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with , etc., constant A, B, C, D, K, and 
, can be reduced to

the hypergeometric equation with independent variable

and parameters related by 
. From this you see that (15)

is a “normalized form” of the more general (18) and
that various cases of (18) can thus be solved in terms
of hypergeometric functions.

K � abC � a � b � 1,
Ct1 � D � �c(t2 � t1),

x �
t � t1

t2 � t1

At � B � (t � t1)(t � t2), t1 � t2

t 2 �y
#

� dy>dt 15–20 HYPERGEOMETRIC ODE
Find a general solution in terms of hypergeometric
functions.

15.

16.

17.

18.

19.

20. 3t(1 � t)y
# #

� ty
#

� y � 0

2(t 2 � 5t � 6)y
# #

� (2t � 3)y
#

� 8y � 0

4(t 2 � 3t � 2)y
# #

� 2y
#

� y � 0

4x(1 � x)ys � yr � 8y � 0

x(1 � x)ys � (1
2 � 2x)yr � 2y � 0

2x(1 � x)ys � (1 � 6x)yr � 2y � 0

5.4 Bessel’s Equation. Bessel Functions 
One of the most important ODEs in applied mathematics in Bessel’s equation,6

(1)

where the parameter (nu) is a given real number which is positive or zero. Bessel’s
equation often appears if a problem shows cylindrical symmetry, for example, as the
membranes in Sec.12.9. The equation satisfies the assumptions of Theorem 1. To see this,
divide (1) by to get the standard form . Hence, according
to the Frobenius theory, it has a solution of the form

(2) .

Substituting (2) and its first and second derivatives into Bessel’s equation, we obtain

We equate the sum of the coefficients of to zero. Note that this power 
corresponds to in the first, second, and fourth series, and to in the third
series. Hence for and , the third series does not contribute since .m � 0s � 1s � 0

m � s � 2m � s
xs�rx s�r

� a
�

m�0

 am xm�r�2 � �2
a
�

m�0

 am xm�r � 0. 

a
�

m�0

 (m � r)(m � r � 1)am xm�r � a
�

m�0

 (m � r)am xm�r

(a0 � 0)y(x) � a
�

m�0

 am xm�r

ys � yr>x � (1 � �2>x2)y � 0x2

�

x2ys � xyr � (x2 � �2)y � 0

J�(x)

6FRIEDRICH WILHELM BESSEL (1784–1846), German astronomer and mathematician, studied astronomy
on his own in his spare time as an apprentice of a trade company and finally became director of the new Königsberg
Observatory.

Formulas on Bessel functions are contained in Ref. [GenRef10] and the standard treatise [A13].



For all four series contribute, so that we get a general formula for all these s.
We find

(a)

(3) (b)

(c) .

From (3a) we obtain the indicial equation by dropping ,

(4) .

The roots are and .

Coefficient Recursion for For , Eq. (3b) reduces to 
Hence since . Substituting in (3c) and combining the three terms
containing gives simply

(5)

Since and , it follows from (5) that . Hence we have to
deal only with even-numbered coefficients with . For , Eq. (5) becomes

.

Solving for gives the recursion formula

(6) , .

From (6) we can now determine successively. This gives

and so on, and in general

(7) .

Bessel Functions for Integer 
Integer values of v are denoted by n. This is standard. For the relation (7) becomes

(8) .m � 1, 2, Áa2m �
(�1)ma0

22mm! (n � 1)(n � 2) Á (n � m)
 ,

� � n

� � nJn(x)

m � 1, 2, Áa2m �
(�1)ma0

22mm! (� � 1)(� � 2) Á (� � m)
 ,

a4 � � 

a2

222(v � 2)
�

a0

242! (� � 1)(� � 2)

a2 � � 

a0

22(� � 1)

a2, a4, Á

m � 1, 2, Áa2m � � 
1

22m(� � m)
 a2m�2

a2m

(2m � 2�)2ma2m � a2m�2 � 0

s � 2ms � 2mas

a3 � 0, a5 � 0, Á� � 0a1 � 0

(s � 2�)sas � as�2 � 0.

as

r � �� � 0a1 � 0
(2� � 1)a1 � 0.r � �r � r1 � v.

r2 � ��r1 � � (� 0)

(r � �)(r � �) � 0

a0

(s � 2, 3, Á )(s � r)(s � r � 1)as � (s � r)as � as�2 � �2as � 0

(s � 1)(r � 1)ra1 � (r � 1)a1 � �2a1 � 0

(s � 0)r(r � 1)a0 � ra0 � �2a0 � 0

s � 2, 3, Á
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is still arbitrary, so that the series (2) with these coefficients would contain this arbitrary
factor . This would be a highly impractical situation for developing formulas or
computing values of this new function. Accordingly, we have to make a choice. The choice

would be possible. A simpler series (2) could be obtained if we could absorb the
growing product into a factorial function What
should be our choice? Our choice should be

(9)

because then in (8), so that (8) simply becomes

(10) .

By inserting these coefficients into (2) and remembering that we obtain
a particular solution of Bessel’s equation that is denoted by :

(11) .

is called the Bessel function of the first kind of order n. The series (11) converges
for all x, as the ratio test shows. Hence is defined for all x. The series converges
very rapidly because of the factorials in the denominator.

E X A M P L E  1 Bessel Functions and 

For we obtain from (11) the Bessel function of order 0

(12)

which looks similar to a cosine (Fig. 110). For we obtain the Bessel function of order 1

(13) ,

which looks similar to a sine (Fig. 110). But the zeros of these functions are not completely regularly spaced
(see also Table A1 in App. 5) and the height of the “waves” decreases with increasing x. Heuristically, 
in (1) in standard form [(1) divided by ] is zero (if ) or small in absolute value for large x, and so is

, so that then Bessel’s equation comes close to , the equation of ; also acts
as a “damping term,” in part responsible for the decrease in height. One can show that for large x,

(14)

where is read “asymptotically equal” and means that for fixed n the quotient of the two sides approaches 1
as .x: �

�

Jn(x) � B
2
px

 cos ax �  

np

2
�  

p

4
b

yr>xcos x and sin xys � y � 0yr>x
n � 0x2

n2>x2

J1(x) � a
�

m�0

 
(�1)mx2m�1

22m�1m! (m � 1)!
�

x

2
�

x3

231! 2!
�

x5

252! 3!
�

x7

273! 4!
� � Á

n �  1

J0(x) � a
�

m�0

 
(�1)mx2m

22m(m!)2
� 1 �  

x2

22(1!)2
�

x4

24(2!)2
�

x6

26(3!)2
� � Á

n � 0

J1(x)J0(x)

Jn(x)
Jn(x)

(n � 0)Jn(x) � xn
a
�

m�0

 
(�1) mx2m

22m�nm! (n � m)!

Jn(x)
c1 � 0, c3 � 0, Á

m � 1, 2, Áa2m �
(�1)m

22m�nm! (n � m)!
 ,

n! (n � 1) Á (n � m) � (n � m)!

a0 �
1

2nn!

(n � m)!(n � 1)(n � 2) Á (n � m)
a0 � 1

a0

a0
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Formula (14) is surprisingly accurate even for smaller . For instance, it will give you good starting
values in a computer program for the basic task of computing zeros. For example, for the first three zeros of 
you obtain the values 2.356 (2.405 exact to 3 decimals, error 0.049), 5.498 (5.520, error 0.022), 8.639 (8.654,
error 0.015), etc. �

J0

x (	0)
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Fig. 110. Bessel functions of the first kind J0 and J1

Bessel Functions for any . Gamma Function
We now proceed from integer to any . We had in (9). So we
have to extend the factorial function to any . For this we choose

(15)

with the gamma function defined by

(16) .

(CAUTION! Note the convention on the left but in the integral.) Integration
by parts gives

.

This is the basic functional relation of the gamma function

(17) .

Now from (16) with and then by (17) we obtain

and then and in general

(18) .(n � 0, 1, Á )
(n � 1) � n!


(2) � 1 # 
(1) � 1!, 
(3) � 2
(1) � 2!


(1) � �
�

0

 e�t dt � �e�t `
0

�

� 0 � (�1) � 1

� � 0


(� � 1) � �
(�)


(� � 1) � �e�tt � `
�

0
� ��

�

0

e�tt ��1 dt � 0 � �
(�)

�� � 1

(� 	 �1)
(� � 1) � �
�

0
e�tt � dt


(� � 1)

a0 �
1

2�
(� � 1)

� � 0n!
a0 � 1>(2nn!)� � 0� � n

� � 0J�(x)



Hence the gamma function generalizes the factorial function to arbitrary positive .
Thus (15) with agrees with (9).

Furthermore, from (7) with given by (15) we first have

.

Now (17) gives and so on,
so that

.

Hence because of our (standard!) choice (15) of the coefficients (7) are simply

(19) .

With these coefficients and we get from (2) a particular solution of (1), denoted
by and given by

(20) .

is called the Bessel function of the first kind of order �. The series (20) converges
for all x, as one can verify by the ratio test.

Discovery of Properties from Series
Bessel functions are a model case for showing how to discover properties and relations of
functions from series by which they are defined. Bessel functions satisfy an incredibly large
number of relationships—look at Ref. [A13] in App. 1; also, find out what your CAS knows.
In Theorem 3 we shall discuss four formulas that are backbones in applications and theory.

T H E O R E M  1 Derivatives, Recursions

The derivative of with respect to x can be expressed by or (x) by
the formulas

(21)
(a)

(b) .

Furthermore, and its derivative satisfy the recurrence relations

(21)
(c)

(d) J��1(x) �  J��1(x) � 2Jr�(x).

J��1(x) � J��1(x) �
2�
x  J�(x) 

J�(x)

 [x��J�(x)]r � �x��J��1(x)

 [x�J�(x)]r � x�J��1(x)

J��1J��1(x)J�(x)

J�(x)

J�(x) � x�
a
�

m�0

 
(�1)mx2m

22m��m! 
(� � m � 1)

J�(x)
r � r1 � �

a2m �
(�1)m

22m��m! 
(� � m � 1)

a0

(� � 1)(� � 2) Á (� � m)
(� � 1) � 
(� � m � 1)

(� � 1)
(� � 1) � 
(� � 2), (� � 2)
(� � 2) � 
(� � 3)

a2m �
(�1)m

22mm! (� � 1)(� � 2) Á (� � m)2�
(� � 1)

a0

� � n
�
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P R O O F (a) We multiply (20) by and take under the summation sign. Then we have

We now differentiate this, cancel a factor 2, pull out, and use the functional
relationship [see (17)]. Then (20) with instead
of shows that we obtain the right side of (21a). Indeed,

(b) Similarly, we multiply (20) by , so that in (20) cancels. Then we differentiate,
cancel 2m, and use . This gives, with ,

Equation (20) with instead of and s instead of m shows that the expression on
the right is . This proves (21b).

(c), (d) We perform the differentiation in (21a). Then we do the same in (21b) and
multiply the result on both sides by . This gives

(a*)

(b*) .

Substracting (b*) from (a*) and dividing the result by gives (21c). Adding (a*) and
(b*) and dividing the result by gives (21d).

E X A M P L E  2 Application of Theorem 1 in Evaluation and Integration

Formula (21c) can be used recursively in the form

for calculating Bessel functions of higher order from those of lower order. For instance, 
so that can be obtained from tables of and (in App. 5 or, more accurately, in Ref. [GenRef1] in App. 1).

To illustrate how Theorem 1 helps in integration, we use (21b) with integrated on both sides. This
evaluates, for instance, the integral

.

A table of (on p. 398 of Ref. [GenRef1]) or your CAS will give you

.

Your CAS (or a human computer in precomputer times) obtains from (21), first using (21c) with ,
that is, then (21c) with , that is, . Together,J2 � 2x�1J1 � J0� � 1J3 � 4x�1J2 � J1,

� � 2J3

�1
8
# 0.128943 � 0.019563 � 0.003445

J3

I � �
2

1

x�3J4(x) dx � �x�3J3(x) 2 2
1

� � 

1

8
 J3(2) � J3(1)

� � 3
J1J0J2

J2(x) � 2J1(x)>x � J0(x),

J��1(x) �
2�

x
 J�(x) � J��1(x)

�x�
x�

��x��1J� � x�Jr� � �x�J��1

�x��1J� � x�Jr� � x�J��1

x2�

�x��J��1(x)
�� � 1

(x��J�)r � a
�

m�1

 
(�1)mx2m�1

22m���1(m � 1)! 
(� � m � 1)
� a

�

s�0

 
(�1)s�1x2s�1

22s���1s! 
(� � s � 2)
 .

m � s � 1m! � m(m � 1)!
x�x��

(x�J�)r � a
�

m�0

 
(�1)m2(m � �)x2m�2��1

22m��m! 
(� � m � 1)
� x�x��1

a
�

m�0

 
(�1)mx2m

22m���1m! 
(� � m)
 .

�
� � 1
(� � m � 1) � (� � m)
(� � m)

x2��1

x�J�(x) � a
�

m�0

 
(�1)mx2m�2�

22m��m! 
(� � m � 1)
 .

x2�x�
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This is what you get, for instance, with Maple if you type int . And if you type evalf(int ), you obtain
0.003445448, in agreement with the result near the beginning of the example.

Bessel Functions with Half-Integer Are Elementary
We discover this remarkable fact as another property obtained from the series (20) and
confirm it in the problem set by using Bessel’s ODE.

E X A M P L E  3 Elementary Bessel Functions with . The Value 

We first prove (Fig. 111)

(22)

The series (20) with is

The denominator can be written as a product AB, where (use (16) in B)

here we used (proof below)

(23) .

The product of the right sides of A and B can be written

.

Hence

J1>2(x) � B
2
px

 a
�

m�0

 
(�1)mx2m�1

(2m � 1)!
� B

2
px

 sin x.

AB � (2m � 1)2m (2m � 1) Á  3 # 2 # 11p � (2m � 1)!1p


(1
2) � 1p

 � (2m � 1)(2m � 1) Á  3 # 1 # 1p ;

 B � 2m�1
(m � 3
2) � 2m�1(m � 1

2)(m � 1
2) Á  

3
2
# 1

2
(1
2)

 A � 2mm! � 2m(2m � 2)(2m � 4) Á  4 # 2,

J1>2(x) � 1x a
�

m�0

 
(�1) mx2m

22m�1>2m! 
(m � 3
2)

� B
2

x
 a

�

m�0

  
(�1) mx2m�1

22m�1m! 
(m � 3
2)

 .

� � 1
2

(a) J1>2(x) � B
2
px

 sin x,  (b) J�1>2(x) � B
2
px

 cos x.

�( 
1
2 

)� � 1
2 

, � 3
2 

, �5
2 

, Á�J�

�J�

�
( Á )( Á )

 � �1
8  

J1(2) � 1
4  

J0(2) � 7J1(1) � 4J0(1).

 � �1
8  
32J1(2) � 2J0(2) � J1(2)4 � 38J1(1) � 4J0(1) � J1(1)4

 I � x�3(4x�1(2x�1J1 � J0) � J1) 2 2
1
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Fig. 111. Bessel functions and J�1>2J1>2



This proves (22a). Differentiation and the use of (21a) with now gives

This proves (22b). From (22) follow further formulas successively by (21c), used as in Example 2.
We finally prove by a standard trick worth remembering. In (15) we set . Then

and

We square on both sides, write v instead of u in the second integral, and then write the product of the integrals
as a double integral:

We now use polar coordinates r, by setting Then the element of area is 
and we have to integrate over r from 0 to and over from 0 to (that is, over the first quadrant of the
uv-plane):

By taking the square root on both sides we obtain (23).

General Solution. Linear Dependence
For a general solution of Bessel’s equation (1) in addition to we need a second linearly
independent solution. For not an integer this is easy. Replacing by in (20), we
have

(24) .

Since Bessel’s equation involves , the functions and are solutions of the equation
for the same . If is not an integer, they are linearly independent, because the first terms
in (20) and in (24) are finite nonzero multiples of and . Thus, if is not an integer,
a general solution of Bessel’s equation for all is

This cannot be the general solution for an integer because, in that case, we have
linear dependence. It can be seen that the first terms in (20) and (24) are finite nonzero
multiples of and , respectively. This means that, for any integer , we have
linear dependence because

(25) .(n � 1, 2, Á )J�n(x) � (�1)n Jn(x)

� � nx��x�

� � n

y(x) � c1J�(x) � c2J��(x)

x � 0
�x��x�

��
J��J��2

J��(x) � x��
a
�

m�0

 
(�1)mx2m

22m��m! 
(m � � � 1)

����
J�

�


a 1

2
b

2

� 4�
p>2

0
�

�

0

e�r 
2

 r dr du � 4 # p
2 �

�

0

 e�r 
2

 r dr � 2a�1

2
b e�r 

2 `
�

0
� p.

p>2u�

du dv � r dr duu � r cos u, v � r sin u.u


a 1

2
b

2

� 4�
�

0

e�u2  

du �
�

0

e�v2

 dv � 4�
�

0
�

�

0

e�(u2�v2) du dv.


a1

2
b � �

�

0

e�tt �1>2 dt � 2�
�

0

e�u2

 du.

dt � 2u du
t � u2
(1

2) � 1p

[1x J1>2(x)]r � B
2
p

 cos x � x1>2 J�1>2(x).

� � 1
2
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P R O O F To prove (25), we use (24) and let approach a positive integer n. Then the gamma
function in the coefficients of the first n terms becomes infinite (see Fig. 553 in App.
A3.1), the coefficients become zero, and the summation starts with . Since in
this case by (18), we obtain

(26)

The last series represents , as you can see from (11) with m replaced by s. This
completes the proof.

The difficulty caused by (25) will be overcome in the next section by introducing further
Bessel functions, called of the second kind and denoted by .Y�

�

(�1)nJn(x)

(m � n � s).J�n(x) � a
�

m�n

 
(�1) mx2m� n

22m�nm! (m � n)!
� a

�

s�0

 
(�1)n�sx2s�n

22s�n (n � s)! s!


(m � n � 1) � (m � n)!
m � n

�
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1. Convergence. Show that the series (11) converges for
all x. Why is the convergence very rapid?

2–10 ODES REDUCIBLE TO BESSEL’S ODE
This is just a sample of such ODEs; some more follow in
the next problem set. Find a general solution in terms of 
and or indicate when this is not possible. Use the
indicated substitutions. Show the details of your work.

2.

3.

4.

5. Two-parameter ODE

6.

7.

8.

9.

10.

11. CAS EXPERIMENT. Change of Coefficient. Find
and graph (on common axes) the solutions of

for (or as far as you get useful
graphs). For what k do you get elementary functions?
Why? Try for noninteger k, particularly between 0 and 2,
to see the continuous change of the curve. Describe the
change of the location of the zeros and of the extrema as
k increases from 0. Can you interpret the ODE as a model
in mechanics, thereby explaining your observations?

12. CAS EXPERIMENT. Bessel Functions for Large x.

(a) Graph for on common axes.n � 0, Á , 5Jn(x)

k � 0, 1, 2, Á , 10

ys � kx�1 yr � y � 0, y(0) � 1, yr(0) � 0,

(y � x�u, x� � z)
x2 ys � (1 � 2�)xyr � �2(x2� � 1 � �2)y � 0

xys � (2� � 1)yr � xy � 0 (y � x��u)

(2x � 1 � z)
(2x � 1) 2ys � 2(2x � 1)yr � 16x(x � 1)y � 0

x2 ys � xyr � 1
4 (x2 � 1)y � 0 (x � 2z)

x2ys � 1
4 (x � 3

4) y � 0 (y � u1x, 1x � z)

(lx � z)x2 ys� xyr � (l2x2 � �2)y � 0 

ys � (e�2x � 1
9)y � 0 (e�x � z)

xys � yr � 1
4 y � 0 (1x � z)

x2 ys � xyr � (x2 � 4
49)y � 0

J��

J�

P R O B L E M  S E T  5 . 4

(b) Experiment with (14) for integer n. Using graphs,
find out from which on the curves of (11)
and (14) practically coincide. How does change
with n?

(c) What happens in (b) if (Our usual notation
in this case would be .)

(d) How does the error of (14) behave as a func-
tion of x for fixed n? [Error exact value minus
approximation (14).]

(e) Show from the graphs that has extrema where
. Which formula proves this? Find further

relations between zeros and extrema.

13–15 ZEROS of Bessel functions play a key role in
modeling (e.g. of vibrations; see Sec. 12.9).

13. Interlacing of zeros. Using (21) and Rolle’s theorem,
show that between any two consecutive positive zeros
of there is precisely one zero of .

14. Zeros. Compute the first four positive zeros of 
and from (14). Determine the error and comment.

15. Interlacing of zeros. Using (21) and Rolle’s theorem,
show that between any two consecutive zeros of 
there is precisely one zero of .

16–18 HALF-INTEGER PARAMETER: APPROACH
BY THE ODE

16. Elimination of first derivative. Show that 
with gives from the ODE

the ODE

not containing the first derivative of u.

us � 3q(x) � 1
4 p(x)2 � 1

2 pr(x)4 u � 0,

p(x)yr � q(x)y � 0ys �

v(x) � exp (�1
2 �  p(x) dx)

y � uv

J1(x)
J0(x)

J1(x)
J0(x)

Jn�1(x)Jn(x)

J1(x) � 0
J0(x)

�

�
n � �1

2?

xn

x � xn



5.5 Bessel Functions Y (x). General Solution
To obtain a general solution of Bessel’s equation (1), Sec. 5.4, for any , we now introduce
Bessel functions of the second kind , beginning with the case .

When , Bessel’s equation can be written (divide by x)

(1) .

Then the indicial equation (4) in Sec. 5.4 has a double root . This is Case 2 in Sec.
5.3. In this case we first have only one solution, . From (8) in Sec. 5.3 we see that
the desired second solution must be of the form

(2)

We substitute and its derivatives

into (1). Then the sum of the three logarithmic terms , and is zero
because is a solution of (1). The terms and (from ) cancel. Hence
we are left with

2 Jr0 � a
�

m�1

 m(m � 1) Am xm�1 � a
�

m�1

 m Am xm�1 � a
�

m�1

 Am xm�1 � 0.

xys and yrJ0>x�J0>xJ0

x J0 ln xx Js0 ln x, Jr0 ln x

ys2 � Js0 ln x �
2Jr0
x

�  

J0

x2 � a
�

m�1

 m (m � 1) Am xm�2

yr2 � Jr0 ln x �
J0

x � a
�

m�1

 mAm xm�1

y2

y2(x) � J0(x) ln x � a
�

m�1

 Am xm.

J0(x)
r � 0

xys � yr � xy � 0

n � 0
� � n � 0Y�(x)
�

n

17. Bessel’s equation. Show that for (1) the substitution
in Prob. 16 is and gives

(27) x2u� � (x2 � 1_
4 � �2)u � 0.

18. Elementary Bessel functions. Derive (22) in Example 3
from (27).

19–25 APPLICATION OF (21): DERIVATIVES,
INTEGRALS 

Use the powerful formulas (21) to do Probs. 19–25. Show
the details of your work.

19. Derivatives. Show that 

20. Bessel’s equation. Derive (1) from (21).

J0(x) � J1(x)>x, Jr2(x) � 1
2[J1(x) � J3(x)].

Jr1(x) �Jr0(x) � �J1(x),

y � ux�1>2
21. Basic integral formula. Show that

22. Basic integral formulas. Show that

23. Integration. Show that 
(The last integral is nonelemen-

tary; tables exist, e.g., in Ref. [A13] in App. 1.)

24. Integration. Evaluate .

25. Integration. Evaluate .�J5(x) dx

�x�1J4(x) dx

xJ0(x) ��J0(x) dx.
�x2J0(x) dx � x2J1(x) �

�J��1(x) dx � �J��1(x) dx � 2J�(x).

�x��J��1(x) dx � �x��J�(x) � c,

�x�J��1(x) dx � x�J�(x) � c.
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Addition of the first and second series gives The power series of is
obtained from (12) in Sec. 5.4 and the use of in the form

Together with and this gives

(3*)

First, we show that the with odd subscripts are all zero. The power occurs only in
the second series, with coefficient . Hence . Next, we consider the even powers

. The first series contains none. In the second series, gives the term
In the third series, . Hence by equating the sum of the

coefficients of to zero we have

.

Since , we thus obtain successively.

We now equate the sum of the coefficients of to zero. For this gives

thus .

For the other values of s we have in the first series in , hence
, in the second , and in the third We thus obtain

For this yields

thus

and in general

(3) .

Using the short notations

(4)

and inserting (4) and into (2), we obtain the result

(5)  � J0(x) ln x �
1
4

 x2 �
3

128
 x4 �

11
13,824

 x6 � � Á .

 y2(x) � J0(x) ln x � a
�

m�1

 
(�1)m�1hm

22m(m!)2
 x2m

A1 � A3 � Á � 0

m � 2, 3, Áh1 � 1  hm � 1 �
1
2

� Á �
1
m

m � 1, 2, ÁA2m �
(�1)m�1

22m(m!)2  a1 �
1
2

�
1
3

� Á �
1
m
b ,

  A4 � � 
3

128
1
8 � 16A4 � A2 � 0,  

s � 1

(�1)s�1

22s(s � 1)! s!
� (2s � 2)2A2s�2 � A2s � 0.

m � 1 � 2s � 1.m � 1 � 2s � 1m � s � 1
(3*) 2m � 1 � 2s � 1

  A2 � 1
4�1 � 4A2 � 0,  

s � 0x2s�1

A3 � 0, A5 � 0, Á ,A1 � 0

s � 1, 2, Á(2s � 1)2A2s�1 � A2s�1 � 0,

x2s
m � 1 � 2s(2s � 1)2A2s�1x2s.

m � 1 � 2sx2s
A1 � 0A1

x0Am

a
�

m�1

 
(�1)mx2m�1

22m�2m! (m � 1)!
� a

�

m�1

 m2Am xm�1 � a
�

m�1

 Am xm�1 � 0.

�Am xm�1�m2Am xm �1

Jr0(x) � a
�

m�1

 
(�1)m2mx2m�1

22m (m!)2
� a

�

m�1

 
(�1)mx2m�1

22m�1m! (m � 1)!
.

m!>m � (m � 1)!
Jr0(x)�m2Amxm�1.



Since and are linearly independent functions, they form a basis of (1) for .
Of course, another basis is obtained if we replace by an independent particular solution
of the form , where and b are constants. It is customary to choose

and , where the number is the so-called
Euler constant, which is defined as the limit of

as s approaches infinity. The standard particular solution thus obtained is called the Bessel
function of the second kind of order zero (Fig. 112) or Neumann’s function of order
zero and is denoted by . Thus [see (4)]

(6)

For small the function behaves about like ln x (see Fig. 112, why?), and

Bessel Functions of the Second Kind 
For a second solution can be obtained by manipulations similar to those
for , starting from (10), Sec. 5.4. It turns out that in these cases the solution also
contains a logarithmic term.

The situation is not yet completely satisfactory, because the second solution is defined
differently, depending on whether the order is an integer or not. To provide uniformity
of formalism, it is desirable to adopt a form of the second solution that is valid for all
values of the order. For this reason we introduce a standard second solution defined
for all by the formula

(7)
(a)

(b)

This function is called the Bessel function of the second kind of order or Neumann’s
function7 of order . Figure 112 shows and .

Let us show that and are indeed linearly independent for all (and ).
For noninteger order , the function is evidently a solution of Bessel’s equation

because and are solutions of that equation. Since for those the solutions
and are linearly independent and involves , the functions and areY�J�J��Y�J��J�

�J�� (x)J�(x)
Y�(x)�

x 	 0�Y�J�

Y1(x)Y0(x)�
�

Yn(x) � lim
�:n

Y�(x).

Y�(x) �
1

sin �p
 [J�(x) cos �p � J��(x)] 

�
Y�(x)

�

n � 0
� � n � 1, 2, Á

Yn(x)

Y0(x): �� as x :  0.
Y0(x)x 	 0

Y0(x) �
2
p

 c J0(x) aln 
x
2

� gb � a
�

m�1

 
(�1)m�1hm

22m(m!)2  x2m d .
Y0(x)

1 �
1
2 � Á �

1
s � ln s

g � 0.57721566490 Áb � g � ln 2a � 2>p
a (� 0)a( y2 � bJ0)

y2

x 	 0y2J0
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7 CARL NEUMANN (1832–1925), German mathematician and physicist. His work on potential theory using
integer equation methods inspired VITO VOLTERRA (1800–1940) of Rome, ERIK IVAR FREDHOLM (1866–1927)
of Stockholm, and DAVID HILBERT (1962–1943) of Göttingen (see the footnote in Sec. 7.9) to develop the field
of integral equations. For details see Birkhoff, G. and E. Kreyszig, The Establishment of Functional Analysis, Historia
Mathematica 11 (1984), pp. 258–321.

The solutions are sometimes denoted by ; in Ref. [A13] they are called Weber’s functions; Euler’s
constant in (6) is often denoted by C or ln .g

N�(x)Y�(x)
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linearly independent. Furthermore, it can be shown that the limit in (7b) exists and 
is a solution of Bessel’s equation for integer order; see Ref. [A13] in App. 1. We shall
see that the series development of contains a logarithmic term. Hence and

are linearly independent solutions of Bessel’s equation. The series development
of can be obtained if we insert the series (20) in Sec. 5.4 and (2) in this section
for and into (7a) and then let approach n; for details see Ref. [A13]. The
result is

(8)

where , and [as in (4)] ,

hm � 1 �
1
2

� Á �
1
m

,  hm�n � 1 �
1
2

� Á �
1

m � n
.

 h0 �  0, h1 � 1x 	 0, n � 0, 1, Á

� 
x�n

p
 a

n�1

m�0

(n � m � 1)!
22m�nm!

 x2m

a
�

m�0

 
(�1)m�1(hm � hm�n)

22m�nm! (m � n)!
 x2mYn(x) �

2
p

 Jn(x) aln 
x

2
� gb �

xn

p
 

�J�� (x)J�(x)
Yn(x)

Yn(x)
Jn(x)Yn(x)

Yn

–0.5

0.5

0 5 x

Y
0

Y
1

10

Fig. 112. Bessel functions of the second kind and 
(For a small table, see App. 5.)

Y1.Y0

For the last sum in (8) is to be replaced by 0 [giving agreement with (6)].
Furthermore, it can be shown that

.

Our main result may now be formulated as follows.

T H E O R E M  1 General Solution of Bessel’s Equation

A general solution of Bessel’s equation for all values of (and ) is

(9)

We finally mention that there is a practical need for solutions of Bessel’s equation that
are complex for real values of x. For this purpose the solutions

(10)
H�

(2)(x) � J�(x) � iY�(x)

H�
(1)(x) � J�(x) � iY�(x)

y(x) � C1J�(x) � C2Y�(x).

 x 	 0�

Y�n(x) � (�1)nYn(x)

n � 0



1. Why are we looking for power series solutions of ODEs?

2. What is the difference between the two methods in this
chapter? Why do we need two methods?

3. What is the indicial equation? Why is it needed?

4. List the three cases of the Frobenius method, and give
examples of your own.

5. Write down the most important ODEs in this chapter
from memory.

1–9 FURTHER ODE’s REDUCIBLE 
TO BESSEL’S ODE

Find a general solution in terms of and . Indicate
whether you could also use instead of . Use the
indicated substitution. Show the details of your work.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10. CAS EXPERIMENT. Bessel Functions for Large x.
It can be shown that for large x,

(11)

with defined as in (14) of Sec. 5.4.

(a) Graph for on common axes. Are
there relations between zeros of one function and
extrema of another? For what functions?

(b) Find out from graphs from which on the
curves of (8) and (11) (both obtained from your CAS)
practically coincide. How does change with n?xn

x � xn

n � 0, Á , 5Yn(x)

�

Yn(x) � 22>(px) sin (x � 1
2 

np� 1
4 
p)

xys � 5yr � xy � 0 (y � x3u)

ys � k2x4y � 0 (y � u1x, 13 kx3 � z)

ys � k2x2y � 0 (y � u1x, 12 kx2 � z)

xys � yr � 36y � 0 (121x � z)

4xys � 4yr � y � 0 (1x � z)

ys � xy � 0 ( y � u1x, 23x3>2 � z)

9x2
 ys � 9xyr � (36x4 � 16)y � 0 (x2 � z)

xys � 5yr � xy � 0 ( y � u>x2)

x2
 ys � xyr � (x2 � 16) y � 0

Y�J��

Y�J�

(c) Calculate the first ten zeros , of
from your CAS and from (11). How does the error

behave as m increases?

(d) Do (c) for and . How do the errors
compare to those in (c)?

11–15 HANKEL AND MODIFIED 
BESSEL FUNCTIONS

11. Hankel functions. Show that the Hankel functions (10)
form a basis of solutions of Bessel’s equation for any .

12. Modified Bessel functions of the first kind of order

are defined by . Show
that satisfies the ODE

(12)

13. Modified Bessel functions. Show that has the
representation

(13) .

14. Reality of . Show that is real for all real x (and
real ), for all real , and 
where n is any integer.

15. Modified Bessel functions of the third kind (sometimes
called of the second kind) are defined by the formula (14)
below. Show that they satisfy the ODE (12).

(14) .K�(x) �
p

2 sin �p
 3I��(x) � I�(x)4

I�n(x) � In(x),x � 0I�(x) � 0�
I�(x)I�

I�(x) � a
�

m�0

 
x2m��

22m��m! 
(m � � � 1)

I�(x)

x2
 ys � xyr � (x2 � �2) y � 0.

I�

I� (x) � i��J� (ix), i � 1�1�

�

Y2(x)Y1(x)

Y0(x)
xm, m � 1, Á , 10

P R O B L E M  S E T  5 . 5
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6. Can a power series solution reduce to a polynomial?
When? Why is this important?

7. What is the hypergeometric equation? Where does the
name come from?

8. List some properties of the Legendre polynomials.

9. Why did we introduce two kinds of Bessel functions?

10. Can a Bessel function reduce to an elementary func-
tion? When?

8HERMANN HANKEL (1839–1873), German mathematician.
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are frequently used. These linearly independent functions are called Bessel functions of
the third kind of order or first and second Hankel functions8 of order .

This finishes our discussion on Bessel functions, except for their “orthogonality,” which
we explain in Sec. 11.6. Applications to vibrations follow in Sec. 12.10.

��



11–20 POWER SERIES METHOD
OR FROBENIUS METHOD

Find a basis of solutions. Try to identify the series as
expansions of known functions. Show the details of your
work.

11.

12.

13. (x � 1)2
 ys � (x � 1) yr � 35y � 0

xys � (1 � 2x) yr � (x � 1) y � 0

ys � 4y � 0

14.

15.

16.

17.

18.

19.

20. xys � yr � xy � 0

ys �
1
4x

 y � 0

xys � 3yr � 4x3 y � 0

xys � (x � 1) yr � y � 0

x2 ys � 2x3 yr � (x2 � 2) y � 0

x2 ys � xyr � (x2 � 5) y � 0

16(x � 1)2 ys � 3y � 0
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SUMMARY OF CHAPTER 5
Series Solution of ODEs. Special Functions

The power series method gives solutions of linear ODEs

(1)

with variable coefficients p and q in the form of a power series (with any center ,
e.g., )

(2) .

Such a solution is obtained by substituting (2) and its derivatives into (1). This gives
a recurrence formula for the coefficients. You may program this formula (or even
obtain and graph the whole solution) on your CAS.

If p and q are analytic at (that is, representable by a power series in powers
of with positive radius of convergence; Sec. 5.1), then (1) has solutions of
this form (2). The same holds if 

are analytic at and so that we can divide by and obtain the standard
form (1). Legendre’s equation is solved by the power series method in Sec. 5.2.

The Frobenius method (Sec. 5.3) extends the power series method to ODEs

(3)

whose coefficients are singular (i.e., not analytic) at , but are “not too bad,”
namely, such that a and b are analytic at . Then (3) has at least one solution of
the form

(4) y(x) � (x � x0)r
a
�

m�0

am(x � x0)m � a0(x � x0)r � a1(x � x0)r�1 � Á

x0

x0

ys �
a(x)

x � x0
 yr �

b(x)

(x � x0)2
 y � 0

h�h�(x0) � 0,x0

h�(x)ys � p�(x)yr � q�(x)y � 0

h, � p,  � q� in
x – x0

x0

y(x) � a
�

m�0

 am(x � x0)m � a0 � a1(x � x0) � a2(x � x0)2 � Á

x0 � 0
x0

ys � p(x) yr � q(x)y � 0


