ2σ2
.

Under the martingale measure, Q, {X1
t }t≥0 and {X2

t }t≥0 defined by X1
t = W 1

t + θ1t
and X2

t = W 2
t + θ2t are independent Brownian motions. We have

St = S0 exp

((
u − ρσ1σ2 −

1

2
σ 2

1

)
t + σ1 X1

t

)
.

In particular,

ST = exp (−ρσ1σ2T ) S0euT exp

(
σ1 X1

T −
1

2
σ 2

1 T

)

and we are finally in a position to price the forward. Since {X1
t }t≥0 is a Q-Brownian

motion,

EQ

[
exp

(
σ1 X1

T −
1

2
σ 2

1 T

)]
= 1,



175 7.3 asset prices with jumps

so

V0 = e−rT EEQ [(ST − K )]

= e−rT E
(

exp (−ρσ1σ2T ) S0euT − K
)

.

Writing F = S0euT for the forward price in the Sterling market and setting V0 = 0
we see that we should take

K = F exp (−ρσ1σ2T ) .

Remark: The exchange rate is given by

Et = E0 exp

((
r − u −

1

2
σ 2

2

)
t + ρσ2 X1

t +
√

1 − ρ2σ2 X2
t

)
.

It is reassuring to observe that ρX1
t +

√
1 − ρ2 X2

t is a Q-Brownian motion with
variance one so that this expression for {Et }t≥0 is precisely that obtained in §5.3.
Notice also that the discounted stock price process e−r t St is not a martingale; there
is an extra term, reflecting the fact that the Sterling price is not a dollar tradable. ÿ

7.3 Asset prices with jumps

The Black–Scholes framework is highly flexible. The critical assumptions are
continuous time trading and that the dynamics of the asset price are continuous.
Indeed, provided this second condition is satisfied, the Black–Scholes price can be
justified as an asymptotic approximation to the arbitrage price under discrete trading,
as the trading interval goes to zero. But are asset prices continuous?

So far, we have always assumed that any contracts written will be honoured. In
particular, if a government or company issues a bond, we have ignored the possibility
that they might default on that contract at maturity. But defaults do happen. This has
been dramatically illustrated in recent years by credit crises in Asia, Latin America
and Russia. If a company A holds a substantial quantity of company B’s debt
securities, then a default by B might be expected to have the knock-on effect of
a sudden drop in company A’s share price. How can we incorporate these market
‘shocks’ into our model?

A Poisson
process of
jumps

By their very nature, defaults are unpredictable. If we assume that we have absolutely
no information to help us predict the default times or other market shocks, then we
should model them by a Poisson random variable. That is the time between shocks
is exponentially distributed and the number of shocks by time t , denoted by Nt , is
a Poisson random variable with parameter λt for some λ > 0. Between shocks we
assume that an asset price follows our familiar geometric Brownian motion model.

A typical model for the evolution of the price of a risky asset with jumps is

d St

St
= µdt + σdWt − δd Nt , (7.9)
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where {Wt }t≥0 and {Nt }t≥0 are independent. To make sense of equation (7.9) we
write it in integrated form, but then we must define the stochastic integral with respect
to {Nt }t≥0. Writing τi for the time of the i th jump of the Poisson process, we define

∫ t

0
f (u, Su)d Nu =

Nt∑

i=1

f
(
τ(i)−, Sτ(i)−

)
.

For the model (7.9), if there is a shock, then the asset price is decreased by a factor
of (1 − δ). This observation tells us that the solution to (7.9) is

St = S0 exp

((
µ −

1

2
σ 2

)
t + σ Wt

)
(1 − δ)Nt .

To deal with more general models we must extend our theory of stochastic calculus
to incorporate processes with jumps. As usual, the first step is to find an (extended)
Itô formula.

Assumption: We assume that asset price processes are càdlàg, that is they are
right continuous with left limits.

Theorem 7.3.1 (Itô’s formula with jumps) Suppose

dYt = µt dt + σt dWt + νt d Nt

where, under P, {Wt }t≥0 is a standard Brownian motion and {Nt }t≥0 is a Poisson
process with intensity λ. If f is a twice continuously differentiable function on R

then

f (Yt ) = f (Y0) +
∫ t

0
f ′(Ys−)dYs +

1

2

∫ t

0
f ′′(Ys−)σ 2

s ds

−
Nt∑

i=1

f ′(Tτi −)
(
Yτi − Yτi −

)
+

Nt∑

i=1

(
f (Yτi ) − f (Yτi −)

)
, (7.10)

where {τi } are the times of the jumps of the Poisson process.

We don’t prove this here, but heuristically it is not difficult to see that this should be
the correct result. The first three terms are exactly what we’d expect if the process
{Yt }t≥0 were continuous, but now, because of the discontinuities, we must distinguish
Ys− from Ys . In between jumps of {Nt }t≥0, precisely this equation should apply,
but we must compensate for changes at jump times. In the first three terms we
have included a term of the form

∑Nt
i=1 f ′(Yτi −)

(
Yτi − Yτi −

)
and the first sum in

equation (7.10) corrects for this. Since Nt is finite, we do not have to correct the term
involving f ′′. Now we add in the actual contribution from the jump times and this is
the second sum.
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Compensation As usual a key rôle will be played by martingales. Evidently a Poisson process,
{Nt }t≥0 with intensity λ under P is not a P-martingale – it is monotone increasing.
But we can write it as a martingale plus a drift. In Exercise 13 it is shown that the
process {Mt }t≥0 defined by Mt = Nt − λt is a P-martingale.

More generally we can consider time-inhomogeneous Poisson processes. For such
processes the intensity {λt }t≥0 is a function of time. The probability of a jump in
the time interval [t, t + δt) is λtδt + o(δt). Thus, for example, the probability that
there is no jump in the interval [s, t] is exp

(
−

∫ t
s λudu

)
. The corresponding Poisson

martingale is Mt = Nt −
∫ t

0 λsds. The process {%t }t≥0 given by %t =
∫ t

0 λsds is
the compensator of {Nt }t≥0.

In Exercise 14 it is shown that just as integration with respect to Brownian
martingales gives rise to (local) martingales, so integration with respect to Poisson
martingales gives rise to martingales.

Poisson
exponential
martingales

Example 7.3.2 Let {Nt }t≥0 be a Poisson process with intensity {λt }t≥0 under P

where for each t > 0,
∫ t

0 λsds < ∞. For a given bounded deterministic function
{αt }t≥0, let

Lt = exp

(∫ t

0
αsd Ms +

∫ t

0

(
1 + αs − eαs

)
λsds

)
(7.11)

where d Ms = d Ns − λsds. Find the stochastic differential equation satisfied by
{Lt }t≥0 and deduce that {Lt }t≥0 is a P-martingale.

Solution: First write

Zt =
∫ t

0
αsd Ms +

∫ t

0

(
1 + αs − eαs

)
λsds

so that Lt = eZt . Then

d Zt = αt d Nt − αtλt dt +
(
1 + αt − eαt

)
λt dt

and by our generalised Itô formula

d Lt = Lt−d Zt +
(
−eZt−αt + eZt−+αt − eZt−

)
d Nt ,

where we have used the fact that if a jump in {Zt }t≥0 takes place at time t , then that
jump is of size αt−. Substituting and rearranging give

d Lt = Lt−αt d Mt + Lt−
(
1 + αt − eαt

)
λt dt − Lt−

(
1 + αt − eαt

)
d Nt

= Lt−
(
eαt − 1

)
d Mt .

By Exercise 14, {Lt }t≥0 is a P-martingale. ÿ

Definition 7.3.3 Processes of the form of {Lt }t≥0 defined by (7.11) will be called
Poisson exponential martingales.

Our Poisson exponential martingales and Brownian exponential martingales are
examples of Doléans–Dade exponentials.
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Definition 7.3.4 For a semimartingale {Xt }t≥0 with X0 = 0, the Doléans–Dade
exponential of {Xt }t≥0 is the unique semimartingale solution {Zt }t≥0 to

Zt = 1 +
∫ t

0
Zs−d Xs .

Change of
measure

In the same way as we used Brownian exponential martingales to change measure
and thus ‘transform drift’ in the continuous world, so we shall combine Brownian
and Poisson exponential martingales in our discontinuous asset pricing models. A
change of drift for a Poisson martingale will correspond to a change of intensity for
the Poisson process {Nt }t≥0. More precisely, we have the following version of the
Girsanov Theorem.

Theorem 7.3.5 (Girsanov Theorem for asset prices with jumps) Let {Wt }t≥0 be a
standard P-Brownian motion and {Nt }t≥0 a (possibly time-inhomogeneous) Poisson
process with intensity {λt }t≥0 under P. That is

Mt = Nt −
∫ t

0
λudu

is a P-martingale. We write Ft for the σ -field generated by FW
t ∪FN

t . Suppose that
{θt }t≥0 and {φt }t≥0 are {Ft }t≥0-previsible processes with φt positive for each t, such
that ∫ t

0
‖θs‖2ds < ∞ and

∫ t

0
φsλsds < ∞.

Then under the measure Q whose Radon–Nikodym derivative with respect to P is
given by

dQ

dP

∣∣∣∣
Ft

= Lt

where L0 = 1 and
d Lt

Lt−
= θt dWt − (1 − φt ) d Mt ,

the process {Xt }t≥0 defined by Xt = Wt −
∫ t

0 θsds is a Brownian motion and {Nt }t≥0

has intensity {φtλt }t≥0.

In Exercise 16 it is shown that {Lt }t≥0 is actually the product of a Brownian
exponential martingale and a Poisson exponential martingale.

The proof of Theorem 7.3.5 is once again beyond our scope, but to check that the
processes {Xt }t≥0 and

{
Nt −

∫ t
0 φsλsds

}
t≥0 are both local martingales under Q is an

exercise based on the Itô formula.

Heuristics: An informal justification of the result is based on the extended multipli-
cation table:

× dWt d Nt dt

dWt dt 0 0
d Nt 0 d Nt 0
dt 0 0 0
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Thus, for example,

d

(
Lt

(
Nt −

∫ t

0
φsλsds

))
=

(
Nt −

∫ t

0
φsλsds

)
d Lt + Lt (d Nt − φtλt dt)

− Lt (1 − φt )(d Nt )
2

=
(

Nt −
∫ t

0
φsλsds

)
d Lt + Lt (d Mt + λt dt)

− Ltφtλt dt − Lt (1 − φt ) (d Mt + λt dt)

=
(

Nt −
∫ t

0
φsλsds

)
d Lt + Ltφt d Mt .

Since {Mt }t≥0 and {Lt }t≥0 are P-martingales, subject to appropriate boundedness

assumptions,
{

Lt

(
Nt −

∫ t
0 φsλsds

)}
t≥0

should be a P-martingale and consequently
{(

Nt −
∫ t

0 φsλsds
)}

t≥0
should be a Q-martingale. ÿ

Our instinct is to use the extended Girsanov Theorem to find an equivalent probabil-
ity measure under which the discounted asset price is a martingale.

Suppose then that
d St

St
= µdt + σdWt − δd Nt .

Evidently the discounted asset price satisfies

d S̃t

S̃t
= (µ − r) dt + σdWt − δd Nt .

But now we see that there are many choices of {θt }t≥0 and {φt }t≥0 in Theorem 7.3.5
that lead to a martingale measure. The difficulty of course is that our market is not
complete, so that although for any replicable claim we can use any of the martingale
measures and arrive at the same answer, there are claims that cannot be hedged.
There are two independent sources of risk, the Brownian motion and the Poisson
point process, and so if we are to be able to hedge arbitrary claims CT ∈ FT , we
need two tradable risky assets subject to the same two noises.

Market price
of risk

So if there are enough assets available to hedge claims, can we find a measure under
which once discounted they are all martingales? Remember that otherwise there will
be arbitrage opportunities in our market.

If the asset price has no jumps, we can write

d St

St
= µdt + σdWt

= (r + γ σ) dt + σdWt ,

where γ = (µ − r)/σ is the market price of risk. We saw in Chapter 5 that in
the absence of arbitrage (so when there is an equivalent martingale measure for our
market), γ will be the same for all assets driven by {Wt }t≥0.

If the asset price has jumps, then investors will expect to be compensated for the
additional risk associated with the possibility of downward jumps, even if we have
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‘compensated’ the jumps (replaced d Nt by d Mt ) so that their mean is zero. The price
of such an asset is governed by

d St

St
= µdt + σdWt + νd Mt

= (r + γ σ + ηλν) dt + σdWt + νd Mt

where ν measures the sensitivity of the asset price to the market shock and η is
the excess rate of return per unit of jump risk. Again if there is to be a martingale
measure under which all the discounted asset prices are martingales, then σ and η

should be the same for all assets whose prices are driven by {Wt }t≥0 and {Nt }t≥0.
The martingale measure, Q, will then be the measure Q of Theorem 7.3.5 under
which

Wt +
∫ t

0

µ − r

σ
ds and Mt −

∫ t

0
ηλds

are martingales. That is we take θ = γ and φ = −η.

Multiple
noises

The same ideas can be extended to assets driven by larger numbers of independent
noises. For example, we might have n assets with dynamics

d Si
t

Si
t

= µi dt +
n∑

α=1

σiαdW α
t +

m∑

β=1

νiβd Mβ
t

where, under P, {W α
t }t≥0, α = 1, . . . , n, are independent Brownian motions and

{Mβ
t }t≥0, β = 1, . . . , m, are independent Poisson martingales.
There will be an equivalent martingale measure under which all the discounted

asset prices are martingales if we can associate a unique market price of risk with
each source of noise. In this case we can write

µi = r +
n∑

α=1

γασiα +
m∑

β=1

ηβλβνiβ.

All discounted asset prices will be martingales under the measure Q for which

W̃ α
t = W α

t + γαt

is a martingale for each α and

M̃β
t = Mβ

t + ηβλβ t

is a martingale for each β.
As always it is replication that drives the theory. Note that in order to be able to

hedge arbitrary CT ∈ FT we’ll require n + m ‘independent’ tradable risky assets
driven by these sources of noise. With fewer assets at our disposal there will be
claims CT that we cannot hedge.

All this is little changed if we take the coefficients µ, σ , λ to be adapted to the
filtration generated by {W i

t }t≥0, i = 1, . . . , n; see Exercise 15. Since we are not
introducing any extra sources of noise, the same number of assets will be needed for
market completeness. These ideas form the basis of Jarrow–Madan theory.
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7.4 Model error

Even in the absence of jumps (or between jumps) we have given only a very vague
justification for the Samuelson model

d St = µSt dt + σ St dWt . (7.12)

Moreover, although we have shown that under this model the pricing and hedging of
derivatives are dictated by the single parameter σ , we have said nothing about how
actually to estimate this number from market data. So what is market practice?

Implied
volatility

Vanilla options are generally traded on exchanges, so if a trader wants to know the
price of, say, a European call option, then she can read it from her trading screen.
However, for an over-the-counter derivative, the price is not quoted on an exchange
and so one needs a pricing model. The normal practice is to build a Black–Scholes
model and then calibrate it to the market – that is estimate σ from the market. But it
is not usual to estimate σ directly from data for the stock price. Instead one uses the
quoted price for exchange-traded options written on the same stock. The procedure
is simple: for given strike price and maturity, we can think of the Black–Scholes
pricing formula for a European option as a mapping from volatility, σ , to price V.
In Exercise 17, it is shown that for vanilla options this mapping is strictly monotone
and so can be inverted to infer σ from the price. In other words, given the option
price one can recover the corresponding value of σ in the Black–Scholes formula.
This number is the so-called implied volatility.

If the markets really did follow our Black–Scholes model, then this procedure
would give the same value of σ , irrespective of the strike price and maturity of the
exchange-traded option chosen. Sadly, this is far from what we observe in reality:
not only is there dependence on the strike price for a fixed maturity, giving rise to
the famous volatility smile, but also implied volatility tends to increase with time
to maturity (Figure 7.1). Market practice is to choose as volatility parameter for
pricing an over-the-counter option the implied volatility obtained from ‘comparable’
exchange-traded options.

Hedging
error

This procedure can be expected to lead to a consistent price for exchange-traded and
over-the-counter options and model error is not a serious problem. The difficulties
arise in hedging. Even for exchange-traded options a model is required to determine
the replicating portfolio. We follow Davis (2001).

Suppose that the true stock price process follows

d St = αt St d St + βt St dWt

where {αt }t≥0 and {βt }t≥0 are {Ft }t≥0-adapted processes, but we price and hedge an
option with payoff ï(ST ) at time T as though {St }t≥0 followed equation (7.12) for
some parameter σ .

Our estimate for the value of the option at time t < T will be V (t, St ) where
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Figure 7.1 Implied volatility as a function of strike price andmaturity for European call options based on
the FTSE stock index.

V (t, x) satisfies the Black–Scholes partial differential equation

∂V

∂t
(t, x) + r x

∂V

∂x
(t, x) +

1

2
σ 2x2 ∂2V

∂x2
(t, x) − r V (t, x) = 0,

V (T, x) = ï(x).

Our hedging portfolio consists at time t of φt = ∂V
∂x (t, St ) units of stock and cash

bonds with total value ψt ert ÿ V (t, St ) − φt St .
Our first worry is that because of model misspecification, the portfolio is not

self-financing. So what is the cost of following such a strategy? Since the cost of
purchasing the ‘hedging’ portfolio at time t is V (t, St ), the incremental cost of the
strategy over an infinitesimal time interval [t, t + δt) is

∂V

∂x
(t, St )

(
St+δt − St

)
+

(
V (t, St ) −

∂V

∂x
(t, St )St

)
(erδt − 1)

− V (t + δt, St+δt ) + V (t, St ).

In other words, writing Zt for our net position at time t , we have

d Zt =
∂V

∂x
(t, St )d St +

(
V (t, St ) −

∂V

∂x
(t, St )St

)
rdt − dV (t, St ).

Since V (t, x) solves the Black–Scholes partial differential equation, applying Itô’s



183 7.4 model error

formula gives

d Zt =
∂V

∂x
(t, St )d St +

(
V (t, St ) −

∂V

∂x
(t, St )St

)
rdt

−
∂V

∂t
(t, St )dt −

∂V

∂x
(t, St )d St −

1

2

∂2V

∂x2
(t, St )β

2
t S2

t dt

=
1

2
S2

t
∂2V

∂x2

(
σ 2 − β2

t

)
dt.

Irrespective of the model, V (T, ST ) = ï(ST ) precisely matches the claim against
us at time T , so our net position at time T (having honoured the claim ï(ST ) against
us) is

ZT =
∫ T

0

1

2
S2

t
∂2V

∂x2
(t, St )

(
σ 2 − β2

t

)
dt.

For European call and put options ∂2V
∂x2 > 0 (see Exercise 18) and so if σ 2 > β2

t
for all t ∈ [0, T ] our hedging strategy makes a profit. This means that regardless of
the price dynamics, we make a profit if the parameter σ in our Black–Scholes model
dominates the true diffusion coefficient β. This is key to successful hedging. Our
calculation won’t work if the price process has jumps, although by choosing σ large
enough one can still arrange for ZT to have positive expectation.

The choice of σ is still a tricky matter. If we are too cautious no one will buy
the option, too optimistic and we are exposed to the risk associated with changes
in volatility and we should try to hedge that risk. Such hedging is known as vega
hedging, the Greek vega of an option being the sensitivity of its Black–Scholes
price to changes in σ . The idea is the same as that of delta hedging (Exercise 5
of Chapter 5). For example, if we buy an over-the-counter option for which ∂V

∂σ
= v,

then we also sell a number v/v′ of a comparable exchange traded option whose value
is V ′ and for which ∂V ′

∂σ
= v′. The resulting portfolio is said to be vega-neutral.

Stochastic
volatility and
implied
volatility

Since we cannot observe the volatility directly, it is natural to try to model it as
a random process. A huge amount of effort has gone into developing so-called
stochastic volatility models. Fat-tailed returns distributions observed in data can
be modelled in this framework and sometimes ‘jumps’ in the asset price can be
best modelled by jumps in the volatility. For example if jumps occur according to
a Poisson process with constant rate and at the time, τ , of a jump, Sτ /Sτ− has
a lognormal distribution, then the distribution of St will be lognormal but with
variance parameter given by a multiple of a Poisson random variable (Exercise 19).
Stochastic volatility can also be used to model the ‘smile’ in the implied volatility
curve and we end this chapter by finding the correspondence between the choice of a
stochastic volatility model and of an implied volatility model. Once again we follow
Davis (2001). A typical stochastic volatility model takes the form

d St = µSt dt + σt St dW 1
t ,

dσt = a(St , σt )dt + b(St , σt )

(
ρdW 1

t +
√

1 − ρ2dW 2
t

)
,
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where {W 1
t }t≥0, {W 2

t }t≥0 are independent P-Brownian motions, ρ is a constant in
(0, 1) and the coefficients a(x, σ ) and b(x, σ ) define the volatility model.

As usual we’d like to find a martingale measure. If Q is equivalent to P, then its
Radon–Nikodym derivative with respect to P takes the form

dQ

dP

∣∣∣∣
Ft

= exp

(
−

∫ t

0
θ̂sdW 1

s −
1

2

∫ t

0
θ̂2

s ds −
∫ t

0
θsdW 2

s −
1

2

∫ t

0
θ2

s ds

)

for some integrands {θ̂t }t≥0 and {θt }t≥0. In order for the discounted asset price
{S̃t }t≥0 to be a Q-martingale, we choose

θ̂t =
µ − r

σt
.

The choice of {θt }t≥0 however is arbitrary as {σt }t≥0 is not a tradable and so no
arbitrage argument can be brought to bear to dictate its drift. Under Q,

X1
t = W 1

t +
∫ t

0
θ̂sds

and

X2
t = W 2

t +
∫ t

0
θsds

are independent Brownian motions. The dynamics of {St }t≥0 and {σt }t≥0 are then
most conveniently written as

d St = r St dt + σt St d X1
t

and

dσt = ã(St , σt )dt + b(St , σt )

(
ρd X1

t +
√

1 − ρ2d X2
t

)

where

ã(St , σt ) = a(St , σt ) − b(St , σt )

(
ρθ̂t +

√
1 − ρ2θt

)
.

We now introduce a second tradable asset. Suppose that we have an option written
on {St }t≥0 whose exercise value at time T is ï(ST ). We define its value at times
t < T to be the discounted value of ï(ST ) under the measure Q. That is

V (t, St , σt ) = EQ
[

e−r(T −t)ï(ST )

∣∣∣Ft

]
.

Our multidimensional Feynman–Kac Stochastic Representation Theorem (combined
with the usual product rule) tells us that the function V (t, x, σ ) solves the partial
differential equation

∂V

∂t
(t, x, σ )+r x

∂V

∂x
(t, x, σ )+ã(t, x, σ )

∂V

∂σ
(t, x, σ )+

1

2
σ 2x2 ∂2V

∂x2
(t, x, σ )

+
1

2
b(t, x, σ )2 ∂2V

∂σ 2
(t, x, σ )+ρσ xb(t, x, σ )

∂2V

∂x∂σ
(t, x, σ )−r V (t, x, σ ) = 0.
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Writing Yt = V (t, St , σt ) and suppressing the dependence of V , ã and b on (t, St , σt )

in our notation, an application of Itô’s formula tells us that

dYt =
∂V

∂t
dt +

∂V

∂x
d St +

∂V

∂σ
dσt +

1

2

∂2V

∂x2
σ 2

t S2
t dt

+
∂2V

∂x∂σ
ρbσt St dt +

1

2

∂2V

∂σ 2
b2dt

=
(

r V − r St
∂V

∂x
− ã

∂V

∂σ
−

1

2
σ 2

t S2
t
∂2V

∂x2
−

1

2
b2 ∂2V

∂σ 2
− ρσt St b

∂2V

∂x∂σ

)
dt

+ r St
∂V

∂x
dt + σt St

∂V

∂x
d X1

t + ã
∂V

∂σ
dt + bρ

∂V

∂σ
d X1

t + b
√

1 − ρ2 ∂V

∂σ
d X2

t

+
1

2
σ 2

t S2
t
∂2V

∂x2
dt + ρbσt St

∂2V

∂x∂σ
dt +

1

2
b2 ∂2V

∂σ 2
dt

= rYt dt + σt St
∂V

∂x
d X1

t + bρ
∂V

∂σ
d X1

t + b
√

1 − ρ2 ∂V

∂σ
d X2

t .

If the mapping σ ì→ y = V (t, x, σ ) is invertible so that σ = D(t, x, y) for some
nice function D, then

dYt = rYt dt + c(t, St , Yt )d X1
t + d(t, St , Yt )d X2

t

for some functions c and d .
We have now created a complete market model with tradables {St }t≥0 and {Yt }t≥0

for which Q is the unique martingale measure. Of course, we have actually created
one such market for each choice of {θt }t≥0 and it is the choice of {θt }t≥0 that specifies
the functions c and d and it is precisely these functions that tell us how to hedge.

So what model for implied volatility corresponds to this stochastic volatility
model? The implied volatility, σ̂ (t), will be such that Yt is the Black–Scholes price
evaluated at (t, St ) if the volatility in equation (7.12) is taken to be σ̂ (t). In this way
each choice of {θt }t≥0, or equivalently model for {Yt }t≥0, provides a model for the
implied volatility.

There is a huge literature on stochastic volatility. A good starting point is Fouque,
Papanicolau and Sircar (2000).

Exercises

1 Check that the replicating portfolio defined in §7.1 is self-financing.

2 Suppose that {W 1
t }t≥0 and {W 2

t }t≥0 are independent Brownian motions under P and
let ρ be a constant with 0 < ρ < 1. Find coefficients {αi j }i, j=1,2 such that

W̃ 1
t = α11W 1

t + α12W 2
t

and
W̃ 2

t = α21W 1
t + α22W 2

t

define two standard Brownian motions under P with E

[
W̃ 1

t W̃ 2
t

]
= ρt . Is your

solution unique?
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3 Suppose that F(t, x) solves the time-inhomogeneous Black–Scholes partial differ-
ential equation

∂ F

∂t
(t, x) +

1

2
σ 2(t)x2 ∂2 F

∂x2
(t, x) + r(t)x

∂ F

∂x
(t, x) − r(t)F(t, x) = 0, (7.13)

subject to the boundary conditions appropriate to pricing a European call option.
Substitute

y = xeα(t), v = Feβ(t), τ = γ (t)

and choose α(t) and β(t) to eliminate the coefficients of v and ∂v
∂y in the resulting

equation and γ (t) to remove the remaining time dependence so that the equation
becomes

∂v

∂τ
(τ, y) =

1

2
y2 ∂2v

∂y2
(τ, y).

Notice that the coefficients in this equation are independent of time and there is no
reference to r or σ . Deduce that the solution to equation (7.13) can be obtained by
making appropriate substitutions in the classical Black–Scholes formula.

4 Let {W i
t }t≥0, i = 1, . . . , n, be independent Brownian motions. Show that {Rt }t≥0

defined by

Rt =

√√√√
n∑

i=1

(W i
t )

2

satisfies a stochastic differential equation. The process {Rt }t≥0 is the radial part of
Brownian motion in Rn and is known as the n-dimensional Bessel process.

5 Recall that we define two-dimensional Brownian motion, {Xt }t≥0, by Xt =
(W 1

t , W 2
t ), where {W 1

t }t≥0 and {W 2
t }t≥0 are independent (one-dimensional) standard

Brownian motions. Find the Kolmogorov backward equation for {Xt }t≥0.
Repeat your calculation if {W 1

t }t≥0 and {W 2
t }t≥0 are replaced by correlated Brown-

ian motions, {W̃ 1
t }t≥0 and {W̃ 1

t }t≥0 with E
[
dW̃ 1

t dW̃ 2
t

]
= ρdt for some −1 < ρ < 1.

6 Use a delta-hedging argument to obtain the result of Corollary 7.2.7.

7 Repeat the Black–Scholes analysis of §7.2 in the case when the chosen numeraire,
{Bt }t≥0, has non-zero volatility and check that the fair price of a derivative with
payoff CT at time T is once again

Vt = BtE
Q

[
CT

BT

∣∣∣∣Ft

]

for a suitable choice of Q (which you should specify).

8 Two traders, operating in the same complete arbitrage-free Black–Scholes market of
§7.2, sell identical options, but make different choices of numeraire. How will their
hedging strategies differ?

9 Find a portfolio that replicates the quanto forward contract of Example 7.2.9.
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10 A quanto digital contract written on the BP stock of Example 7.2.9 pays $1 at time
T if the BP Sterling stock price, ST , is larger than K . Assuming the Black–Scholes
quanto model of §7.2, find the time zero price of such an option and the replicating
portfolio.

11 A quanto call option written on the BP stock of Example 7.2.9 is worth E(ST − K )+
dollars at time T , where ST is the Sterling stock price. Assuming the Black–Scholes
quanto model of §7.2, find the time zero price of the option and the replicating
portfolio.

12 Asian options Suppose that our market, consisting of a riskless cash bond, {Bt }t≥0,
and a single risky asset with price {St }t≥0, is governed by

d Bt = r Bt dt, B0 = 1

and
d St = µSt dt + σ St dWt ,

where {Wt }t≥0 is a P-Brownian motion.
An option is written with payoff CT = ï(ST , ZT ) at time T where

Zt =
∫ t

0
g(u, Su)du

for some (deterministic) real-valued function g on R+ × R.
From our general theory we know that the value of such an option at time t satisfies

Vt = e−r(T −t)EQ [ï(ST , ZT )|Ft ]

where Q is the measure under which {St/Bt }t≥0 is a martingale.
Show that Vt = F(t, St , Zt ) where the real-valued function F(t, x, z) on R+×R×R

solves

∂ F

∂t
+ r x

∂ F

∂x
+

1

2
σ 2x2 ∂2 F

∂x2
+ g

∂ F

∂z
− r F = 0,

F(T, x, z) = ï(x, z).

Show further that the claim CT can be hedged by a self-financing portfolio consisting
at time t of

φt =
∂ F

∂x
(t, St , Zt )

units of stock and

ψt = e−r t
(

F(t, St , Zt ) − St
∂ F

∂x
(t, St , Zt )

)

cash bonds.

13 Suppose that {Nt }t≥0 is a Poisson process whose intensity under P is {λt }t≥0. Show
that {Mt }t≥0 defined by

Mt = Nt −
∫ t

0
λsds

is a P-martingale with respect to the σ -field generated by {Nt }t≥0.
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14 Suppose that {Nt }t≥0 is a Poisson process under P with intensity {λt }t≥0 and {Mt }t≥0

is the corresponding Poisson martingale. Check that for an {FM
t }t≥0-predictable

process { ft }t≥0, ∫ t

0
fsd Ms

is a P-martingale.

15 Show that our analysis of §7.3 is still valid if we allow the coefficients in the stochas-
tic differential equations driving the asset prices to be {Ft }t≥0-adapted processes,
provided we make some boundedness assumptions that you should specify.

16 Show that the process {Lt }t≥0 in Theorem 7.3.5 is the product of a Poisson
exponential martingale and a Brownian exponential martingale and hence prove that
it is a martingale.

17 Show that in the classical Black–Scholes model the vega for a European call (or put)
option is strictly positive. Deduce that for vanilla options we can infer the volatility
parameter of the Black–Scholes model from the price.

18 Suppose that V (t, x) is the Black–Scholes price of a European call (or put) option at
time t given that the stock price at time t is x . Prove that ∂2V

∂x2 ≥ 0.

19 Suppose that an asset price {St }t≥0 follows a geometric Brownian motion with jumps
occurring according to a Poisson process with constant intensity λ. At the time, τ , of
each jump, independently, Sτ /Sτ− has a lognormal distribution. Show that, for each
fixed t , St has a lognormal distribution with the variance parameter σ 2 given by a
multiple of a Poisson random variable.
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Notation

Financial instruments and the Black–Scholes model

T , maturity time.
CT , value of claim at time T .
{Sn}n≥0, {St }t≥0, value of the underlying stock.
K , the strike price in a vanilla option.
(ST − K )+ = max {(ST − K ), 0}.
r , continuously compounded interest rate.
σ , volatility.
P, a probability measure, usually the market measure.
Q, a martingale measure equivalent to the market measure.
EQ , the expectation under Q.
dQ
dP

the Radon–Nikodym derivative of Q with respect to P.

{S̃t }t≥0, the discounted value of the underlying stock. In general, for a process {Yt }t≥0, Ỹt =
Yt/Bt where {Bt }t≥0 is the value of the riskless cash bond at time t .

V (t, x), the value of a portfolio at time t if the stock price St = x . Also the Black–Scholes
price of an option.

General probability

(ó,F , P), probability triple.
P[A|B], conditional probability of A given B.
ï, standard normal distribution function.
p(t, x, y), transition density of Brownian motion.

X
D= Y , the random variables X and Y have the same distribution.

Z ∼ N (0, 1), the random variable Z has a standard normal distribution.
E[X; A], see Definition 2.3.4.

Martingales and other stochastic processes

{Mt }t≥0, a martingale under some specified probability measure.
{[M]t }t≥0, the quadratic variation of {Mt }t≥0.
{Fn}n≥0, {Ft }t≥0, filtration.
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192 notation

{F X
n }n≥0 (resp. {F X

t }t≥0), filtration generated by the process {Xn}n≥0 (resp. {Xt }t≥0).
E [ X |F ], E

[
Xn+1

∣∣ Xn
]
, conditional expectation; see pages 30ff.

{Wt }t≥0, Brownian motion under a specified measure, usually the market measure.
X∗(t), X∗(t), maximum and minimum processes corresponding to {Xt }t≥0.

Miscellaneous
ð=, defined equal to.
δ(π), the mesh of the partition π .
f
∣∣
x , the function f evaluated at x .

θ t (for a vector or matrix θ ), the transpose of θ .
x > 0, x ù 0 for a vector x ∈ Rn , see page 11.
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arbitrage price, 5
Arrow–Debreu securities, 11
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attainable claim, 14
axioms of probability, 29

Bachelier, 51, 102
Bessel process, 186

squared, 109
bid–offer spread, 21
binary model, 6
Binomial Representation Theorem, 44
binomial tree, 24
Black–Karasinski model, 110
Black–Scholes equation, 121, 135, 136

similarity solutions, 137
special solutions, 136
variable coefficients, 162, 186

Black–Scholes model
basic, 112
coupon bonds, 131
dividends

continuous payments, 126
periodic payments, 129

foreign exchange, 123
general stock model, 160
multiple assets, 163
quanto products, 173
with jumps, 175

Black–Scholes pricing formula, 45, 120, 135
bond, 4

coupon, 131
pure discount, 131

Brownian exponential martingale, 65
Brownian motion

definition, 53
finite dimensional distributions, 54

hitting a sloping line, 61, 69
hitting times, 59, 66, 69
Lévy’s characterisation, 90
Lévy’s construction, 56
maximum process, 60, 69
path properties, 55
quadratic variation, 75
reflection principle, 60
scaling, 63
standard, 54
transition density, 54
with drift, 63, 99, 110

càdlàg, 66
calibration, 181
cash bond, 5
Central Limit Theorem, 46
chain rule

Itô stochastic calculus, see Itô’s formula
Stratonovich stochastic calculus, 109

change of probability measure
continuous processes, see Girsanov’s Theorem
on binomial tree, 97

claim, 1
compensation

Poisson process, 177
sub/supermartingale, 41

complete market, 9, 16, 47
conditional expectation, 30
coupon, 131
covariation, 94
Cox–Ross–Rubinstein model, 24

delta, 122
delta hedging, 135
derivatives, 1
discounting, 14, 32
discrete stochastic integral, 36
distribution function, 29

standard normal, 47

193



194 index

dividend-paying stock, 49, 126
continuous payments, 126
periodic dividends, 129
three steps to replication, 127

Doléans–Dade exponential, 177
Dominated Convergence Theorem, 67
Doob’s inequality, 80
doubling strategy, 113

equities, 126
periodic dividends, 129

equivalent martingale measure, 15, 33, 115
equivalent measure, 15, 37, 98
exercise boundary, 151
exercise date, 2
expectation pricing, 4, 14

Feynman–Kac Stochastic Representation
Theorem, 103

multifactor version, 170
filtered probability space, 29
filtration, 29, 64

natural, 29, 64
forward contract, 2

continuous dividends, 137
coupon bonds, 137
foreign exchange, 20, 124
periodic dividends, 131, 137
strike price, 5

forward price, 5
free boundary, 152
FTSE, 129
Fundamental Theorem of Asset Pricing, 12, 15,

38, 116
futures, 2

gamma, 122
geometric Brownian motion, 87

Itô’s formula for, 88
justification, 102
Kolmogorov equations, 106
minimum process, 145
transition density, 106

Girsanov’s Theorem, 98
multifactor, 166
with jumps, 178

Greeks, 122
for European call option, 136

guaranteed equity profits, 129

Harrison & Kreps, 12
hedging portfolio, see replicating portfolio
hitting times, 59; see also Brownian motion

implied volatility, see volatility
in the money, 3
incomplete market, 17, 19

infinitesimal generator, 105
interest rate

Black–Karasinski model, 110
continuously compounded, 5
Cox–Ingersoll–Ross model, 109
risk-free, 5
Vasicek model, 109, 110

intrinsic risk, 19
Itô integral, see stochastic integral
Itô isometry, 80
Itô’s formula

for Brownian motion, 85
for geometric Brownian motion, 88
for solution to stochastic differential equation,

91
multifactor, 165
with jumps, 176

Jensen’s inequality, 50
jumps, 175

Kolmogorov equations, 104, 110
backward, 105, 186
forward, 106

L2-limit, 76
Langevin’s equation, 109
Lévy’s construction, 56
Lipschitz-continuous, 108
local martingale, 65
localising sequence, 87
lognormal distribution, 4
long position, 2

market measure, 33, 113
market price of risk, 134, 179
market shocks, 175
Markov process, 34, 49
martingale, 33, 49, 64

bounded variation, 84
square-integrable, 100

martingale measure, 15
Martingale Representation Theorem, 100

multifactor, 168
maturity, 2
measurable, 29
mesh, 73
model error, 181

and hedging, 181
multifactor model, 163
multiple stock models, 10, 163
mutual variation, 94

Novikov’s condition, 98
numeraire, 126

change of, 20, 125, 171
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option, 2
American, 26, 42, 150

call on dividend-paying stock, 49
call on non-dividend-paying stock, 27, 50
cash-or-nothing, 157
exercise boundary, 151
free boundary value problem, 152
hedging, 43
linear complementarity problem, 152
perpetual, 157, 158
perpetual put, 153
put on non-dividend-paying stock, 27, 48,

157, 158
Asian, 149, 157, 187
asset-or-nothing, 155
barrier, 145, 148
binary, 140
call, 2, 127

coupon bonds, 137
dividend-paying stock, 127, 137
foreign exchange, 137

call-on-call, 143
cash-or-nothing, 48, 140
chooser, 156
cliquets, 143
collar, 154
compound, 143
contingent premium, 155
digital, 20, 48, 140, 154, 155
double knock-out, 149, 157
down-and-in, 145, 147, 157
down-and-out, 145, 148, 156
European, 2

hedging formula, 8, 25, 121
pricing formula, 8, 23, 45, 118

exotic, 139
foreign exchange, 17, 122
forward start, 48, 141
guaranteed exchange rate forward, 172
lookback call, 145
multistage, 142
on futures contract, 156
packages, 3, 18, 139
path-dependent, 144; see also (option)

American, Asian
pay-later, 155
perpetual, 137, 157
put, 2
put-on-put, 156
ratchet, 155
ratio, 142
up-and-in, 145
up-and-out, 145
vanilla, 3, 139
see also quanto

Optional Stopping Theorem, 39, 49, 66

optional time, see stopping time
Ornstein–Uhlenbeck process, 109
out of the money, 3

packages, 3, 18, 139
path probabilities, 26
payoff, 3
perfect hedge, 6
pin risk, 141
Poisson exponential martingale, 177
Poisson martingale, 177, 187
Poisson random variable, 175
positive riskless borrowing, 14
predictable, 36, 78
predictable representation, 100
previsible, see predictable
probability triple, 29
put–call parity, 19, 137

compound options, 156
digital options, 154

quadratic variation, 75, 108
quanto, 172

call option, 187
digital contract, 187
forward contract, 172, 186

Radon–Nikodym derivative, 97, 98
random variable, 29
recombinant tree, 24
reflection principle, 60
replicating portfolio, 6, 23, 44
return, 4
Riesz Representation Theorem, 12
risk-neutral pricing, 15
risk-neutral probability measure, 13, 15

sample space, 29
self-financing, 23, 26, 35, 113, 127, 137
semimartingale, 84
Separating Hyperplane Theorem, 12
Sharpe ratio, 134
short position, 2
short selling, 6
σ -field, 29
simple function, 79
simple random walk, 34, 39, 49, 51
Snell envelope, 43
squared Bessel process, 109
state price vector, 11

and probabilities, 14
stationary independent increments, 52
stochastic calculus

chain rule, see Itô’s formula
Fubini’s Theorem, 96
integration by parts (product rule), 94

multifactor, 166
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stochastic differential equation, 87, 91
stochastic integral, 75

discrete, 36
Itô, 78, 83

integrable functions, 81
Stratonovich, 78, 108
with jumps, 176
with respect to semimartingale, 83

stochastic process, 29
stopping time, 38, 59
straddle, 4
Stratonovich integral, 78, 108
strike price, 2
submartingale, 33

compensation, 41
supermartingale, 33

and American options, 42
compensation, 41
Convergence Theorem, 41

theta, 122
three steps to replication

basic Black–Scholes model, 118
continuous dividend-paying stock, 127

discrete market model, 45
foreign exchange, 123

time value of money, 4
tower property, 32
tradable assets, 123, 126, 130

and martingales, 133
transition density, 54, 104–106

underlying, 1

vanillas, 139
variance, 54
variation, 73

and arbitrage, 73
p-variation, 73

vega, 122
vega hedging, 183
volatility, 120

implied, 120, 181
smile, 181, 183
stochastic, 183

and implied, 183

Wiener process, see Brownian motion


