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Measures

In this chapter we set forth the basic concepts of measure theory, develop a general
procedure for constructing nontrivial examples of measures, and apply this procedure
to construct measures on the real line.

1.1 INTRODUCTION

One of the most venerable problems in geometry is to determine the area or volume
of a region in the plane or in 3-space. The techniques of integral calculus provide a
satisfactory solution to this problem for regions that are bounded by “nice” curves or
surfaces but are inadequate to handle more complicated sets, even in dimension one.
Ideally, for n € N we would like to have a function u that assigns to each £ C R”
a number u(E) € [0, o], the n-dimensional measure of E, such that u(E) is given
by the usual integral formulas when the latter apply. Such a function p should surely
possess the following properties:

i. If £, F5, ... is a finite or infinite sequence of disjoint sets, then
By UEyU---) = p(Eq) + p(Ey) +---.
ii. If E'is congruent to F' (that is, if £ can be transformed into F’ by translations,
rotations, and reflections), then u(E) = u(F).
iii. u(Q) = 1, where @ is the unit cube

’

Qz{meR":Ogmj<1forj=1....,n}.
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Unfortunately, these conditions are mutually inconsistent. Let us see why this is
true for n = 1. (The argument can easily be adapted to higher dimensions.) To begin
with, we define an equivalence relation on [0, 1) by declaring that z ~ y iff z — y
is rational. Let IV be a subset of [0, 1) that contains precisely one member of each
equivalence class. (To find such an IV, one must invoke the axiom of choice.) Next,
let R=QnN[0,1), and foreach r € R let

N.={z+r:zeNn0,1-r)}uf{z+r—-1l:zeNnl-r 1)}.
That is, to obtain [V,., shift IV to the right by r units and then shift the part that sticks
out bevond [0, 1) one unit to the left Then N, C [0,1), and every z € [0, 1) belongg

class of z, then = € N wherer-— z—yifz > yorr—m—y+11fx < y; on
the other hand, if z € N, N Ng,thenx —r(orz—r+1andxz —s(orx — s+ 1)
would be distinct elements of N belonging to the same equivalence class, which is
impossible.

Suppose now that p : P(R) — [0, oo] satisfies (i), (ii), and (iii). By (i) and (ii),

u(N) =p(NN[0,1-r))+
R

by (i) again. But x([0,1)) = 1 by (iii), and since p(NN,) = p(N), the sum on the

right is either 0 (if u(N) = 0) or oo (if u(N) > 0). Hence no such p can exist.
Faced with this uracouragmg situation, one mlgm consider 'w'eanemng U} so that

additivity is required to hold only for finite sequences. This is not a very good idea,

as we shall see: The additivity for countable sequences is what makes all the limit

nd continnity reenlte af the thanrv wark emnanthlv Maraaver 1in dim > 2
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even this weak form of (i) is inconsistent with (ii) and (iii). Indeed, in 1924 Banach
and Tarski proved the following amazing result:

Let U and V be arbitrary bounded open sets in R™, n > 3. There exist k € N
and subsets F1,..., Eg, F1,..., Fr of R™ such that

| P are Ai Qi it e 'S N G- PP
.L’/j > dIC UleUllll. dllu UICIL UllIUIl 1D

b TT.
— e U,
— the F}’s are disjoint and their union is V;

- Ejiscongruentto Fj forj=1,... k.

Thus one can cut up a ball the size of a pea into a finite number of pieces and
rearrange them to form a ball the size of the earth! Needless to say, the sets £; and Fj

- snzam P SRS anmireatralcr aam PR S S S AT

ar¢ very bizarre. ulc:_y cannot be visualized aLLL‘uaLcl_y, and their construction ut:pcuus
on the axiom of choice. But their existence clearly precludes the construction of any

p: P(R™) — [0, 00] that assigns positive, finite values to bounded open sets and
satisfies (i) finite sequences as well as (ii).

sequences as well as

or
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The moral of these examples is that R™ contains subsets which are so strangely put
together that it is impossible to define a geometrically reasonable notion of measure
for them, and the remedy for the situation is to discard the requirement that u should
be defined on all subsets of R™. Rather, we shall content ourselves with constructing
1 on a class of subsets of R™ that includes all the sets one is likely to meet in practice
unless one is deliberately searching for pathological examples. This construction
will be carried out for n = 1in §1.5 and for n > 1 in §2.6.

It is worthwhile, and not much extra work, to develop the theory in much greater
generality. The conditions (ii) and (iii) are directly related to Euclidean geometry,
but set functions satisfying (i), called measures, arise also in a great many other
situations. For example, in a physics problem invoiving mass distributions, u(E)

could represent the total mass in the region E. For another example, in probability
theory one considers aset X that represents the possible outcomes of an experiment,

and for £ C X, u(FE) is the probability that the outcome lies in E. We therefore
begin by studymg the theory of measures on abstract sets.

1.2 o-ALGEBRAS

Let X be a nonempty set. An algebra of sets on X is a nonempty collection A

of subsets of X that is closed under finite unions and complements; in other words,
if By,...,E, € A then U] E; € A; and if E € A, then E° € A. A o-algebra is
an algebra that is closed under countable unions, (Some authors use the terms field
and o-field instead of algebra and o-algebra.)

We observe that since (); E; = (UJ; £5)°, algebras (resp. o-algebras) are also
closed under finite (resp. countable) intersections. Moreover, if A is an algebra, then
geAand X € A, forif E€ Awehave @ = ENE°and X = F U E°.

It is worth noting that an algebra A is a o-algebra provided that it is closed under

countable disjoint unions. Indeed, suppose { E;}3° C A. Set
k—1 k—1
| I | o €

NI ~ 11
=B UB] =B UB]

1

r1

Then the F}’s belong to A and are disjoint, and | J;° E; = |7~ Fi. This device of
replacing a sequence of sets by a disjoint sequence is worth remembering; it will be
used a number of times below.

Some examples: If X is any set, P(X) and {&, X} are o-algebras. If X is
uncountable, then

A= {E C X : Eis countable or E* is countable }

is a o-algebra, called the o-algebra of countable or co-countable sets. (The point
here is that if {E;}5° C A, then |J;° Ej is countable if all E; are countable and is

r\n_r\r\nnfnk‘n ntharu/ica )
vUTLVUUlLIlAUlv ULLIvl vy IDUo}
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It is trivial to verify that the intersection of any family of o-algebras on X is again
a o-algebra. It follows that if € is any susbset of P(X), there is a unique smallest
o-algebra M(&) containing £, namely, the intersection of all o-algebras containing
€. (There is always at least one such, namely, P(X).) M(E) is called the o-algebra
generated by €. The following observation is often useful:

1.1 Lemma. If & C M(F) then M(E) C M(F).

Proof. M(J) is a o-algebra containing &; it therefore contains M(E). i

If X is any metric space, or more generally any topological space (see Chapter
he o-aleel | by the family of % valently. by

family of closed sets in X) is called the Borel o-algebra on X and is denoted by
Bx. Its members are called Borel sets. B x thus includes open sets, closed sets,
countable intersections of open sets, countable unions of closed sets, and so forth.

There is a standard terminology for the levels in this hierarchy. A countable
intersection of open sets is called a G5 set; a countable union of closed sets is called
an F set; a countable union of G sets is called a G, set; a countable intersection of
F, sets is called an F s set; and so forth. (6 and o stand for the German Durchschnitt
and Summe, that 1s, intersection and union.)

The Borel o-algebra on R will play a fundamental role in what foliows. For future
reference we note that it can be generated in a number of different ways:

Y
a. the open intervals: €1 = {(a,b) : a < b},
b. the closed intervals: €5 = {[a,b] : a < b},
c. the half-open intervals: €3 = {(a,b] : a < b} or &4 = {[a,b) : a < b},
d. the openrays: €5 = {(a,00) :a € R} or &g = {(—00,a) : a € R},
e. the closed rays: &7 = {[a,00) : a € R} or Eg = {(—00,a] : a € R}.

Proof. Theelements of €; for j # 3, 4 are open or closed, and the elements of €3
and &4 are G5 sets — for example, (a,b] = (7" (a,b + n~1). All of these are Borel
sets, so by Lemma 1.1, M(€;) C Bg for all j. On the other hand, every open set in R
is a countable union of open intervals, so by Lemma 1.1 again, Bg C M(€1). That
Br € M(E;) for j > 2 can now be established by showing that all open intervals lie
in M(€&;) and applying Lemma 1.1. For example, (a,b) = J"la+n"1, b—n"1] €
M(E2). Verification of the other cases is left to the reader (Exercise 2). B

Let {Xa}aca be an indexed collection of nonempty sets, X = [[,.4 Xa, and

To ¢ X — X, the coordinate maps. If M, is a o-algebra on X, for each «, the
product o-algebra on X is the o-algebra generated by

e :1 A T — ~ s )

{r3 (Ea) : Ea € Mg, a € A}.
We denote this o-algebra by @, 4 Ma. (If A = {1,...,n} we also write @7 M;
orM; ® .- ®M,.) The significance of this definition will become clearer in §2.1;
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for the moment we give an alternative, and perhaps more intuitive, characterization
of product o-algebras in the case of countably many factors.

1.3 Proposition. If A is countable, then ), 4, Mq is the o-algebra generated by
{Ilaca Ba : Ea € Mo}

Proof. If E, € M, then n;1(E,) = [15ca Ep where Eg = X for 8 # o
h a fr

an the nther ha ) rocnlt therafnre follawe fram
Ol i OUleT (aliG, j jhcq4 “a T [ lged Ta \Fa) (C TeSuUIt ulCTCiOIC 10110WS 110
Lemma 1.1 ]
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Proof. Obviously M(51) C @,c4 Ma. On the other hand, for each a, the
collection {E C X, : n;1(E) € M(F1)} is easily seen to be a o-algebra on X,
that contains €, and hence M. In other words, 7,1 (E) € M(J;) for all E € M,
a € A, and hence @, 4 Mo C M(F1). The second assertion follows from the first
as in the proof of Proposition 1.3. [

1.5 Proposition. Let X1, ..., X,, be metric spaces and let X = [[] X;, equipped
with the product metric. Then Q7 Bx, C Bx. If the X;’s are separable, then

®711fo3. =Bx.

Proof. By Proposition 1.4, Q7 B x; is generated by the sets T 1(Uj), 1<j5<
n, where U; is open in X;. Since these sets are open in X, Lemma 1.1 implies that
&7 Bx, C Bx. Suppose now that C; is a countable dense set in X, and let &; be
the collection of balls in X; with rational radius and center in C;. Then every open
set in X is a union of members of €; — in fact, a countable union since & itself is

. tolla NAmcnnme tln cnt ~f mmtmda 3 YV ik ncn At ammedicata Jo S £ £ o112
Coultavlic. IviUICLVCI, UIC dCL Ul pUlllLb 111 A WIIOUDC JLU COOLULLLIALC 1> 111 UJ 1UI dll J
is a countable dense subset of X, and the balls of radius r in X are merely products

of balls of radius r in the X’s. It follows that By, is generated by €; and Bx is
enerated by M r. kK c £ } Therefore B+ — A" B+ by Pro

n T, T, — < r\ncifir\n 14 =
~ UJ Ll 11 ‘.J] . J.J] A LIVwIWVAVLY UA_ 01 UAJ l\ltluu VAV . . -

g

Cj
1.6 Corollary. Bgrr = Q7 Br.

We conclude this section with a technical result that will be needed later. We
define an elementary family to be a collection € of subsets of X such that

o Jeé,
e ifE,Feéthen ENF €€,
e if £/ € & then E° is a finite disjoint union of members of £.

1.7 Proposition. If € is an elementary family, the collection A of finite disjoint
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Proof. If A,B € & and B¢ = |J]C; (C; € &, disjoint), then A\ B =
U‘lj(A NC;) and AUB = (A\ B) U B, where these unions are disjoint, so
A\ B € Aand AU B € A. It now follows by induction thatif A; ..., A, € &, then
UT A; € A; indeed, by inductive hypothesis we may assume that Ay, ..., A,_; are
disjoint, and then | J? A; = A, U} (4, \ A,.), which is a disjoint union. To see
that A is closed under complements, suppose Ai,... A, € € and AS, = UJ’; B,

with BL ..., B/~ disjoint members of €. Then

n c n Jm
{11 \_r\/||nj\_||r3, ABI 1< i < J. 1< PR
| Am) = [ U Bh)=UBIN-NBy 11 < Jm S Jm, 1<m <ny,
m=1 f m=1\3=1 §
which is in A. B
Exercises

1. A family of sets R C P(X) is called a ring if it is closed under finite unions
and differences (i.e., if Eq,...,E, € R, then |J] E; € R, and if E, F € R, then
E\ F € R). Aring that is closed under countable unions is called a o-ring.
a. Rings (resp. o-rings) are closed under finite (resp. countable) intersections.
b. If R is a ring (resp. o-ring), then R is an algebra (resp. o-algebra) iff X € R.
c. f Risao-ring,then {E C X : E € Ror E° € R} is a o-algebra.
d. f Risao-ring,then {E C X : ENF € Rforall F € R} is a o-algebra.

2. Complete the proof of Proposition 1.2.

3. Let M be an infinite o-algebra.
a. M contains an infinite sequence of disjoint sets.
b. card(M) > ¢

4. An algebra A is a o-algebra iff A is closed under countable increasing unions
(e, if {E;}° CAand E; C E5 C -+, then " E; € A).

S. If M is the o-algebra generated by &, then M is the union of the o-algebras
generated by F as F ranges over all countable subsets of €. (Hint: Show that the
latter object is a o-algebra.)

1.3 MEASURES

Let X be a set equipped with a o-algebra M. A measure on M (or on (X, M), or
simply on X if M is understood) is a function p : M — [0, co] such that

i. w(@) =0,
ii. if { E;}$° is a sequence of disjoint sets in M, then (7" E;) = >°7° u(E;).
Property (ii) is called countable additivity. It implies finite additivity:
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ii". if By, ... E, are disjoint sets in M, then u(J] E;) = Y7 w(E;),

because one can take £; = @ for j > n. A function p that satisfies (i) and (ii") but

Twrn e oTEEen
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If X isasetand M C P(X) is a o-algebra, (X, M) is called a measurable space
and the sets in M are called measurable sets. If u is a measure on (X, M), then

(Y M, u\ is called a measure space.

uuuuu 1S ViV Q aiaCdsOwei v O

Let (X , M, 1) be a measure space. Here is some standard terminology concerning
the “size” of p. If u(X) < oo (which implies that u(E) < oo for all E € M since
wu(X) = u(E) + u(ECﬂ u is called ﬁmte IfX = E where E € M and

E E M and ;u(E ) < oo for all 7, the set E is said to be o- ﬁnlte for p. (It would
be correct but more cumbersome to say that E is of o-finite measure.) If for each
E € M with pu(E) = oo there exists F € M with FF C Eand 0 < u(F) < oo, p is
called semifinite.

Every o-finite measure is semifinite (Exercise 13), but not conversely. Most mea-
sures that arise in parctice are o-finite, which is fortunate since non-o-finite measures
tend to exhibit pathological behavior. The properties of non-o-finite measures will
be explored from time to time in the exercises.

Let us examine a few examples of measures. These examples are of a rather trivial
nature, although the first one is of practical importance. The construction of more
interesting examples is a task to which we shall turn in the next two sections.

e Let X be any nonempty set, M = P(X), and f any function from X to [0, co].
Then f determines a measure 1 on M by the formula pu(E) = > 5 f(z).

(Enar tha Aafin ~nf cninh ook [T TeYares ahla ciime gepe SN S Y Tha roadosr
1Vl uiv UblllllLlUll Ol Sucn PUDDIUI)’ uuuuuutauu, dSUlld, dLUL KU.JU.) 11V 1vauni

may verify that p is semifinite iff f(z) < oo forevery z € X, and p is o-finite
iff 1 is semifinite and {z : f(z) > 0} is countable. Two special cases are of

parﬁnn]m‘ sionificance: If f(/,.\ = 1 for all z, u is called counting measure;

LIVUAGL Sigiiliivaiivo,. (439 w, U A0 VRLIVRE SUNRRAAR R 2AATEROEL

and if, for some zg € X, f is deﬁned by f(zo) = 1and f(z) = 0 for = # zo,
 is called the point mass or Dirac measure at zj. (The same names are also
applied to the restrictions of these measures to smaller o-algebras on X.)

e Let X be an uncountable set, and let M be the o-algebra of countable or co-
countable sets. The function p on M defined by p(E) = 0 if E is countable
and u(£) = 1if E is co-countable is easily seen to be a measure.

e Let X be an infinite set and M = P(X). Define
Th 3

H(F\—N\IFE’!(‘! fAinito

B 1C 2 1
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measure.
The basic properties of measures are summarized in the following theorem.

1.8 Theorem. Let (X, M, u) be a measure space.
a. (Monotonicity) If E,F ¢ M and E C F, then u(E) < u(F).
b. (Subadditivity) If { E;}3° C M, then n(UT" E;) < S°7 w(E;).
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c. (Continuity from below) If {E;}° € M and E1 C Ey C ---, then
p(UT Ej) = limj oo p(Ej).

d. (Continuity from above) If {E;}° CM, E1 D E3 D -+, and pu(Eq) < 00
then u(N7° E;) = lim;_o0 u(Ej).

Proof. (a)If E C F, then u(F) = u(E) + u(F\ E) > pu(E).
(b) Let F} = E; and Fy, = Ej \(U1 'E E;) for k > 1. Then the F},’s are disjoint
and |J] F; = |J] E; for all n. Therefore, by (a),

p(UE:) =D w8\ Byox) = lim ™ By \ Ej_1) = lim u(Ey).
1 1 1

(d) Let F; = E; \ Ej; then Fy C Fy C ---, u(E1) = p(F;) + u(E;), and
U Fj = E1 \ (N E;). By (c), then,

u(Er) = (ﬂE ) + lim () u(ﬁ Ej) +j£r{go[u(E1) — p(E;)].

Since p(E7) < 0o, we may subtract it from both sides to yield the desired result. g

We remark that the condition p(E;) < oo in part (d) could be replaced by
u(E,) < oo for some n > 1, as the first n — 1 E s can be discarded from the
sequence without affecting the intersection. However, some finiteness assumption
is necessary, as it can happen that u(E;) = oo for all j but u((\;~ E;) < co. (For
example, let u be counting measure on (N, P(N)) and let E; = {n : n > j}; then
ﬂc1>o Ej =J.)

If (X, M, 1) is a measure space, a set E' € M such that p(E) = 0 is called a null
set. By subadditivity, any countable union of null sets is a null set, a fact which we
shall use frequently. If a statement about points x € X is true except for z in some
null set, we say that it is true almost everywhere (abbreviated a.e.), or for almost
every x. (If more precision is needed, we shall speak of a p-null set, or p-almost
everywhere).

If u(E) = 0and F C E, then u(F) = 0 by monotonicity provided that F' € M,
but in general it need not be true that F* € M. A measure whose domain includes
all subsets of null sets is called complete. Completeness can sometimes obviate
annoying technical points, and it can always be achieved by enlarging the domain of
i, as follows.

1.9 Theorem. Suppose that (X, M, ) is a measure space. Let N = {N € M :
u(N)=0}andM = {EUF : E€Mand F C N forsome N € N}. Then M is
a o-algebra, and there is a unique extension Ti of | to a complete measure on M.
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Proof.  Since M and N are closed under countable unions, sois M. f EUF ¢ M
where E € Mand FF C N € N, we can assume that E N N = & (otherwise, replace
Fad Nby F\ Fand N\ E). Then EUF = (EUN)N (N°UF), so
(FEUF) =(EUN)*U(N\F). But (EUN) € Mand N\ F C N, so that
(E U F)¢ € M. Thus M is a o-algebra.

If EUF € M as above, we set i(E U F) = u(E). This is well defined,
since if By U Fy; = Ep UF, where F; C N; € N, then E; C E9 U Ny and so
u(Er) < w(Eq) + p(Ne) = p(Es), and likewise pu(Es) < wp(E;). It is easily
verified that 7 is a complete measure on M, and that 7 is the only measure on M that
extends p; details are left to the reader (Exercise 6). ]

‘T'he measure & 1n Theorem 1.9 1s called the completion ot p, and M is called the
completion of M with respect to p.

Exercises
6. Complete the proof of Theorem 1.9.

7. If p1,..., @, are measures on (X, M) and ay,...,a, € [0,00), then 3 7 a;u;
is a measure on (X, M).

o

8. If (X,M,p) is a measure space and {E;}° C M, then p(liminf £;) <
liminf u(E;). Also, p(limsup E;) > limsup p(E;) provided that p(|J7° E i) <
0.

9. If(X,M,p)isameasurespaceand £, F' € M, then u(E)+u(F) = p(EU F)+

~

wENF)

10 Jven a meacuira space (X M Yand FF ¢ M define u ([]\ —_ u(A N Y for
AWVe NJL1VWwil 4 lL1ivAaoul v l.lu\fv \JL,J'L, fl// CQIING LT -/1\«, u\illll\/ \\l ‘«/ ’AI\JL P J—J} AVL
A € M. Then pg is a measure.

11. A finitely additive measure p is a measure iff it is continuous from below as in
Theorem 1.8c. If u(X) < oo, u is a measure iff it is continuous from above as in
Theorem 1.8d.

12. Let (X, M, 1) be a finite measure space.
a. IfE,F € Mand u(EAF) =0, then u(E) = pu(F).
b. Say that E ~ Fif u(EAF) = 0; then ~ is an equivalence relation on M.
c¢. For E, F € M, define p(E, F) = u(EAF). Then p(E,G) < p(E,F) +
p(F, G), and hence p defines a metric on the space M/ ~ of equivalence classes.

13. Every o-finite measure is semifinite.

14. If p is a semifinite measure and u(E) = oo, for any C > 0 there exists F' C E

with C < u(F) < oo.
18 (livinn o mmoaagiien An Y N Aafine _ An N\ l m / \ — nf (L_‘\ -
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semifinite measure. It is called the semifinite part of x.

d the
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c¢. There is a measure v on M (in general, not unique) which assumes only the
values 0 and oo such that = pg + v.

16. Let (X, M, 1) be a measure space. Aset £ C X is called locally measurable
if EN A € M forall A € M such that u(A) < oo. Let M be the collection of all
locally measurable sets. Clearly M C JT/[; ifM= JT/[ then p is called saturated.

a. If p is o-finite, then p is saturated.

b. Misa o-algebra.

c. Define [z on M by fi(E) = p(E) if E € M and [i(E) = oo otherwise. Then

[ is a saturated measure on f/[ called the saturation of .

d. If p is complete, so is 4.

e. Suppose that  is semifinite. For £ € M, define u(E) =sup{u(A) : A €

M and A C E}. Then p is a saturated measure on M that extends p.

f. Let X1, X5 be disjoint uncountable sets, X = X; U X5, and M the o-algebra
of countable or co-countable sets in X. Let po be counting measure on P(X3),
and define x on M by u(E) = po(E N X;). Then p is a measure on M,

M= P(X), and in the notation of parts (c) and (€), i # p.

1.4 OUTER MEASURES

In this section we develop the tools we shall use to construct measures. To motivate
the ideas, it may be useful to recall the procedure used in calculus to define the area
of a bounded region E in the plane R2. One draws a grid of rectangles in the plane
and approximates the area of E from below by the sum of the areas of the rectangles
in the grid that are subsets of £, and from above by the sum of the areas of the
rectangles in the grid that intersect £. The limits of these approximations as the grid
is taken finer and finer give the “inner area” and “outer area” of E, and if they are
equal, their common value is the “area” of E/. (We shall discuss these matters in more
detail in §2.6.) The key idea here is that of outer area, since if R is a large rectangle
containing E, the inner area of E is just the area of R minus the outer area of R\ E.
The abstract generalization of the notion of outer area is as follows. An outer
measure on a nonempty set X is a function p* : P(X) — [0, oo] that satisfies

= %

{ ~\ n
® pilo) =V,
o u*(A) < p*(B)if AC B,

. ) <200 1 (4y)
o wr(Uy Aj) <227 U (4)).
A Aot AnTTaAn traxr e Alhtnin ArtAe maAaQiIeng 3o t~ atart wath o fo Ivv € AF
1Ic most common way to ootain outer measures is to start with a 1a1uuy c O1

“elementary sets” on which a notion of measure is defined (such as rectangles in the

plane) and then to approximate arbitrary sets “from the outside” by countable unions
of members of £. The an(‘IQP construction is as follows.
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1.10 Proposition. Let € C P(X) and p: € — [0,00] be such that @ € € X € &,
and p(@) = 0. Forany A C X, define

A

o

11 -
oA J""J

o0
FA) = intd S WE) B € Cand A C I
| 2 * ~U”*
1 1

Then p* is an outer measure.

Proof. For any A C X there exists {E£;}3° C € such that A C " Ej; (take
E; = X for all j) so the definition of 1* makes sense. Obviously p*(@) = 0 (take
E; = o for all j), and p*(A) < p*(B) for A C B because the set over which
he inf is taken in the definition of * (A) includes t i "
definition of *(B). To prove the countable subadditivity, suppose { 4;}3° C P(X)
and € > 0. For each j there exists {EF}2; C & such that A; C J;2, E} and

S oneq P(EF) < p*(Aj) + €277, Butthen if A = [ J7° A;, we have A C Ujoo,c:1 E}

and 3., p(EF) < 3, 1w*(A5) + €, whence p*(A) < 3, pu*(A;) + €. Since € is
arbitrary, we are done. |

The fundamental step that leads from outer measures to measures is as follows. If
p* is an outer measure on X, aset A C X is called pu*-measurable if

p (B)=p*(ENA)+p (ENnA%forall £ C X.
Of course, the inequality pr(F) < p* (E N A) +u*(EN AC) holds for any A and

sy tlane A K o ~AC N N PAUSTFOD srialiéc "F

SO to plUVC tlat /‘1 lb ,Ll; 'lllUdbUldUlC ll bUUIbe {o plUVC LIlC IEvVerse uu::qucuuy 11
latter is trivial if u*(E) = oo, so we see that A is p*-measurable iff

p(E) > p" (ENA)+ p*(EN A°) forall E C X suchthat u*(F) < oo.

Some motivation for the notion of p*-measurability can be obtained by referring
to the discussion at the beginning of this section. If £ is a “well-behaved” set such
that £ D A, the equation u*(E) = p*(F N A) + p*(E N A°) says that the outer
measure of A, u*(A), is equal to the “inner measure” of A, u*(E) — p*(E N A°).
The leap from “well behaved” sets containing A to arbitrary subsets of X a large

ot 14 1 Gar] hv tha fAllAgring hanram
Ull\.« Uul it IDJ icu U)’ Lt lUllUWlllE LllL/Ulblll

1.11 Carathéodory’s Theorem. If u* is an outer measure on X, the collection M
of p*-measurable sets is a o-algebra, and the restriction of u* to M is a complete
measure.

nition

— Y
C A,

Proof First, we observe that M is closed under complements since the de
A
u

als A So qurniraateia 1 A and AC Nave £ A D o NI an
Ul [,b ‘lllCdbUldUlllLy Ul 1D D)’llllllClllb l“ A ana A-. .L‘(CAL, il 41, T JYL ail

p*(E) = p (ENA) +p*(ENA°)
=p"(EFENANB)+u (ENANB°) +u*(EN B) + p*(E N A°n B°).

tlj;-_-h

But (AUB) = (AN B)U (AN B°)U(A° N B), so by subadditivity,

a*(EFN AN REY L o*(F N
Mo\ iiaana s o \ i

-

o

|I1IIJ_I L3 1

KON N R
\ &

+

Y>S u*(EN(AU B))
J e nN{Au5)),
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and hence
p*(E) 2 p (EN(AUB)) +p*(EN (AU B)°).

It follows that AU B € M, so M is an algebra. Moreover, if A, B € M and

ANB=g,
W(AUB) = u* (AU B) N A) + u*((AU B) N A%) = p*(A) + u*(B),
so p* is finitely additive on M.

To show that M is a o-algebra, it will suffice to show that M is closed under
countable disjoint unions. If {A4;}° is a sequence of disjoint sets in M, let B,, =

lln! ]B:lIwQ-IhenforanngCX

p(ENBy,)=p (ENB,NA,) +p (ENB,NA;)
=p (ENAp) + p"(EN Bnoa),

so a simple induction shows that p*(E'N B,,) = Y7 w*(E N A;). Therefore,
p'(E) = p*(ENBy) +p*(ENBS) 2y p*(ENA;) +p*(ENBY),
1

and letting n — oo we obtain

M*(E)>oo (ENA;)+ p*(ENB°) > *(G(EHA)) (E N B°)

All the inequalities in this last calculation are thus equalities. It follows that B € M
and — taking £ = B — that p*(B) = Y7 pu*(A;), so u* is countably additive on
M. Finally, if u*(A) = 0, forany £ C X we have

N
)

IA

u*EﬁA

L ¥ (F N A€ —
= M LY AN \ 4 IIJL/

(E N
H} LJ l i

/\
'S:

11 Il
e = H

so that A € M. Therefore p*|M is a complete measure. B

Our first applications of Carathéodory’s theorem will be in the context of extending
measures from algebras to o-algebras. More precisely, if A C P(X) is an algebra, a
function o : A — [0, co] will be called a premeasure if

° /Lo(@) =0,

o if {A;}$° is a sequence of disjoint sets in A such that [ J;° A; € A, then
po(Ur 45) = 2.1 po(4;).

In particular, a premeasure is finitely additive since one can take A; = @ for j large.
The notions of finite and ¢-finite premeasures are defined just as for measures. If g
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is a premeasure on A C P(X), it induces an outer measure on X in accordance with
Proposition 1.10, namely,

o0

(1.12) u(E) = infd S po(A;): A, €A, Ecl |A
I \ 7 LL—J J 7/ J
1

v W jJ .
1
1.13 Proposition. If pg is a premeasure on A and p* is defined by (1.12), then
a. /“""*EA = :U'U;
b. every setin A is u* measurable.

Proof. (a) Suppose E € A IfE C U1 A; with A; € A, let B =En

po(E) = Zl ;uo( -) < 21 Mo( ;). Tt follows that po(E) g w*(E), and the
reverse inequality is obvious since E C U A;j where A; = F and A; = @ for
i>1.

b)If A e A E C X, and € > 0, there is a sequence {B;}° C A with
E c U7 Bjand >_7° po(Bj) < w*(E) + e. Since pg is additive on A,

E)+e>Y po(B;NA)+ Y po(B;NA°) > p*(ENA)+ p*(EN A%).
1 1

Since ¢ is arbitrary, A is p*-measurable. ]

1.14 Theorem. Let A C P(X) be an algebra, po a premeasure on A, and M the
o-algebra generated by A. There exists a measure u on M whose restriction to A is
po — namely, p = p*|\M where p* is given by (1.12). If v is another measure on M
that extends o, then v(E) < u(E) for all E € M, with equality when p(E) < oo.
If po is o-finite, then y is the unique extension of po to a measure on M.

Proof. The first assertion follows from Carathéodory’s theorem and Proposition
1.13 since the o-algebra of p*-measurable sets includes A and hence M. As for

the second assertion, if £ € M and E C |~ A; where A; € A, then v(E) <
ST v(A;) = 37 mo(A;), whence v(E) < p(E). Also, if weset A = |7~ Aj, we

have
= o ((Ja5) = i (1) =

T /TN /AN /TN . hence ¢ \ TN
If u(E) < oo, we can choose the A;’s sothat u(A) < u(£)+¢€, hence u(A\E) <,

u(E) < u(A) = v(A) = v(E) + v(A\ E) < v(E) + w(A\ E) < v(E) +e.

Since € is arbitrary, u(E) = v(E). Finally, suppose X = (7~ A; with o(4;) < oo,
where we can assume that the A;’s are disjoint. Then forany £ € M,

=S WENA) =Y v(EN4;) =v(E),
1 1

w
o
X
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The proof of this theorem yields more than the statement. Indeed, ;o may be
extended to a measure on the algebra M* of all p*-measurable sets. The relation
between M and M* is explored in Exercise 22 (along with Exercise 20b, which
ensures that the outer measures induced by 1o and p are the same).

Exercises

17 If 4, * 1 an 1ntar m
{97 §

Q n
Lle 14 M 10 all vu

measurable sets, then p*(E N (U 4;)) = >0 w*(EN A,

18. Let A C P(X) be an algebra, A, the collection of countable unions of sets
in A, and A,s the collection of countable intersections of sets in A,. Let g be a

premeasure on A and p* the induced outer measure.
a. Forany £ C X and € > O there exists A € A, with E C A and p*(A) <
p*(E) +e.
b. If u*(E) < oo, then E'is p*-measurable iff there exists B € A,s with E C B
and p*(B\ E) =0.
c. If pg is o-finite, the restriction p*(F) < oo in (b) is superfluous.

19. Let p* be an outer measure on X induced from a finite premeasure po. If
E C X, define the inner measure of E to be p.(E) = uo(X) — p*(E€). Then E
is p*-measurable iff p*(E) = pu.(F). (Use Exercise 18.)

20. Let p* be an outer measure on X, M* the o- algebra of p*-measurable sets,
—_ L okINAx SO, /1 1A\ /<< lal — 1 ALk
H=Hu ]JVL N dIlU [,L UIC outer measure lIlUULCU Uy [,L as lIl (1.12) (Wil 4 alld Jyvt

replacing po and A).
a. If £ C X, we have /,L*(E) < pt(E), with equality iff there exists A € M*

A I qaA * - * T
Wllll Vgt ._J 17 allu /.L \1"1) [Jx \L ).
b. If u* is induced from a premeasure, then u* = p*. (Use Exercise 18a.)

c. If X = {0, 1}, there exists an outer measure p* on X such that p* # u™

21. Let p* be an outer measure induced from a premeasure and 7 the restriction of
p* to the p*-measurable sets. Then 7 is saturated. (Use Exercise 18.)

”” I { ll\ "\Q O MmaaciiTa cnara 11 fh N1Ntar maacgnra IHAIII‘QA l’\‘l 1 '](‘f‘ﬁ"l’l;“n
ol hndd @ I_J \JL » JVL, IJ/} Uw aililivaoul v Dkl(-l.\./\./, ,J/ L vuLLvl dlivadul v 11y uvvua v uvvu;uuls
to (1.12), M* the o-algebra of p*-measurable sets, and 7 = p*|M*
a. If i is o-finite, then 1z is the completion of u. (Use Exercise 18.)
h Tn nnn vn 77 ic tha gcatnratinn ~nf tha ~rnmnlatinn ~fF (Qan Bvarnicnge 14 and
. 111 5 e 1, ’Jx 15 UIv sdaluiauivll vl uiv uuuxyu,uuu Ul 'Ll/ \U\.«L« LLAVLVIODLD 1V Ailu
21.)

23. Let A be the collection of finite unions of sets of the form (a,b] N Q where
—0<a<b< oo
a. Ais an algebra on Q. (Use Proposition 1.7.)
b. The o-algebra generated by A is P(Q).
c. Define pp on A by po(@) = 0 and po(A) = oo for A # &. Then pp is a
premeasure on A, and there is more than one measure on P(Q) whose restriction
to A is po.
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24. Let p be a finite measure on (X, M), and let 1* be the outer measure induced by
(. Suppose that E C X satisfies u*(F) = pu*(X) (but not that £ € M).
a. IfA, BeMand ANE = BNE,then u(A) = u(B).
b. Let Mg = {AN E : A € M}, and define the function v on Mg defined by
v(AN E) = p(A) (which makes sense by (a)). Then Mg is a o-algebra on F
and v is a measure on M g.

1.5 BOREL MEASURES ON THE REAL LINE

We are now in a position to construct a definitive theory for measuring subsets of R

based on the idea that the measure of an interval is its length. We begin with a more
general (but only slightly more complicated) construction that yields a large family
of measures on R whose domain is the Borel o-algebra Bg; such measures are called
Borel measures on R.

To motivate the ideas, suppose that y is a finite Borel measure on R, and let
F(z) = p((—o0,z]). (F is sometimes cailed the distribution function of u.)
Then F'is increasing by Theorem 1.8a and right continuous by Theorem 1.8d since
(—o0,z] = (] (—o0,z,] whenever z,, N\, z. (Recall the discussion of increasing
functions in §0.5.) Moreover, if b > a, (—00,b] = (—00, a] U (a, b}, so u({a, b)) =
F(b) — F(a). Our procedure will be to turn this process around and construct a
measure /. starting from an increasing, right-continuous function F'. The special case

| AT AN —_ 7 will vield the nienal “lanoth?’ meacnre
4 \.Ll} S VY REE Jl\/lu tiiv uoudas lVllslll 111vAV UL v,

The building blocks for our theory will be the left-open, right-closed intervals in
R — that is, sets of the form (a, b] or (a,c0) or &, where —co < a < b < co. In
this section we shall refer to such sets as h-intervals (h for “half-open”). Clearly the
intersection of two h-intervals is an h-interval, and the complement of an h-interval
is an h-interval or the disjoint union of two h-intervals. By Proposition 1.7, the
collection A of finite disjoint unions of h-intervals is an algebra, and by Proposition

1.2, the o-algebra generated by A is Bg.

1.15 Proposition. Ler F' : R — R be increasing and right continuous. If (a;,b;]
(7 =1,...,n) are disjoint h-intervals, let

and Tot 1~ (O
uritu Lt /J/U\K/

SN’
C
=
[aw]
Q
]

Proof.  First we must check that ,ug is well defined, since elements of A can be

AAAAAAAA tad lin smamaen am A % Aicinint 11minne AF hointargala

ICPIUDCULCU lll 11u1IC Uldll UIIC way as UIdJULIL HHUI O1 n-intervais. lf {(a], b]]}?
are disjoint and |J] (a;,b;] = (a,b], then, after perhaps relabeling the index j, we
must have a = a; < by = ap < by = ... < b, =b,s0)Y [[F(bj) — F(a;)] =
F(bY — F(a). More ce 1 }':’l" and { 7}71” are finite se 15101

£ \v) 4 \Ww). Ay v uvq Al ) i
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h-intervals such that | J}" I; = [J} J;, this reasoning shows that
> wo(l) =Y polin ;) = po(Jy).
1 4,7 J

Thus pg is well defined, and it is finitely additive by construction.

It remains to show thatif {1,}5° is a sequence of disjoint h-intervals with | J7° I; €
A then po(Uy" ;) = D277 po(I;). Since | J7® I; is a finite union of h-intervals, the
sequence {I;}5° can be partitioned into finitely many subsequences such that the
union of the intervals in each subsequence is a single h-interval. By considering each
subsequence separately and using the finite additivity of po, we may assume that

1100

U7 I, is an h-interval I = (a, b]. In this case, we have

po(I) = No(ofj) +#0(I\Dlj) > NO(C)Ij) = i#o(lj)-

Letting n — oo, we obtain po(I) > S.7° p(I;). To prove the reverse inequality,
let us suppose first that @ and b are finite, and let us fix ¢ > 0. Since F' is right
continuous, there exists § > 0 such that F'(a + 6) — F(a) < ¢, and if I; = (a;, b;],
for each j there exists §; > 0 such that F(b; + 6;) — F(b;) < €277, The open
intervals (a;, b; + 8;) cover the compact set [a + 6, b], so there is a finite subcover.
By discarding any (a;, b; + 6;) that is contained in a larger one and relabeling the
index 7, we may assume that

e the intervals (a1, by + 61),...,(an, by + 6n) cover [a + 6, b],

. bj +5j € (aj+1, bj+1 +5j+1) fory=1,...,N - 1.
But then

po(I) < F(b) — Fla+6)+¢
S F(by +6n) — F(a1) +e¢

z
L

= F(by +6n) — Flan) + ) [F(aj41) = F(aj)] +¢

-]

N-1
< F(by +6n) = Flan) + Y [F(bj +6;) — F(aj)] +¢
1
N
X NP/ o — — 7 A1
< L[ﬁ'(bj) + €27 — t*’(aj)J + €
1
<Ny T.Y 4+ 9¢.
APl O VA
1
Since € is arbitrary, we are done when a and b are finite. If a = —oo, for any

M < oo the intervals (ajb; + 6;) cover [—M, b}, so the same reasoning gives
Fb) — F(-M) < 3 77 po(I;) + 2¢, whereas if b = oo, for any M < oo we
likewise obtain F'(M) — F(a) < Y 7" no(I;) + 2¢. The desired result then follows

hv lettinoa e — D and M — Ao -
UJ l\/"‘l“s A\ U LI UYL EAA N .
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1.16 Theorem. If F' : R — R is any increasing, right continuous function, there is
a unique Borel measure i on R such that pr((a,b]) = F(b) — F(a) forall a,b. If
G is another such function, we have ur = pg iff F — G is constant. Conversely, if
1 is a Borel measure on R that is finite on all bounded Borel sets and we define

w(O,2) iz >0
Fz)=<0 ifr =0,

v]) i L N Y,

1.

Proof. Each F induces a premeasure on A by Proposition 1.15. {tis clear that F’

S
and G 1nduce the same premeasure iff F' — G is constant, and that these premeasures

es
are o-finite (since R = (J*_ (4, j+1]). The first two assertions therefore follow from

Thanram 1 14 Ac far tha 1
A1iICULIVILIL 1.177. 2O 1UL Lll\/ i

nna tha mr\nr\fr\vnrnf‘r nf 11 imnlice tha manntanicity
Vliv, Uiv 111u1 ULUIII\«IL] Ui ,J.t llllk}llbb Lll\/ lllUllULUlll\«ll)’

of F', and the continuity of  from above and below implies the right continuity of F
forzr >0and z < 0. Itis ev1dent that © = pr on A, and hence 1 = pur on Bg by

the u qnp ness in Theorem 1.14. -

Several remarks are in order. First, this theory could equally well be developed
by using intervals of the form [a,b) and left continuous functions F'. Second, if
w is a finite Borel measure on R, then u = pp where F(z) = u((—o0,z]) is the
cumulative distribution function of w; this differs from the F' specified in Theorem
1.16 by the constant p((—o0, 0]). Third, the theory of §1.4 gives, for each increasing
and 1igut continuous F , ot Oi‘lly the Borel measure BF but a compxete measure ;,LF
whose domain includes Bg. In fact, 7ip is just the completion of ur (Exercise 22a

or Theorem 1.19 below), and one can show that its domain is always strictly larger

than B We chall neniallv denonte thic camnlete meacnre alea hv 17 ~* it ic called the
Likieil U . YYNW D1iCAER Uuuull VAW LIVLY L1k1O \/Ullll.llvbv 11iviAUv VI v KIVUY U ,/Ut‘ [} AV AU VAliwNweE uiiw

Lebesgue-Stieltjes measure associated to F'.

Lebesgue-Stieltjes measures enjoy some useful regularity properties that we now
investigate. In this discussion we fix a complete Lebesgue-Stieltjes measure ;2 on R
associated to the increasing, right continuous function F', and we denote by M, the
domain of p. Thus, for any £' € M,

o0

[L(E) = 1nf{Z[F(b]) — F(aj)] FE C U(aj,bj]}
= inf{iu((aj,bj]) :EC D(aj’bj]}'
1

1

We first observe that in the second formula for u(F) we can replace h-intervals by
open h-intervals:
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Proof. Let us call the quantity on the right v(E). Suppose E C |7 (aj,b;).
Each (a;, b;) is a countable disjoint union of h-intervals I"c (k =1,2,...); specifi-

cally, I¥ = (c¥, "] where {c;} is any sequence such that ¢; = a; and ¢} increases

tobjask—am ThusEf'lloo Ij’“,so
o0 o0
Z:U“((a%b])) = Z N(ng) > p(E),
1 k=1

and hence V(E) 2 p(E). On the other hand, given € > 0 there exists {
1 ( t
J L

ol n;l\1\/: | BA nA fAr aarth 2
H\\MJ,UJJ} = ’/‘/\1—/} —r C allu 1UL \/a\/llJ

E C S PV A
U

1.18 Theorem. If E € M, then

p(E) = inf{u(U) : U D> E and U is open}
= sup{u(K) : K C E and K is compact}.

Proof. By Lemma 1.17, for any € > 0 there exist intervals (a;, b;) such that
E C Ut (aj,b;) and u(E) < 3277 p((aj,b5)) + e U = U7 (ay,b;) then U is
open, U D E, and u(U) < pu(E) + €. On the other hand, u(U) > pu(E) whenever
U D E, so the first equality is valid. For the second one, suppose first that £ is
bounded. If F is closed, then E' is compact and the equality is obvious. Otherwise,
given € > 0 we can choose an open U D E'\ E such that u(U) < u(E \ E) + €. Let
K = E\ U. Then K is compact, K C E, and

I
=%
g\
v;
o
D
QI

p(K)

If E is unbounded, let E; = E N (4, j + 1]. By the preceding argument, for
any € > 0 there exist compact K; C E; with u(K;) > p(E;) — €279, Let
H, = ", K;. Then H, is compact, H, C E, and p(H,) > p(J", E;) —

Since p(F) = lim,, 00 p(J",, E;), the result follows. 5

1.19 Theorem. If E C R, the following are equivalent.
a EeM,.

b. E =V \ Ny whereV isaGs set and u(N1) = 0.
c. F=HU Nn where H isan F_ set and u

C il LT & § e ~
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Proof.  Obviously (b) and (c) each imply (a) since 1 is complete on M,,. Suppose
E € M, and pu(F) < oco. By Theorem 1.18, for j € N we can choose an open
U; O E and a compact K; C E such that

w(U;) =277 < w(E) < p(Kj) +277.

Let V.= N°U; and H = U1 K;. Then H C E C Vand u(V) = u(H) =

A ~ AN I —— (BN Y — 0 The rocenlt thitg mraua A whan
mLo) < 00, 8O (v \ L) = piL \ 1) = vU. 10c result is thus piovcu wicii

p(E) < oo; the extension to the general case is left to the reader (Exercise 25). g

The significance of Theorem 1.19 is that all Borel sets (or, more generally, all sets
in M) are of a reasonably simple form modulo sets of measure zero. This contrasts

markedly with the machinations necessary to construct the Borel sets from the open
sets when null sets are not excepted; see Proposition 1.23 below. Another version
of the idea that general measurabie sets can be approximated by “simple” sets is
contained in the following proposition, whose proof is left to the reader (Exercise
26):

1.20 Proposition. If E € M, and u(E) < oo, then for every € > O there is a set A
that is a finite union of open intervals such that u(EAA) < €.

We now examine the most important measure on R, namely, Lebesgue measure:
This is the complete measure p r associated to the function F'(z) = z, for which the
measure of an interval is simply its length. We shall denote it by m. The domain of
m is called the class of Lebesgue measurable sets, and we shall denote it by L. We
shall also refer to the restriction of m to Br as Lebesgue measure.

Among the most significant properties of Lebesgue measure are its invariance
under translations and simple behavior under dilations. If £ C R and s, € R, we
define

E+s={z+s:z€E}, rE={rz:z € E}.

1.21 Theorem. IfE € L, then E+ s € L andrE € L forall s,r € R. Moreover,
m(E + s) = m(E) and m(rE) = |rm(E).

Proof.  Since the collection of open intervals is invariant under translations and
dilations, the same is true of Bg. For £ € Bg, let ms(E) = m(E + s) and
m"(E) = m(rE). Then m, and m" clearly agree with m and |r|m on finite unions

of intervals, hence on Bg by Theorem 1.14. In partlcular, if £ € ‘BR and m(E) =0,
then m(FE + s) = m(rE) = 0, from which it follows that the class of sets of
Lebesgue measure zero is preserved by translations and dilations. It follows that £
(the members of which are a union of a Borel set and a Lebesgue null set) is preserved
by translation and dilations and that m(E + s) = m(E) and m(rE) = |r|m(E) for
all £ e L. N

The relation between the measure-theoretic and topological properties of subsets

of R is delicate and contains some surprises. Consider the following facts. Every
singleton set in R has Lebesgue measure zero, and hence so does every countable

Mivia Sev g ~ R Loy i S WMUVS W
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set. In particular, m(Q) = 0. Let {r;}$° be an enumeration of the rational numbers
in [0, 1], and given € > 0, let I; be the interval centered at ; of length €277, Then
the set U = (0,1) N U I; is open and dense in [0, 1], but m(U) < Y 77 €277 = ¢,
its complement K = [0,1] \ U is closed and nowhere dense, but m(K) > 1 — e.
Thus a set that is open and dense, and hence topologically “large,” can be measure-
theoretically small, and a set that is nowhere dense, and hence topologically “small,”
can be measure-theoretically large. (A nonempty open set cannot have Lebesgue
measure zero, however.)

The Lebesgue null sets include not only all countable sets but many sets having
the cardinality of the continuum. We now present the standard example, the Cantor
set, which is also of interest for other reasons.

Each z € [0, 1] has a base-3 decimal expansionz = ) ;~ a;377 where a; =0, 1,
or 2. This expansion is unique unless z is of the form p3~* for some integers p, k, in
which case z has two expansions: one with a; = 0 for j > k and one with a; = 2 for
J > k. Assuming p is not divisible by 3, one of these expansions will have a;, =1
and the other will have a;, = 0 or 2. If we agree always to use the latter expansion,
we see that

a1 =1ifff <z <2,
a1 #landag =1 iff%<x<%0r%<x<%,

and so forth. It will also be useful to observe thatif z = >~ a;3 7 andy = Y b;377,

then = < y iff there exists an n such that a,, = b,, and a; = b; for j < n.
The Cantor set C is the set of all z € [ﬂ 1] that hcn/p a base-3 expansion

A Iiv NsEsRAVVUA D v w wiiae 1xa v vaosvT o

r =Y a;377 with a; 7& 1 for all j. Thus C'is obtamed from [0, 1] by removin

open middle third (3, 3) then removing the open middle thirds ( ,2)and (%,
the two remaining intervals, and so forth. The basic properties of C are summ
as follows:

..:

1.22 Proposition. Let C be the Cantor set.

a. C is compact, nowhere dense, and totally disconnected (i.e., the only connected
subsets of C are single points). Moreover, C has no isolated points.

b. m(C)=0.
c. card(C) =c.

Proof. We leave the proof of (a) to the reader (Exercise 27). As for (b), C is
obtained from [0, 1] by removing one interval of length %, two intervals of length 3,
and so forth. Thus

4
1

= 2 1
m(C)_1—ZOij+1_1_§.m73_)_o.

Al e o~ Y 1y oo 0—1

Lastly, suppose z € C, so that z = ) a;377 where a; = 0 or 2 for all j.
Let f(z) = >.7°b;277 where b; = a;/2. The series defining f(z) is the base-2

expansion of a number in [0,1], and any number in [0,1] can be obtained in this way.

Hence f manc (' onta [0 11 and () followe -
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Let us examine the map f in the preceding proof more closely. One readily sees
thatif z,y € C and = < y, then f(z) < f(y) unless x and y are the two endpoints
of one of the intervals removed from [0,1] to obtain C. In this case f(z) = p2~* for
some integers p, k, and f(z) and f(y) are the two base-2 expansions of this number.
We can therefore extend f to a map from [0,1] to itself by declaring it to be constant
on each interval missing from C. This extended f is still increasing, and since its
range is all of [0,1] it cannot have any jump discontinuities; hence it is continuous.
f is called the Cantor function or Cantor-Lebesgue function.

The construction of the Cantor set by starting with [0,1] and successively removing
open middle thirds of intervals has an obvious generalization. If I is a bounded
interval and « € (0, 1), let us call the open interval with the same midpoint as I and

length equal to a times the length of I the “open middle ath” of I. If {a;}5° is
any sequence of numbers in (0, 1), then, we can define a decreasing sequence {K; }
of closed sets as foliows: Ko = [0, 1], and K is obtained by removing the open
middle a;th from each of the intervals that make up K;_;. The resulting limiting
set K = ﬂ‘f" Kj is called a generalized Cantor set. Generalized Cantor sets all

alhawa Tan e e naee; Flncbmee ant P e S Dot e
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for their Lebesgue measure, clearly m(K;) = (1 — a;)m(K;_1), so m(K) is the
infinite product [17° (1 — o) = limp 00 [ [ (1 — ;). If the @; are all equal to a fixed

a € (0 1) (for examnle n — 1 for the ordinarv Cantor cpf\ we have m([(\ = 0.
A \\J’ J./ \l\Jl Vl\ulllkl‘v, A 3
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However, if o; — 0 sufﬁciently rapidly as j — oo, m(K) w1ll be posmve, and for
any 8 € (0,1) one can choose o so that m(K) will equal 3; see Exercise 32. This
mves another way of constructing nowhere dense sets of nosmve measure.

Not every Lebesgue measurable set is a Borel set. One can display examples of
sets in £\ Bg by using the Cantor function; see Exercise 9 in Chapter 2. Alternatively,
one can observe that since every subset of the Cantor set is Lebesgue measurable, we
have card(L) = card(P(R)) > ¢, whereas card(Br) = c¢. The latter fact follows

from Proposition 1.23 below.

Exercises
25. Complete the proof of Theorem 1.19.
26. Prove Proposition 1.20. (Use Theorem 1.18.)

27. Prove Proposition 1.22a. (Show that if z,y € C and z < y, there exists z ¢ C
suchthatr < 2 < y.)

28. Let F' be increasing and right continuous, and let ur be the associated measure.
Then pr({a}) = F(a) — F(a=), pr(la,b)) = F(b-) — F(a-), pr([a,b]) =
P() - F(a-), and up((a,8)) = F(b=) — F(a).

29. Let E be a Lebesgue measurable set.

a. If E C N where N is the nonmeasurable set described in §1.1, then m(E) =
0.

b. If m(E) > 0, then E contains a nonmeasurable set. (It suffices to assume
E C [0,1]. In the notation of §1.1, E = {J,c g £ N N;.)
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30. If E € L and m(FE) > 0,
m(ENIT)>am(l).
31. If E € Land m(E) > 0, theset E — E = {z —y : z,y € E} contains an
interval centered at 0. (if I is as in Exercise 30 with & > %, then £ — E contains
(—=gm(I), 3m(1)).)
32. Suppose {a;}5° C (0,1).
a. [[77(1—a;) >0iff 57° a; < oo. (Compare Y ;" log(l — ;) to Y ;)
b. Given 8 € (0, 1), exhibit a sequence {a; } such that []{°(1 — a;) = B.

or any a < 1 there is an open interval I such that

[*~)

4’
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33. There exists a Borel set A C lU J.J such that 0 < m (n vl 1) < 110(1) IOr every
subinterval I of [0, 1]. (Hint: Every subinterval of [0, 1] contains Cantor-type sets of
positive measure.)

1.6 NOTES AND REFERENCES

The history of measure theory is intimately connected with the history of integration
theory, comments on which will be made in §2.7.

§1.1: The Banach-Tarski paradox appeared firstin [11], but the following variant
goes back to Hausdorff [68]:

ere;nm:; fr c m3-|m|-—-1}
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Esu E4 are all images of each other under rotations.

An elementary exposition of the Banach-Tarski paradox and Hausdorff’s result can
be found in Stromberg [146].

21 ")- nnr charactarizatinn nf the ~_aloge ro Mf,c
§1i 1t a1 glul Jlb\

ta

P(X) is nonconstructive, and one might ask how to obtain M(&
The answer is rather complicated. One can begin as follows: Let €
Fl and for 7 > 1 define {C'.A to be the collection of all sets tl a

€

I

2
—~
N’ o
o0

unions of sets in 8]_1 or complements of such. Let Eu = U1 jii
In general, no. &, is closed under complements, but if £; € &; \ Sj_l for each 3,
there is no reason for U°° E; tobein €,. So one must start all over again. More
precisely, one must define €, for every countable ordinal o« by transfinite induction:
If o has an immediate predecesor 3, £, is the collection of sets that are countable
unions of sets in € or complements of such; otherwise, o = s, €g- Then:

1.23 Proposition. M(E) = . Ea, where S is the set of countable ordinals.
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Proof.  Transfinite induction shows that £, C M(FE) for all a € €2, and hence
Uaseq €a € M(E). The reverse inclusion follows from the fact that any sequence in
2 has a supremum in §2 (Proposmon 0.19): If E; € &, for j € Nand 3 = sup{aj}

than L'~ € farall 5 and bhan~al 199 10, = Thata a. nnnnnnnnnnnnn _
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Combining this with Proposition 0.14, we see that if card(N) < card(&) < ¢,
then card(M(&)) = ¢. (Cf. Exercise 3.)

§1.3: Some authors prefer to take the domains of measures to be o-rings rather

than ~_alanhrac (cans Rvarrica 1) Thae reacnn 1c that 1in Aaalina with “varv laraan®?
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spaces one can avoid certain pathologies by not attempting to measure “very large”
sets. However, this point of view also has technical disadvantages, and it is no longer
much in favor.

§1.4: Carathéodory’s theorem appears in his treatise [22]. Theorem 1.14 has
been attributed in the literature to Hahn, Carathéodory, and E. Hopf, but it is orig-
inally due to Fréchet [54]. The proof via Carathéodory’s theorem was discovered

independently by Hahn [60] and Kolmogorov [85].
See Kbnig [86] for a deeper study of the problem of constructing measures from

more pr imitive data.

§1.5: Lebesgue originally defined the outer measure m*(E) of aset E C R in
terms of countable coverings by intervals, as we have done. He then defined abounded
set E' to be measurable if m*(E)+m*((a,b)\ E) = b—a, where (a, b) is an interval
containing F, and an unbounded set to be measurable if its intersection with any
bounded interval is measurable. Carathéodory’s characterization of measurability,
which is technically eaiser to work with, came later. For the equivalence of the two
definitions, see Exercise 19.

One should convince oneself that the remarkably fussy proof of Proposition 1.15
is necessary by contemplating the complicated ways in which an h-interval can be
decomposed into a disjoint union of h-subintervals. In any such decomposition the
collection of right endpoints of the subintervals, when ordered from right to left,

a well ordered set, but it can be order iSOx“ﬂOi‘puu, to any initial segment of the set of
countable ordinals.

Lebesgue measure can be extended to a translation-invariant measure on o-

aloshrac that nrnnnrl\l 1nn]nr]n [+ cop Kalkntani and ﬂvfn]’\\l rQ11 ﬂF course ench
aigiuias uu.u. PrypLiiy ditiuult A, SLu ASakuiani ang LOxie Ty, dulna

o-algebras can never contain the nonmeasurable set dlscussed in §1. However,
Lebesgue measure can be extended to a translation-invariant finitely additive mea-
sure on P(R), and its 2-dimensional analogue (see §2.6) can be extended to a finitely
additive measure on P(R?) that is invariant under translations and rotations; see
Banach [8]. The Banach-Tarski paradox prevents this result from being extended to
higher dimensions.

In connection with the existence of nonmeasurable sets, Solovay [138] has proved
a remarkable theorem which says in effect that it is impossible to prove the existence
of Lebesgue nonmeasurable sets without using the axiom of choice. (The precise
statement of the theorem involves to technical points of axiomatic set theory, which
we shall not discuss here.) From the point of view of the working analyst, the effect of
Solovay’s theorem is to reaffirm the adequacy of the Lebesgue theory for all practical
purposes.

See Rudin [124] for a terse solution of Exercise 33.



