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P A R T B

Linear Algebra.
Vector Calculus

Matrices and vectors, which underlie linear algebra (Chaps. 7 and 8), allow us to represent
numbers or functions in an ordered and compact form. Matrices can hold enormous amounts
of data—think of a network of millions of computer connections or cell phone connections—
in a form that can be rapidly processed by computers. The main topic of Chap. 7 is how
to solve systems of linear equations using matrices. Concepts of rank, basis, linear
transformations, and vector spaces are closely related. Chapter 8 deals with eigenvalue
problems. Linear algebra is an active field that has many applications in engineering
physics, numerics (see Chaps. 20–22), economics, and others.

Chapters 9 and 10 extend calculus to vector calculus. We start with vectors from linear
algebra and develop vector differential calculus. We differentiate functions of several
variables and discuss vector differential operations such as grad, div, and curl. Chapter 10
extends regular integration to integration over curves, surfaces, and solids, thereby
obtaining new types of integrals. Ingenious theorems by Gauss, Green, and Stokes allow
us to transform these integrals into one another.

Software suitable for linear algebra (Lapack, Maple, Mathematica, Matlab) can be found
in the list at the opening of Part E of the book if needed.

Numeric linear algebra (Chap. 20) can be studied directly after Chap. 7 or 8 because
Chap. 20 is independent of the other chapters in Part E on numerics.
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C H A P T E R 7

Linear Algebra: Matrices,
Vectors, Determinants. 
Linear Systems

Linear algebra is a fairly extensive subject that covers vectors and matrices, determinants,
systems of linear equations, vector spaces and linear transformations, eigenvalue problems,
and other topics. As an area of study it has a broad appeal in that it has many applications
in engineering, physics, geometry, computer science, economics, and other areas. It also
contributes to a deeper understanding of mathematics itself.

Matrices, which are rectangular arrays of numbers or functions, and vectors are the
main tools of linear algebra. Matrices are important because they let us express large
amounts of data and functions in an organized and concise form. Furthermore, since
matrices are single objects, we denote them by single letters and calculate with them
directly. All these features have made matrices and vectors very popular for expressing
scientific and mathematical ideas.

The chapter keeps a good mix between applications (electric networks, Markov
processes, traffic flow, etc.) and theory. Chapter 7 is structured as follows: Sections 7.1
and 7.2 provide an intuitive introduction to matrices and vectors and their operations,
including matrix multiplication. The next block of sections, that is, Secs. 7.3–7.5 provide
the most important method for solving systems of linear equations by the Gauss
elimination method. This method is a cornerstone of linear algebra, and the method
itself and variants of it appear in different areas of mathematics and in many applications.
It leads to a consideration of the behavior of solutions and concepts such as rank of a
matrix, linear independence, and bases. We shift to determinants, a topic that has
declined in importance, in Secs. 7.6 and 7.7. Section 7.8 covers inverses of matrices.
The chapter ends with vector spaces, inner product spaces, linear transformations, and
composition of linear transformations. Eigenvalue problems follow in Chap. 8.

COMMENT. Numeric linear algebra (Secs. 20.1–20.5) can be studied immediately
after this chapter.

Prerequisite: None.
Sections that may be omitted in a short course: 7.5, 7.9.
References and Answers to Problems: App. 1 Part B, and App. 2.



7.1 Matrices, Vectors: 
Addition and Scalar Multiplication

The basic concepts and rules of matrix and vector algebra are introduced in Secs. 7.1 and
7.2 and are followed by linear systems (systems of linear equations), a main application,
in Sec. 7.3.

Let us first take a leisurely look at matrices before we formalize our discussion. A matrix
is a rectangular array of numbers or functions which we will enclose in brackets. For example,

(1)

are matrices. The numbers (or functions) are called entries or, less commonly, elements
of the matrix. The first matrix in (1) has two rows, which are the horizontal lines of entries.
Furthermore, it has three columns, which are the vertical lines of entries. The second and
third matrices are square matrices, which means that each has as many rows as columns—
3 and 2, respectively. The entries of the second matrix have two indices, signifying their
location within the matrix. The first index is the number of the row and the second is the
number of the column, so that together the entry’s position is uniquely identified. For
example, (read a two three) is in Row 2 and Column 3, etc. The notation is standard
and applies to all matrices, including those that are not square.

Matrices having just a single row or column are called vectors. Thus, the fourth matrix
in (1) has just one row and is called a row vector. The last matrix in (1) has just one
column and is called a column vector. Because the goal of the indexing of entries was
to uniquely identify the position of an element within a matrix, one index suffices for
vectors, whether they are row or column vectors. Thus, the third entry of the row vector
in (1) is denoted by 

Matrices are handy for storing and processing data in applications. Consider the
following two common examples.

E X A M P L E  1 Linear Systems, a Major Application of Matrices

We are given a system of linear equations, briefly a linear system, such as

where are the unknowns. We form the coefficient matrix, call it A, by listing the coefficients of the
unknowns in the position in which they appear in the linear equations. In the second equation, there is no
unknown which means that the coefficient of is 0 and hence in matrix A, Thus,a22 � 0,x2x2,

x1, x2, x3

4x1 � 6x2 � 9x3 � 6

6x1 � 2x3 � 20

5x1 � 8x2 � x3 � 10

a3.

a23

c e�x 2x2

e6x 4x
d ,  [a1 a2 a3],  c4

1
2

d

c0.3 1 �5

0 �0.2 16
d ,  Da11 a12 a13

a21 a22 a23

a31 a32 a33

T ,
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by augmenting A with the right sides of the linear system and call it the augmented matrix of the system.
Since we can go back and recapture the system of linear equations directly from the augmented matrix , 

contains all the information of the system and can thus be used to solve the linear system. This means that we
can just use the augmented matrix to do the calculations needed to solve the system. We shall explain this in
detail in Sec. 7.3. Meanwhile you may verify by substitution that the solution is .

The notation for the unknowns is practical but not essential; we could choose x, y, z or some other
letters.

E X A M P L E  2 Sales Figures in Matrix Form

Sales figures for three products I, II, III in a store on Monday (Mon), Tuesday (Tues), may for each week
be arranged in a matrix

If the company has 10 stores, we can set up 10 such matrices, one for each store. Then, by adding corresponding
entries of these matrices, we can get a matrix showing the total sales of each product on each day. Can you think
of other data which can be stored in matrix form? For instance, in transportation or storage problems? Or in
listing distances in a network of roads?

General Concepts and Notations
Let us formalize what we just have discussed. We shall denote matrices by capital boldface
letters A, B, C, , or by writing the general entry in brackets; thus , and so
on. By an matrix (read m by n matrix) we mean a matrix with m rows and n
columns—rows always come first! is called the size of the matrix. Thus an 
matrix is of the form

(2)

The matrices in (1) are of sizes and respectively.
Each entry in (2) has two subscripts. The first is the row number and the second is the

column number. Thus is the entry in Row 2 and Column 1.
If we call A an square matrix. Then its diagonal containing the entries

is called the main diagonal of A. Thus the main diagonals of the two
square matrices in (1) are and respectively.

Square matrices are particularly important, as we shall see. A matrix of any size 
is called a rectangular matrix; this includes square matrices as a special case.

m � n
e�x, 4x,a11, a22, a33

a11, a22, Á , ann

n � nm � n,
a21

2 � 1,2 � 3, 3 � 3, 2 � 2, 1 � 3,

A � 3ajk4 � Ea11 a12
Á a1n

a21 a22
Á a2n

# # Á #

am1 am2
Á amn

U  .

m � nm � n
m � n

A � [ajk]Á

�

A �
 

Mon Tues Wed Thur Fri Sat Sun

40 33 81  0 21 47 33D 0 12 78 50 50 96  90 T
10  0  0 27 43 78 56

  #  
I

II

III

Á

�
x1, x2, x3

x1 � 3, x2 � 1
2, x3 � �1

A
~

A
~

A � D4 6 9

6 0 �2

5 �8 1

T .   We form another matrix   A
~

� D4 6 9 6

6 0 �2 20

5 �8 1 10

T
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Vectors
A vector is a matrix with only one row or column. Its entries are called the components
of the vector. We shall denote vectors by lowercase boldface letters a, b, or by its
general component in brackets, , and so on. Our special vectors in (1) suggest
that a (general) row vector is of the form

A column vector is of the form

Addition and Scalar Multiplication 
of Matrices and Vectors
What makes matrices and vectors really useful and particularly suitable for computers is
the fact that we can calculate with them almost as easily as with numbers. Indeed, we
now introduce rules for addition and for scalar multiplication (multiplication by numbers)
that were suggested by practical applications. (Multiplication of matrices by matrices
follows in the next section.) We first need the concept of equality.

D E F I N I T I O N Equality of Matrices

Two matrices and are equal, written if and only if
they have the same size and the corresponding entries are equal, that is, 

and so on. Matrices that are not equal are called different. Thus, matrices
of different sizes are always different.

E X A M P L E  3 Equality of Matrices

Let

Then

The following matrices are all different. Explain!

�c1 3

4 2
d   c4 2

1 3
d   c4 1

2 3
d   c1 3 0

4 2 0
d   c0 1 3

0 4 2
d

A � B  if and only if  
a11 � 4, a12 � 0,

a21 � 3, a22 � �1.

A � ca11 a12

a21 a22

d  and  B � c4 0

3 �1
d .

a12 � b12,
a11 � b11,

A � B,B � 3bjk4A � 3ajk4

b � Eb1

b2

.

.

.

bm

U  .  For instance,  b � D 4

0

�7

T .

a � 3a1 a2 Á  an4.  For instance,  a � 3�2 5 0.8 0 14.

a � 3aj4

Á
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D E F I N I T I O N Addition of Matrices

The sum of two matrices and of the same size is written
and has the entries obtained by adding the corresponding entries

of A and B. Matrices of different sizes cannot be added.

As a special case, the sum of two row vectors or two column vectors, which
must have the same number of components, is obtained by adding the corresponding
components.

E X A M P L E  4 Addition of Matrices and Vectors

If and , then .

A in Example 3 and our present A cannot be added. If and , then
.

An application of matrix addition was suggested in Example 2. Many others will follow.

D E F I N I T I O N Scalar Multiplication (Multiplication by a Number)

The product of any matrix and any scalar c (number c) is written
cA and is the matrix obtained by multiplying each entry of A
by c.

Here is simply written and is called the negative of A. Similarly, is
written . Also, is written and is called the difference of A and B
(which must have the same size!).

E X A M P L E  5 Scalar Multiplication

If , then

If a matrix B shows the distances between some cities in miles, 1.609B gives these distances in kilometers.

Rules for Matrix Addition and Scalar Multiplication. From the familiar laws for the
addition of numbers we obtain similar laws for the addition of matrices of the same size

, namely,

(a)

(3)
(b) (written )

(c)

(d) .

Here 0 denotes the zero matrix (of size ), that is, the matrix with all entries
zero. If or , this is a vector, called a zero vector.n � 1m � 1

m � nm � n

A � (�A) � 0

A � 0 � A

A � B � C(A � B) � C � A � (B � C)

A � B � B � A

m � n

�

�A � D�2.7 1.8

  0   �0.9

�9.0 4.5

T , 
10

9
 A � D 3

0

10

�2

1

�5

T , 0A � D00
0

0

0

0

T .A � D2.7

0  

9.0

�1.8

0.9

�4.5

T

A � BA � (�B)�kA
(�k)A�A(�1)A

cA � 3cajk4m � n
A � 3ajk4m � n

�
a � b � 3�1 9 24

b � 3�6 2 04a � 35 7 24

A � B � c1 5 3

3 2 2
dB � c5 �1 0

3 1 0
dA � c�4 6 3

0 1 2
d

a � b

ajk � bjkA � B
B � 3bjk4A � 3ajk4
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1–7 GENERAL QUESTIONS
1. Equality. Give reasons why the five matrices in

Example 3 are all different.

2. Double subscript notation. If you write the matrix in
Example 2 in the form , what is 

? ?

3. Sizes. What sizes do the matrices in Examples 1, 2, 3,
and 5 have?

4. Main diagonal. What is the main diagonal of A in
Example 1? Of A and B in Example 3?

5. Scalar multiplication. If A in Example 2 shows the
number of items sold, what is the matrix B of units sold
if a unit consists of (a) 5 items and (b) 10 items?

6. If a matrix A shows the distances between
12 cities in kilometers, how can you obtain from A the
matrix B showing these distances in miles?

7. Addition of vectors. Can you add: A row and
a column vector with different numbers of compo-
nents? With the same number of components? Two
row vectors with the same number of components
but different numbers of zeros? A vector and a
scalar? A vector with four components and a 
matrix?

8–16 ADDITION AND SCALAR
MULTIPLICATION OF MATRICES 
AND VECTORS

Let

C � D 5

�2

1

2

4

0

T ,  D � D�4

5

2

1

0

�1

T ,

A � D06
1

2

5

0

4

5

�3

T ,  B � D 0

5

�2

5

3

4

2

4

�2

T

2 � 2

12 � 12

a33a26

a13?a31?A � 3ajk4

P R O B L E M  S E T  7 . 1

Find the following expressions, indicating which of the
rules in (3) or (4) they illustrate, or give reasons why they
are not defined.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17. Resultant of forces. If the above vectors u, v, w
represent forces in space, their sum is called their
resultant. Calculate it.

18. Equilibrium. By definition, forces are in equilibrium
if their resultant is the zero vector. Find a force p such
that the above u, v, w, and p are in equilibrium.

19. General rules. Prove (3) and (4) for general 
matrices and scalars c and k.

2 � 3

8.5w � 11.1u � 0.4v
15v � 3w � 0u, �3w � 15v, D � u � 3C,

0E � u � v
(u � v) � w, u � (v � w), C � 0w,

10(u � v) � wE � (u � v),
(5u � 5v) � 1

2 
w, �20(u � v) � 2w,

(2 # 7)C, 2(7C), �D � 0E, E � D � C � u

A � 0C
(C � D) � E, (D � E) � C, 0(C � E) � 4D,

0.6(C � D)
8C � 10D, 2(5D � 4C), 0.6C � 0.6D,

(4 # 3)A, 4(3A), 14B � 3B, 11B

3A, 0.5B, 3A � 0.5B, 3A � 0.5B � C

2A � 4B, 4B � 2A, 0A � B, 0.4B � 4.2A

u � D 1.5

0  

�3.0

T ,  v � D�1

3

2

T ,  w � D �5

�30

10

T .

E � D03
3

2

4

�1

T

Hence matrix addition is commutative and associative [by (3a) and (3b)].
Similarly, for scalar multiplication we obtain the rules

(a)

(4)
(b)

(c) (written ckA)

(d) 1A � A.

c(kA) � (ck)A

(c � k)A � cA � kA

c(A � B) � cA � cB



20. TEAM PROJECT. Matrices for Networks. Matrices
have various engineering applications, as we shall see.
For instance, they can be used to characterize connections
in electrical networks, in nets of roads, in production
processes, etc., as follows.

(a) Nodal Incidence Matrix. The network in Fig. 155
consists of six branches (connections) and four nodes
(points where two or more branches come together).
One node is the reference node (grounded node, whose
voltage is zero). We number the other nodes and
number and direct the branches. This we do arbitrarily.
The network can now be described by a matrix

, where

A is called the nodal incidence matrix of the network.
Show that for the network in Fig. 155 the matrix A has
the given form.

ajk � d 

�1 if branch k leaves node   j

�1 if branch k enters node   j

0 if branch k does not touch node   j  .

A � 3ajk4
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(c) Sketch the three networks corresponding to the
nodal incidence matrices

(d) Mesh Incidence Matrix. A network can also be
characterized by the mesh incidence matrix
where

and a mesh is a loop with no branch in its interior (or
in its exterior). Here, the meshes are numbered and
directed (oriented) in an arbitrary fashion. Show that
for the network in Fig. 157, the matrix M has the given
form, where Row 1 corresponds to mesh 1, etc.

�1 if branch k is in mesh j

and has the same orientation

�1 if branch k is in mesh j

and has the opposite orientation

0 if branch k is not in mesh j

m jk � f
M � 3m jk4,

D 1 0 1 0 0

�1 1 0 1 0

0 �1 �1 0 1

T .

 D 1 �1 0 0 1

�1 1 �1 1 0

0 0 1 �1 0

T ,D 1 0 0 1

�1 1 0 0

0 �1 1 0

T ,

1 6

1 2

3

4

2 5

3

4

1 1

0

–1

0

0

0 –1

1

0

0

1

0 0

1

0

–1

1

01 01 10

M =

1 6

1

2 5

4

3

2 3

(Reference node)

Branch 1

1

2

–1

1

0

3 4 5

Node 1

0Node 2

0

–1 0

1

0

0

1

0

1

–1Node 3

6

0

0

–1

Fig. 155. Network and nodal incidence 
matrix in Team Project 20(a)

1

2 3

4

5
321

25

34

1

7

6

1 2

34

Fig. 156. Electrical networks in Team Project 20(b)

Fig. 157. Network and matrix M in 
Team Project 20(d)

(b) Find the nodal incidence matrices of the networks
in Fig. 156.



where we shaded the entries that contribute to the calculation of entry just discussed.
Matrix multiplication will be motivated by its use in linear transformations in this

section and more fully in Sec. 7.9.
Let us illustrate the main points of matrix multiplication by some examples. Note that

matrix multiplication also includes multiplying a matrix by a vector, since, after all,
a vector is a special matrix.

E X A M P L E  1 Matrix Multiplication

Here and so on. The entry in the box is 
The product BA is not defined. �

c23 � 4 # 3 � 0 # 7 � 2 # 1 � 14.c11 � 3 # 2 � 5 # 5 � (�1) # 9 � 22,

AB � D 3

4

�6

5

0

�3

�1

2

2

T  D25
9

�2

0

�4

3

7

1

1

8

1

T � D 22

26

�9

�2

�16

4

43

14

�37

42

6

�28

T

c21
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7.2 Matrix Multiplication
Matrix multiplication means that one multiplies matrices by matrices. Its definition is
standard but it looks artificial. Thus you have to study matrix multiplication carefully,
multiply a few matrices together for practice until you can understand how to do it. Here
then is the definition. (Motivation follows later.)

D E F I N I T I O N Multiplication of a Matrix by a Matrix

The product (in this order) of an matrix times an
matrix is defined if and only if and is then the matrix

with entries

(1)

The condition means that the second factor, B, must have as many rows as the first
factor has columns, namely n. A diagram of sizes that shows when matrix multiplication
is possible is as follows:

The entry in (1) is obtained by multiplying each entry in the jth row of A by the
corresponding entry in the kth column of B and then adding these n products. For instance,

and so on. One calls this briefly a multiplication
of rows into columns. For , this is illustrated byn � 3
c21 � a21b11 � a22b21 � Á � a2nbn1,

cjk

 A        B      �       C  
3m � n4 3n � p4 � 3m � p4.

r � n

cjk � a

n

l�1

 ajlblk � aj1b1k � aj2b2k � Á � ajnbnk  
j � 1, Á , m

k � 1, Á , p.

C � 3cjk4
m � pr � nB � 3bjk4

r � pA � 3ajk4m � nC � AB

a
11

a
12

a
13

a
21

a
22

a
23

a
31

a
32

a
33

a
41

a
42

a
43

m = 4m = 4

n = 3

=

c
11

c
12

c
21

c
22

c
31

c
32

c
41

c
42

b
11

b
12

b
21

b
22

b
31

b
32

p = 2 p = 2

Notations in a product AB � C



E X A M P L E  2 Multiplication of a Matrix and a Vector

whereas is undefined.

E X A M P L E  3 Products of Row and Column Vectors

E X A M P L E  4 CAUTION! Matrix Multiplication Is Not Commutative, in General

This is illustrated by Examples 1 and 2, where one of the two products is not even defined, and by Example 3,
where the two products have different sizes. But it also holds for square matrices. For instance,

but

It is interesting that this also shows that does not necessarily imply or or . We
shall discuss this further in Sec. 7.8, along with reasons when this happens.

Our examples show that in matrix products the order of factors must always be observed
very carefully. Otherwise matrix multiplication satisfies rules similar to those for numbers,
namely.

(a) written kAB or AkB

(2)
(b) written ABC

(c)

(d)

provided A, B, and C are such that the expressions on the left are defined; here, k is any
scalar. (2b) is called the associative law. (2c) and (2d) are called the distributive laws.

Since matrix multiplication is a multiplication of rows into columns, we can write the
defining formula (1) more compactly as

(3)

where is the jth row vector of A and is the kth column vector of B, so that in
agreement with (1),

ajbk � 3aj1 aj2 Á  ajn4 Db1k

.

.

.
bnk

T � aj1b1k � aj2b2k � Á � ajnbnk.

bkaj

j � 1, Á , m; k � 1, Á , p,cjk � ajbk,

 C(A � B) � CA � CB

 (A � B)C � AC � BC

 A(BC) � (AB)C

 (kA)B � k(AB) � A(kB)

�
B � 0A � 0BA � 0AB � 0

c�1

1

1

�1
d  c 1

100

1

100
d � c 99

�99

99

�99
d .c 1

100

1

100
d  c�1

1

1

�1
d � c0

0

0

0
d

AB � BA

�D12
4

T 33 6 14 � D 3

6

12

6

12

24

1

2

4

T .33 6 14 D12
4

T � 3194,

�c3
5
d  c4

1

2

8
dc4

1

2

8
d  c3

5
d � c4 # 3 � 2 # 5

1 # 3 � 8 # 5
d � c22

43
d
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E X A M P L E  5 Product in Terms of Row and Column Vectors

If is of size and is of size then

(4)

Taking etc., verify (4) for the product in Example 1.

Parallel processing of products on the computer is facilitated by a variant of (3) for
computing , which is used by standard algorithms (such as in Lapack). In this
method, A is used as given, B is taken in terms of its column vectors, and the product is
computed columnwise; thus,

(5)

Columns of B are then assigned to different processors (individually or several to
each processor), which simultaneously compute the columns of the product matrix

etc.

E X A M P L E  6 Computing Products Columnwise by (5)

To obtain

from (5), calculate the columns

of AB and then write them as a single matrix, as shown in the first formula on the right.

Motivation of Multiplication 
by Linear Transformations
Let us now motivate the “unnatural” matrix multiplication by its use in linear
transformations. For variables these transformations are of the form

(6*)

and suffice to explain the idea. (For general n they will be discussed in Sec. 7.9.) For
instance, (6*) may relate an -coordinate system to a -coordinate system in the
plane. In vectorial form we can write (6*) as

(6) y � c y1

y2

d � Ax � ca11

a21

a12

a22

d  c x1

x2

d � ca11x1 � a12x2

a21x1 � a22x2

d .

y1y2x1x2

y1 � a11x1 � a12x2

y2 � a21x1 � a22x2

n � 2

�

c 4

�5

1

2
d  c 3

�1
d � c 11

�17
d , c 4

�5

1

2
d  c  0

4
d � c 4

8
d , c 4

�5

1

2
d c7

6
d � c 34

�23
d

AB � c 4

�5

1

2
d  c 3

�1

0

4

7

6
d � c 11

�17

4

8

34

�23
d

Ab1, Ab2,

AB � A3b1 b2 Á
 bp4 � 3Ab1 Ab2 Á

 Abp4.

C � AB

�a1 � 33 5 �14, a2 � 34 0 24,

AB � Da1b1

a2b1

a3b1

a1b2

a2b2

a3b2

a1b3

a2b3

a3b3

a1b4

a2b4

a3b4

T .

3 � 4,B � 3bjk43 � 3A � 3ajk4
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Now suppose further that the -system is related to a -system by another linear
transformation, say,

(7)

Then the -system is related to the -system indirectly via the -system, and
we wish to express this relation directly. Substitution will show that this direct relation is
a linear transformation, too, say,

(8)

Indeed, substituting (7) into (6), we obtain

Comparing this with (8), we see that

This proves that with the product defined as in (1). For larger matrix sizes the
idea and result are exactly the same. Only the number of variables changes. We then have
m variables y and n variables x and p variables w. The matrices A, B, and then
have sizes and , respectively. And the requirement that C be the
product AB leads to formula (1) in its general form. This motivates matrix multiplication.

Transposition
We obtain the transpose of a matrix by writing its rows as columns (or equivalently its
columns as rows). This also applies to the transpose of vectors. Thus, a row vector becomes
a column vector and vice versa. In addition, for square matrices, we can also “reflect”
the elements along the main diagonal, that is, interchange entries that are symmetrically
positioned with respect to the main diagonal to obtain the transpose. Hence becomes

becomes and so forth. Example 7 illustrates these ideas. Also note that, if A
is the given matrix, then we denote its transpose by 

E X A M P L E  7 Transposition of Matrices and Vectors

If A � c5
4

�8

0

1

0
d ,  then  AT � D 5

�8

1

4

0

0

T .

AT.
a13,a21, a31

a12

m � pm � n, n � p,
C � AB

C � AB

c11 � a11b11 � a12b21

c21 � a21b11 � a22b21

  c12 � a11b12 � a12b22

  c22 � a21b12 � a22b22.

 � (a21b11 � a22b21)w1 � (a21b12 � a22b22)w2.

 y2 � a21(b11w1 � b12w2) � a22(b21w1 � b22w2)

 � (a11b11 � a12b21)w1 � (a11b12 � a12b22)w2

 y1 � a11(b11w1 � b12w2) � a12(b21w1 � b22w2)

y � Cw � c c11

c21

c12

c22

d  cw1

w2

d � c c11w1 � c12w2

c21w1 � c22w2

d .

x1x2w1w2y1y2

x � c x1

x2

d � Bw � cb11

b21

b12

b22

d  cw1

w2

d � cb11w1 � b12w2

b21w1 � b22w2

d .

w1w2x1x2
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A little more compactly, we can write

Furthermore, the transpose of the row vector is the column vector

D E F I N I T I O N Transposition of Matrices and Vectors

The transpose of an matrix is the matrix (read A
transpose) that has the first row of A as its first column, the second row of A as its
second column, and so on. Thus the transpose of A in (2) is written out

(9)

As a special case, transposition converts row vectors to column vectors and conversely.

Transposition gives us a choice in that we can work either with the matrix or its
transpose, whichever is more convenient.

Rules for transposition are

(a)

(10)
(b)

(c)

(d)

CAUTION! Note that in (10d) the transposed matrices are in reversed order. We leave
the proofs as an exercise in Probs. 9 and 10.

Special Matrices
Certain kinds of matrices will occur quite frequently in our work, and we now list the
most important ones of them.

Symmetric and Skew-Symmetric Matrices. Transposition gives rise to two useful
classes of matrices. Symmetric matrices are square matrices whose transpose equals the

 (AB)T � BTAT.

 (cA)T � cAT

 (A � B)T � AT � BT

 (AT)T � A

AT � 3akj4 � Ea11

a12

#

a1n

a21

a22

#

a2n

Á

Á

Á

Á

am1

am2

#

amn

U  .

AT � 3akj4,

ATn � mA � 3ajk4m � n

�36 2 34T � D62
3

T #   Conversely,  D62
3

TT

� 36 2 34.

36 2 3436 2 34T

c5
4

�8

0

1

0
d T � D 5

�8

1

4

0

0

T ,   D38
1

0

�1

�9

7

5

4

T T

� D30
7

8

�1

5

1

�9

4

T ,
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matrix itself. Skew-symmetric matrices are square matrices whose transpose equals
minus the matrix. Both cases are defined in (11) and illustrated by Example 8.

(11) (thus (thus hence 

Symmetric Matrix Skew-Symmetric Matrix

E X A M P L E  8 Symmetric and Skew-Symmetric Matrices

is symmetric, and is skew-symmetric.

For instance, if a company has three building supply centers then A could show costs, say, for
handling 1000 bags of cement at center , and the cost of shipping 1000 bags from to . Clearly,

if we assume shipping in the opposite direction will cost the same.
Symmetric matrices have several general properties which make them important. This will be seen as we

proceed.

Triangular Matrices. Upper triangular matrices are square matrices that can have nonzero
entries only on and above the main diagonal, whereas any entry below the diagonal must be
zero. Similarly, lower triangular matrices can have nonzero entries only on and below the
main diagonal. Any entry on the main diagonal of a triangular matrix may be zero or not.

E X A M P L E  9 Upper and Lower Triangular Matrices

Upper triangular Lower triangular

Diagonal Matrices. These are square matrices that can have nonzero entries only on
the main diagonal. Any entry above or below the main diagonal must be zero.

If all the diagonal entries of a diagonal matrix S are equal, say, c, we call S a scalar
matrix because multiplication of any square matrix A of the same size by S has the same
effect as the multiplication by a scalar, that is,

(12)

In particular, a scalar matrix, whose entries on the main diagonal are all 1, is called a unit
matrix (or identity matrix) and is denoted by or simply by I. For I, formula (12) becomes

(13)

E X A M P L E  1 0 Diagonal Matrix D. Scalar Matrix S. Unit Matrix I

�D � D20
0

0

�3

0

0

0

0

T ,  S � Dc0
0

0

c

0

0

0

c

T ,  I � D10
0

0

1

0

0

0

1

T
AI � IA � A.

In

AS � SA � cA.

�E39
1

1

0

�3

0

9

0

0

2

3

0

0

0

6

U  .c1
0

3

2
d ,  D10

0

4

3

0

2

2

6

T ,   D28
7

0

�1

6

0

0

 8

T ,

�

ajk � akj

CkCjajk ( j � k)Cj

ajjC1, C2, C3,

B � D 0

�1

3

1

0

2

�3

�2

0

TA � D 20

120

200

  120

10

150

  200

150

30

T

ajj � 0).akj � �ajk,akj � ajk),  AT � �AAT � A
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Some Applications of Matrix Multiplication
E X A M P L E  1 1 Computer Production. Matrix Times Matrix

Supercomp Ltd produces two computer models PC1086 and PC1186. The matrix A shows the cost per computer
(in thousands of dollars) and B the production figures for the year 2010 (in multiples of 10,000 units.) Find a
matrix C that shows the shareholders the cost per quarter (in millions of dollars) for raw material, labor, and
miscellaneous.

Quarter
PC1086 PC1186 1 2 3 4

Solution.

Quarter
1 2 3 4

Since cost is given in multiples of and production in multiples of 10,000 units, the entries of C are
multiples of millions; thus means million, etc.

E X A M P L E  1 2 Weight Watching. Matrix Times Vector

Suppose that in a weight-watching program, a person of 185 lb burns 350 cal/hr in walking (3 mph), 500 in
bicycling (13 mph), and 950 in jogging (5.5 mph). Bill, weighing 185 lb, plans to exercise according to the
matrix shown. Verify the calculations 

W B J

E X A M P L E  1 3 Markov Process. Powers of a Matrix. Stochastic Matrix

Suppose that the 2004 state of land use in a city of of built-up area is

C: Commercially Used 25% I: Industrially Used 20% R: Residentially Used 55%.

Find the states in 2009, 2014, and 2019, assuming that the transition probabilities for 5-year intervals are given
by the matrix A and remain practically the same over the time considered.

From C From I From R

A � D0.7

0.2

0.1

 0.1

0.9

0  

0  

 0.2

0.8

T  

To C

To I

To R

60 mi2

�

MON

WED

FRI

SAT

 E1.0

1.0

1.5

2.0

0

1.0

0

1.5

0.5

0.5

0.5

1.0

U  D350

500

950

T � E 825

1325

1000

2400

U MON

WED

FRI

SAT

1W � Walking, B � Bicycling, J � Jogging2.

�$132c11 � 13.2$10
$1000

C � AB � D13.2

3.3

5.1

12.8

3.2

5.2

13.6

3.4

5.4

15.6

3.9

6.3

T Raw Components

 Labor

 Miscellaneous

B � c3
6

8

2

6

4

9

3
d PC1086

PC1186
A � D1.2

0.3

0.5

 1.6

 0.4

 0.6

T Raw Components

 Labor

 Miscellaneous
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A is a stochastic matrix, that is, a square matrix with all entries nonnegative and all column sums equal to 1.
Our example concerns a Markov process,1 that is, a process for which the probability of entering a certain state
depends only on the last state occupied (and the matrix A), not on any earlier state.

Solution. From the matrix A and the 2004 state we can compute the 2009 state,

To explain: The 2009 figure for C equals times the probability 0.7 that C goes into C, plus times the
probability 0.1 that I goes into C, plus times the probability 0 that R goes into C. Together,

Also

Similarly, the new R is . We see that the 2009 state vector is the column vector

where the column vector is the given 2004 state vector. Note that the sum of the entries of
y is . Similarly, you may verify that for 2014 and 2019 we get the state vectors

Answer. In 2009 the commercial area will be the industrial and the
residential . For 2014 the corresponding figures are and . For 2019
they are and . (In Sec. 8.2 we shall see what happens in the limit, assuming that
those probabilities remain the same. In the meantime, can you experiment or guess?) �

33.025%16.315%, 50.660%,
39.15%17.05%, 43.80%,46.5% (27.9 mi2)

34% (20.4 mi2),19.5% (11.7 mi2),

u � Az � A2y � A3x � 316.315 50.660 33.0254T.

z � Ay � A(Ax) � A2x � 317.05 43.80 39.154T

100 3%4
x � 325 20 554T

y � 319.5 34.0 46.54T � Ax � A 325 20 554T

46.5%

25 # 0.2 � 20 # 0.9 � 55 # 0.2 � 34 3%4.25 # 0.7 � 20 # 0.1 � 55 # 0 � 19.5 3%4.

55%
20%25%

C

I

R

  D0.7 # 25 � 0.1 # 20 � 0 # 55

0.2 # 25 � 0.9 # 20 � 0.2 # 55

0.1 # 25 � 0 # 20 � 0.8 # 55

T � D0.7

0.2

0.1

0.1

0.9

  0

0

0.2

0.8

T  D25

20

55

T � D19.5

34.0

46.5

T .
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1–10 GENERAL QUESTIONS
1. Multiplication. Why is multiplication of matrices

restricted by conditions on the factors?

2. Square matrix. What form does a matrix have
if it is symmetric as well as skew-symmetric?

3. Product of vectors. Can every matrix be
represented by two vectors as in Example 3?

4. Skew-symmetric matrix. How many different entries
can a skew-symmetric matrix have? An 
skew-symmetric matrix?

5. Same questions as in Prob. 4 for symmetric matrices.

6. Triangular matrix. If are upper triangular and
are lower triangular, which of the following are

triangular?

7. Idempotent matrix, defined by Can you find
four idempotent matrices?2 � 2

A2 � A.

L1 � L2

U1L1,U1 � U2, U1U2, U1
2, U1 � L1,

L1, L2

U1, U2

n � n4 � 4

3 � 3

3 � 3

P R O B L E M  S E T  7 . 2

8. Nilpotent matrix, defined by for some m.
Can you find three nilpotent matrices?

9. Transposition. Can you prove (10a)–(10c) for 
matrices? For matrices?

10. Transposition. (a) Illustrate (10d) by simple examples.
(b) Prove (10d).

11–20 MULTIPLICATION, ADDITION, AND
TRANSPOSITION OF MATRICES AND
VECTORS

Let

C � D 0

3

�2

1

2

0

T ,  a � 31 �2 04, b � D 3

1

�1

T .

A � D 4

�2

1

�2

1

2

3

6

2

T ,  B � D 1

�3

0

�3

1

0

0

0

�2

T

m � n
3 � 3

2 � 2
Bm � 0

1ANDREI ANDREJEVITCH MARKOV (1856–1922), Russian mathematician, known for his work in
probability theory.



Showing all intermediate results, calculate the following
expressions or give reasons why they are undefined:

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21. General rules. Prove (2) for matrices 
and a general scalar.

22. Product. Write AB in Prob. 11 in terms of row and
column vectors.

23. Product. Calculate AB in Prob. 11 columnwise. See
Example 1.

24. Commutativity. Find all matrices 
that commute with , where 

25. TEAM PROJECT. Symmetric and Skew-Symmetric
Matrices. These matrices occur quite frequently in
applications, so it is worthwhile to study some of their
most important properties.

(a) Verify the claims in (11) that for a
symmetric matrix, and for a skew-
symmetric matrix. Give examples.

(b) Show that for every square matrix C the matrix
is symmetric and is skew-symmetric.

Write C in the form , where S is symmetric
and T is skew-symmetric and find S and T in terms
of C. Represent A and B in Probs. 11–20 in this form.

(c) A linear combination of matrices A, B, C, , M
of the same size is an expression of the form

(14)

where a, , m are any scalars. Show that if these
matrices are square and symmetric, so is (14); similarly,
if they are skew-symmetric, so is (14).

(d) Show that AB with symmetric A and B is symmetric
if and only if A and B commute, that is, 

(e) Under what condition is the product of skew-
symmetric matrices skew-symmetric?

26–30 FURTHER APPLICATIONS
26. Production. In a production process, let N mean “no

trouble” and T “trouble.” Let the transition probabilities
from one day to the next be 0.8 for , hence 0.2
for , and 0.5 for , hence 0.5 for T :  T.T :  NN :  T

N :  N

AB � BA.

Á

aA � bB � cC � Á � mM,

Á

C � S � T
C � CTC � CT

akj � �ajk

akj � ajk

bjk � j � k.B � 3bjk4
A � 3ajk42 � 2

B � 3bjk4, C � 3cjk4,
A � 3ajk4,2 � 2

bTAb, aBaT, aCCT, CTba

Ab � Bb(A � B)b,1.5a � 3.0b, 1.5aT � 3.0b,

ab, ba, aA, Bb

ABC, ABa, ABb, CaT

BC, BCT, Bb, bTB

bTATAa, AaT, (Ab)T,

(3A � 2B)TaT
3AT � 2BT,3A � 2B, (3A � 2B)T,

CCT, BC, CB, CTB

AAT, A2, BBT, B2

AB, ABT, BA, BTA
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If today there is no trouble, what is the probability of
N two days after today? Three days after today?

27. CAS Experiment. Markov Process. Write a program
for a Markov process. Use it to calculate further steps
in Example 13 of the text. Experiment with other
stochastic matrices, also using different starting
values.

28. Concert subscription. In a community of 100,000
adults, subscribers to a concert series tend to renew their
subscription with probability and persons presently
not subscribing will subscribe for the next season with
probability . If the present number of subscribers
is 1200, can one predict an increase, decrease, or no
change over each of the next three seasons?

29. Profit vector. Two factory outlets and in New
York and Los Angeles sell sofas (S), chairs (C), and
tables (T) with a profit of , and , respectively.
Let the sales in a certain week be given by the matrix

S C T

Introduce a “profit vector” p such that the components
of give the total profits of and .

30. TEAM PROJECT. Special Linear Transformations.
Rotations have various applications. We show in this
project how they can be handled by matrices.

(a) Rotation in the plane. Show that the linear
transformation with

is a counterclockwise rotation of the Cartesian -
coordinate system in the plane about the origin, where

is the angle of rotation.

(b) Rotation through n�. Show that in (a)

Is this plausible? Explain this in words.

(c) Addition formulas for cosine and sine. By
geometry we should have

Derive from this the addition formulas (6) in App. A3.1.

� c cos (a � b)

sin (a � b)

�sin (a � b)

cos (a � b)
d .

c cos a

sin a

�sin a

cos a
d c cos b

sin b

�sin b

cos b
d

An � c cos nu

sin nu

�sin nu

cos nu
d .

u

x1x2

A � c cos u

sin u

�sin u

cos u
d , x � c x1

x2

d , y � c y1

y2

d
y � Ax

F2F1v � Ap

A � c400

100

60

120

240

500
d F1

F2

$30$35, $62

F2F1

0.2%

90%

3 � 3



7.3 Linear Systems of Equations. 
Gauss Elimination

We now come to one of the most important use of matrices, that is, using matrices to
solve systems of linear equations. We showed informally, in Example 1 of Sec. 7.1, how
to represent the information contained in a system of linear equations by a matrix, called
the augmented matrix. This matrix will then be used in solving the linear system of
equations. Our approach to solving linear systems is called the Gauss elimination method.
Since this method is so fundamental to linear algebra, the student should be alert.

A shorter term for systems of linear equations is just linear systems. Linear systems
model many applications in engineering, economics, statistics, and many other areas.
Electrical networks, traffic flow, and commodity markets may serve as specific examples
of applications.

Linear System, Coefficient Matrix, Augmented Matrix
A linear system of m equations in n unknowns is a set of equations of
the form

(1)

The system is called linear because each variable appears in the first power only, just
as in the equation of a straight line. are given numbers, called the coefficients
of the system. on the right are also given numbers. If all the are zero, then
(1) is called a homogeneous system. If at least one is not zero, then (1) is called a
nonhomogeneous system.

bj

bjb1, Á , bm

a11, Á , amn

x j

a11x1 � Á � a1nxn � b1

a21x1 � Á � a2nxn � b2

. . . . . . . . . . . . . . . . . . . . . . . 

am1x1 � Á � amnxn � bm.

x1, Á , xn
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(d) Computer graphics. To visualize a three-
dimensional object with plane faces (e.g., a cube), we
may store the position vectors of the vertices with
respect to a suitable -coordinate system (and a
list of the connecting edges) and then obtain a two-
dimensional image on a video screen by projecting
the object onto a coordinate plane, for instance, onto
the -plane by setting . To change the
appearance of the image, we can impose a linear
transformation on the position vectors stored. Show
that a diagonal matrix D with main diagonal entries 3,
1, gives from an the new position vector

, where (stretch in the -direction
by a factor 3), (unchanged), (con-
traction in the -direction). What effect would a scalar
matrix have?

x3

y3 � 1
2 x3y2 � x2

x1y1 � 3x1y � Dx
x � 3x j4

1
2

x3 � 0x1x2

x1x2x3

(e) Rotations in space. Explain geometrically
when A is one of the three matrices

What effect would these transformations have in situations
such as that described in (d)?

Dcos �

0

sin �

0

1

0

�sin �

0

   cos �

T , Dcos c

sin c

0

�sin c

   cos c

0

0

0

1

T .

D10
0

    0

cos u

sin u

   0

�sin u

   cos u

T ,

y � Ax



A solution of (1) is a set of numbers that satisfies all the m equations.
A solution vector of (1) is a vector x whose components form a solution of (1). If the
system (1) is homogeneous, it always has at least the trivial solution

Matrix Form of the Linear System (1). From the definition of matrix multiplication
we see that the m equations of (1) may be written as a single vector equation

(2)

where the coefficient matrix is the matrix

and and

are column vectors. We assume that the coefficients are not all zero, so that A is
not a zero matrix. Note that x has n components, whereas b has m components. The
matrix

is called the augmented matrix of the system (1). The dashed vertical line could be
omitted, as we shall do later. It is merely a reminder that the last column of did not
come from matrix A but came from vector b. Thus, we augmented the matrix A.

Note that the augmented matrix determines the system (1) completely because it
contains all the given numbers appearing in (1).

E X A M P L E  1 Geometric Interpretation. Existence and Uniqueness of Solutions

If we have two equations in two unknowns 

If we interpret as coordinates in the -plane, then each of the two equations represents a straight line,
and is a solution if and only if the point P with coordinates lies on both lines. Hence there are
three possible cases (see Fig. 158 on next page):

(a) Precisely one solution if the lines intersect

(b) Infinitely many solutions if the lines coincide

(c) No solution if the lines are parallel

x1, x2(x1, x2)
x1x2x1, x2

a11x1 � a12x2 � b1

a21x1 � a22x2 � b2.

x1, x2m � n � 2,

A
~

A
~

A~ � Ea11
Á a1n  b1

# Á #  #

# Á #  #

am1
Á amn  bm

U
ajk

b � Db1

.

.

.
bm

Tx � G
x1

#

#

#

xn

WA � Ea11

a21

#

am1

a12

a22

#

am2

Á

Á

Á

Á

a1n

a2n

#

amn

U  ,

m � nA � 3ajk4

Ax � b

x1 � 0, Á , xn � 0.

x1, Á , xn
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For instance,
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Unique solution

Infinitely 
many solutions

No solution

Fig. 158. Three
equations in 

three unknowns
interpreted as
planes in space

1

x2 x2 x2

1 1 x1x1x1

x1 + x2 = 1

2x1 – x2 = 0

Case (a)

x1 + x2 = 1

2x1 + 2x2 = 2

Case (b)

x1 + x2 = 1

x1 + x2 = 0

Case (c)

1
3

2
3

P

If the system is homogenous, Case (c) cannot happen, because then those two straight lines pass through the
origin, whose coordinates constitute the trivial solution. Similarly, our present discussion can be extended
from two equations in two unknowns to three equations in three unknowns. We give the geometric interpretation
of three possible cases concerning solutions in Fig. 158. Instead of straight lines we have planes and the solution
depends on the positioning of these planes in space relative to each other. The student may wish to come up
with some specific examples.

Our simple example illustrated that a system (1) may have no solution. This leads to such
questions as: Does a given system (1) have a solution? Under what conditions does it have
precisely one solution? If it has more than one solution, how can we characterize the set
of all solutions? We shall consider such questions in Sec. 7.5.

First, however, let us discuss an important systematic method for solving linear systems.

Gauss Elimination and Back Substitution
The Gauss elimination method can be motivated as follows. Consider a linear system that
is in triangular form (in full, upper triangular form) such as

(Triangular means that all the nonzero entries of the corresponding coefficient matrix lie
above the diagonal and form an upside-down triangle.) Then we can solve the system
by back substitution, that is, we solve the last equation for the variable, 
and then work backward, substituting into the first equation and solving it for , 
obtaining This gives us the idea of first reducing
a general system to triangular form. For instance, let the given system be

Its augmented matrix is

We leave the first equation as it is. We eliminate from the second equation, to get a
triangular system. For this we add twice the first equation to the second, and we do the same

x1

c 2

�4

5

3

2

�30
d .2x1 � 5x2 � 2

�4x1 � 3x2 � �30.

x1 � 1
2 (2 � 5x2) � 1

2 (2 � 5 # (�2)) � 6.
x1x2 � �2

x2 � �26>13 � �2,
90°

 13x2 � �26

 2x1 � 5x2 � 2

�

(0, 0)



operation on the rows of the augmented matrix. This gives 
that is, 

where means “Add twice Row 1 to Row 2” in the original matrix. This
is the Gauss elimination (for 2 equations in 2 unknowns) giving the triangular form, from
which back substitution now yields and , as before.

Since a linear system is completely determined by its augmented matrix, Gauss
elimination can be done by merely considering the matrices, as we have just indicated.
We do this again in the next example, emphasizing the matrices by writing them first and
the equations behind them, just as a help in order not to lose track.

E X A M P L E  2 Gauss Elimination. Electrical Network

Solve the linear system

Derivation from the circuit in Fig. 159 (Optional ). This is the system for the unknown currents
in the electrical network in Fig. 159. To obtain it, we label the currents as shown,

choosing directions arbitrarily; if a current will come out negative, this will simply mean that the current flows
against the direction of our arrow. The current entering each battery will be the same as the current leaving it.
The equations for the currents result from Kirchhoff’s laws:

Kirchhoff’s Current Law (KCL). At any point of a circuit, the sum of the inflowing currents equals the sum
of the outflowing currents.

Kirchhoff’s Voltage Law (KVL). In any closed loop, the sum of all voltage drops equals the impressed
electromotive force.

Node P gives the first equation, node Q the second, the right loop the third, and the left loop the fourth, as
indicated in the figure.

x2 � i2, x3 � i3x1 � i1,

x1 � x2 � x3 � 0

�x1 �  x2 � x3 � 0

10x2 � 25x3 � 90

20x1 � 10x2 � 80.

x1 � 6x2 � �2

Row 2 � 2 Row 1

c2
0

5

13

2

�26
d

Row 2 � 2 Row 1

2x1 � 5x2 � 2

13x2 � �26

�30 � 2 # 2,
�4x1 � 4x1 � 3x2 � 10x2 �
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20 Ω 10 Ω

15 Ω

10 Ω 90 V80 V

i1 i3

i2

Node P: i
1
 –     i

2
 +     i

3
 =   0

Node Q:

Q

P

– i
1
 +     i

2
 –     i

3
 =   0

Right loop: 10i
2
 + 25 i

3
 = 90

Left loop: 20i
1
 + 10 i

2
            = 80

Fig. 159. Network in Example 2 and equations relating the currents

Solution by Gauss Elimination. This system could be solved rather quickly by noticing its particular
form. But this is not the point. The point is that the Gauss elimination is systematic and will work in general,
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Pivot 1

Eliminate

Pivot 1

Eliminate

also for large systems. We apply it to our system and then do back substitution. As indicated, let us write the
augmented matrix of the system first and then the system itself:

Augmented Matrix Equations

Step 1. Elimination of 
Call the first row of A the pivot row and the first equation the pivot equation. Call the coefficient 1 of its 

-term the pivot in this step. Use this equation to eliminate (get rid of in the other equations. For this, do:

Add 1 times the pivot equation to the second equation.

Add times the pivot equation to the fourth equation.

This corresponds to row operations on the augmented matrix as indicated in BLUE behind the new matrix in
(3). So the operations are performed on the preceding matrix. The result is

(3)

Step 2. Elimination of 
The first equation remains as it is. We want the new second equation to serve as the next pivot equation. But
since it has no x2-term (in fact, it is , we must first change the order of the equations and the corresponding
rows of the new matrix. We put at the end and move the third equation and the fourth equation one place
up. This is called partial pivoting (as opposed to the rarely used total pivoting, in which the order of the
unknowns is also changed). It gives

To eliminate , do:

Add times the pivot equation to the third equation.
The result is

(4)

Back Substitution. Determination of (in this order)
Working backward from the last to the first equation of this “triangular” system (4), we can now readily find

, then , and then :

where A stands for “amperes.” This is the answer to our problem. The solution is unique. �

x3 � i3 � 2 3A4

x2 � 1
10 (90 � 25x3) � i2 � 4 3A4

x1 � x2 � x3 � i1 � 2 3A4

� 95x3 � �190

10x2 � 25x3 � 90

x1 � x2 � x3 � 0

x1x2x3

x3, x2, x1

x1 � x2 � x3 � 0

10x2 � 25x3 � 90

� 95x3 � �190

0 � 0.

Row 3 � 3 Row 2
E1 �1 1 0

0 10 25 90

0 0 �95  �190

0 0 0 0

U
�3

x2

x1 � x2 � x3 � 0

10x2 � 25x3 � 90

30x2 � 20x3 � 80

0 � 0.

Pivot 10

Eliminate 30x2

E1 �1 1 0

0 10 25  90

0 30 �20 80

0 0 0 0

UPivot 10

Eliminate 30

0 � 0
0 � 0)

x2

x1 � x2 � x3 � 0

0 � 0

10x2 � 25x3 � 90

30x2 � 20x3 � 80.

Row 2 � Row 1

Row 4 � 20 Row 1

E1 �1 1 0

0 0 0 0

0 10 25  90

0 30 �20 80

U
�20

x1)x1x1

x1

x1 � x2 � x3 � 0

 �x1 � x2 � x3 � 0

10x2 � 25x3 � 90

20x1 � 10x2 � 80.

E   

1 �1 1 0

�1 1 �1 0

0 10 25  90

20 10 0 80

U
A
~

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|



Elementary Row Operations. Row-Equivalent Systems
Example 2 illustrates the operations of the Gauss elimination. These are the first two of
three operations, which are called

Elementary Row Operations for Matrices:

Interchange of two rows

Addition of a constant multiple of one row to another row

Multiplication of a row by a nonzero constant c

CAUTION! These operations are for rows, not for columns! They correspond to the
following

Elementary Operations for Equations:

Interchange of two equations

Addition of a constant multiple of one equation to another equation

Multiplication of an equation by a nonzero constant c

Clearly, the interchange of two equations does not alter the solution set. Neither does their
addition because we can undo it by a corresponding subtraction. Similarly for their
multiplication, which we can undo by multiplying the new equation by (since 
producing the original equation.

We now call a linear system row-equivalent to a linear system if can be
obtained from by (finitely many!) row operations. This justifies Gauss elimination and
establishes the following result. 

T H E O R E M  1 Row-Equivalent Systems

Row-equivalent linear systems have the same set of solutions.

Because of this theorem, systems having the same solution sets are often called
equivalent systems. But note well that we are dealing with row operations. No column
operations on the augmented matrix are permitted in this context because they would
generally alter the solution set.

A linear system (1) is called overdetermined if it has more equations than unknowns,
as in Example 2, determined if , as in Example 1, and underdetermined if it has
fewer equations than unknowns.

Furthermore, a system (1) is called consistent if it has at least one solution (thus, one
solution or infinitely many solutions), but inconsistent if it has no solutions at all, as

in Example 1, Case (c).

Gauss Elimination: The Three Possible 
Cases of Systems
We have seen, in Example 2, that Gauss elimination can solve linear systems that have a
unique solution. This leaves us to apply Gauss elimination to a system with infinitely
many solutions (in Example 3) and one with no solution (in Example 4).

x1 � x2 � 1, x1 � x2 � 0

m � n

S2

S1S2S1

c � 0),1>c
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E X A M P L E  3 Gauss Elimination if Infinitely Many Solutions Exist

Solve the following linear system of three equations in four unknowns whose augmented matrix is

(5) Thus,

Solution. As in the previous example, we circle pivots and box terms of equations and corresponding
entries to be eliminated. We indicate the operations in terms of equations and operate on both equations and
matrices.

Step 1. Elimination of from the second and third equations by adding

times the first equation to the second equation, 

times the first equation to the third equation.

This gives the following, in which the pivot of the next step is circled.

(6)

Step 2. Elimination of from the third equation of (6) by adding

times the second equation to the third equation.

This gives

(7)

Back Substitution. From the second equation, . From this and the first equation,
. Since and remain arbitrary, we have infinitely many solutions. If we choose a value of 

and a value of , then the corresponding values of and are uniquely determined.

On Notation. If unknowns remain arbitrary, it is also customary to denote them by other letters 
In this example we may thus write (first
arbitrary unknown),  (second arbitrary unknown).

E X A M P L E  4 Gauss Elimination if no Solution Exists

What will happen if we apply the Gauss elimination to a linear system that has no solution? The answer is that
in this case the method will show this fact by producing a contradiction. For instance, consider

Step 1. Elimination of from the second and third equations by adding

times the first equation to the second equation, 

times the first equation to the third equation.�6
3 � �2

�2
3

x1

3x1 � 2x2 � x3 � 3

2x1 � x2 � x3 � 0

6x1 � 2x2 � 4x3 � 6.

D3 2 1  3

2 1 1 0

6 2 4 6

T

�x4 � t2

x1 � 2 � x4 � 2 � t2, x2 � 1 � x3 � 4x4 � 1 � t1 � 4t2, x3 � t1

t1, t2, Á .

x2x1x4

x3x4x3x1 � 2 � x4

x2 � 1 � x3 � 4x4

3.0x1 � 2.0x2 � 2.0x3 � 5.0x4 � 8.0

1.1x2 � 1.1x3 � 4.4x4 � 1.1

0 � 0.Row 3 � Row 2

D3.0 2.0 2.0 �5.0  8.0

0 1.1 1.1 �4.4 1.1

0 0 0 0 0

T
1.1>1.1 � 1

x2

3.0x1 � 2.0x2 � 2.0x3 � 5.0x4 � 8.0

1.1x2 � 1.1x3 � 4.4x4 � 1.1

�1.1x2 � 1.1x3 � 4.4x4 � �1.1.

Row 2 � 0.2 Row 1

Row 3 � 0.4 Row 1

D3.0 2.0 2.0 �5.0 8.0

0 1.1 1.1 �4.4 1.1

0 �1.1 �1.1 4.4 �1.1

T
�1.2>3.0 � �0.4

�0.6>3.0 � �0.2

x1

3.0x1 � 2.0x2 � 2.0x3 � 5.0x4 � 8.0

0.6x1 � 1.5x2 � 1.5x3 � 5.4x4 � 2.7

1.2x1 � 0.3x2 � 0.3x3 � 2.4x4 � 2.1.

D3.0 2.0 2.0 �5.0  8.0

0.6 1.5 1.5 �5.4 2.7

1.2 �0.3 �0.3 2.4 2.1

T .
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This gives

Step 2. Elimination of from the third equation gives

The false statement shows that the system has no solution.

Row Echelon Form and Information From It
At the end of the Gauss elimination the form of the coefficient matrix, the augmented
matrix, and the system itself are called the row echelon form. In it, rows of zeros, if
present, are the last rows, and, in each nonzero row, the leftmost nonzero entry is farther
to the right than in the previous row. For instance, in Example 4 the coefficient matrix
and its augmented in row echelon form are

(8) and

Note that we do not require that the leftmost nonzero entries be 1 since this would have
no theoretic or numeric advantage. (The so-called reduced echelon form, in which those
entries are 1, will be discussed in Sec. 7.8.)

The original system of m equations in n unknowns has augmented matrix . This
is to be row reduced to matrix . The two systems and are equivalent:
if either one has a solution, so does the other, and the solutions are identical.

At the end of the Gauss elimination (before the back substitution), the row echelon form
of the augmented matrix will be

Rx � fAx � b3R | f 4
3A | b4

D3 2 1 3

0 �1
3

1
3  �2

0 0 0 12

T .D3 2 1

0 �1
3

1
3

0 0 0

T

�0 � 12

3x1 � 2x2 � x3 � 3

� 1
3 x2 � 1

3x3 � � 2

0 � 12.Row 3 � 6 Row 2

D3 2 1 3

0 �1
3

1
3  �2

0 0 0 12

T
x2

3x1 � 2x2 � x3 � 3

� 1
3 x2 � 1

3 x3 � �2

� 2x2 � 2x3 � 0.

Row 2 � 2_
3 Row 1

Row 3 � 2 Row 1

D3 2 1 3

0 �1
3

1
3  �2

0 �2 2 0

T
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rrr rrn fr

fm

f1
r2nr22

r12 r1nr11

f2

fr+1

Here, and all entries in the blue triangle and blue rectangle are zero.
The number of nonzero rows, r, in the row-reduced coefficient matrix R is called the

rank of R and also the rank of A. Here is the method for determining whether 
has solutions and what they are:

(a) No solution. If r is less than m (meaning that R actually has at least one row of
all 0s) and at least one of the numbers is not zero, then the systemfr�1, fr�2, Á , fm

Ax � b

r � m, r11 � 0, 

(9) X.

X



280 CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

1–14 GAUSS ELIMINATION
Solve the linear system given explicitly or by its augmented
matrix. Show details.

1.

 �3x � 8y � 10

 4x � 6y � �11

12.

13.

14.

15. Equivalence relation. By definition, an equivalence
relation on a set is a relation satisfying three conditions:
(named as indicated)

(i) Each element A of the set is equivalent to itself
(Reflexivity).

(ii) If A is equivalent to B, then B is equivalent to A
(Symmetry).

(iii) If A is equivalent to B and B is equivalent to C,
then A is equivalent to C (Transitivity).

Show that row equivalence of matrices satisfies these
three conditions. Hint. Show that for each of the three
elementary row operations these conditions hold.

E2 3 1 �11 1

5 �2 5 �4 5

1 �1 3 �3 3

3 4 �7 2 �7

U
 8w � 34x � 16y � 10z � 4

 w � x � y � 6

 �3w � 17x � y � 2z � 2

 10x � 4y � 2z � �4

D 2 �2 4 0  0

�3 3 �6 5 15

1 �1 2 0 0

T
P R O B L E M  S E T  7 . 3

is inconsistent: No solution is possible. Therefore the system is
inconsistent as well. See Example 4, where and 

If the system is consistent (either or and all the numbers 
are zero), then there are solutions.

(b) Unique solution. If the system is consistent and , there is exactly one
solution, which can be found by back substitution. See Example 2, where 
and 

(c) Infinitely many solutions. To obtain any of these solutions, choose values of
arbitrarily. Then solve the rth equation for (in terms of those

arbitrary values), then the st equation for , and so on up the line. See
Example 3.

Orientation. Gauss elimination is reasonable in computing time and storage demand.
We shall consider those aspects in Sec. 20.1 in the chapter on numeric linear algebra.
Section 7.4 develops fundamental concepts of linear algebra such as linear independence
and rank of a matrix. These in turn will be used in Sec. 7.5 to fully characterize the
behavior of linear systems in terms of existence and uniqueness of solutions.

xr�1(r � 1)
xrx r�1, Á , xn

m � 4.
r � n � 3

r � n

fr�1, fr�2, Á , fmr 	 mr � m,

fr�1 � f3 � 12.r � 2 	 m � 3
Ax � bRx � f

2. c3.0 �0.5 0.6

1.5 4.5 6.0
d

3.

 �2x � 4y � 6z �  40

 8y � 6z � �6

 x � y � z � 9 4. D 4 1 0 4

5 �3 1 2

�9 2 �1 5

T
5. D 13 12 �6

�4 7 �73

11 �13 157

T 6. D 4 �8 3 16

�1 2 �5 �21

3 �6 1 7

T
7. D 2 4 1 0

�1 1 �2 0

4 0 6 0

T 8.

 3x � 2y � 5

 2x � z � 2

 4y � 3z � 8

9.

 3x � 4y � 5z � 13

 �2y � 2z � �8 10. c 5  �7 3 17

�15 21 �9 50
d

11. D0 5 5 �10 0

2 �3 �3 6 2

4 1 1 �2 4

T



16. CAS PROJECT. Gauss Elimination and Back
Substitution. Write a program for Gauss elimination
and back substitution (a) that does not include pivoting
and (b) that does include pivoting. Apply the programs
to Probs. 11–14 and to some larger systems of your
choice.

17–21 MODELS OF NETWORKS
In Probs. 17–19, using Kirchhoff’s laws (see Example 2)
and showing the details, find the currents:

17.

18.

19.

20. Wheatstone bridge. Show that if in
the figure, then . ( is the resistance of the
instrument by which I is measured.) This bridge is a
method for determining are known. 
is variable. To get , make by varying . Then
calculate .Rx � R3R1>R2

R3I � 0Rx

R3Rx. R1, R2, R3

R0I � 0
Rx>R3 � R1>R2

R
1
 Ω

R
2
 Ω

I2

I1

E
0
 V

I3

12 Ω4 Ω

24 V

8 Ω

I2

I1

12 V

I3

1 Ω
2 Ω 2 Ω

4 Ω

32 V

I3

I1

I2

16 V

SEC. 7.3 Linear Systems of Equations. Gauss Elimination 281

the analog of Kirchhoff’s Current Law, find the traffic
flow (cars per hour) in the net of one-way streets (in
the directions indicated by the arrows) shown in the
figure. Is the solution unique?

22. Models of markets. Determine the equilibrium
solution of the two-commodity
market with linear model demand, supply,
price; index first commodity, index second
commodity)

23. Balancing a chemical equation
means finding integer 

such that the numbers of atoms of carbon (C), hydrogen
(H), and oxygen (O) are the same on both sides of this
reaction, in which propane and give carbon
dioxide and water. Find the smallest positive integers

24. PROJECT. Elementary Matrices. The idea is that
elementary operations can be accomplished by matrix
multiplication. If A is an matrix on which we
want to do an elementary operation, then there is a
matrix E such that EA is the new matrix after the
operation. Such an E is called an elementary matrix.
This idea can be helpful, for instance, in the design
of algorithms. (Computationally, it is generally prefer-
able to do row operations directly, rather than by
multiplication by E.)

(a) Show that the following are elementary matrices,
for interchanging Rows 2 and 3, for adding times
the first row to the third, and for multiplying the fourth
row by 8.

E3 � E 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 8

 U  .

E2 � E 1 0 0 0

0 1 0 0

�5 0 1 0

0 0 0 1

 U  ,

E1 � E 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 U  ,

�5

m � n

x1, Á , x4.

O2C3H8

x1, x2, x3, x4x3CO2 � x4H2O
x1C3H8 � x2O2:

S1 � 4P1 � P2 � 4,

S2 � 3P2 � 4.

D1 � 40 � 2P1 � P2, 

D2 � 5P1 � 2P2 � 16,

2 �1 �
(D, S, P �

(D1 � S1, D2 � S2)

Rx

R
0

R
3

R
1

R
2

Wheatstone bridge

x4 x2

x1

x3

400

 600

1000

 800

1200

800

600 1000

Net of one-way streets

Problem 20 Problem 21

21. Traffic flow. Methods of electrical circuit analysis
have applications to other fields. For instance, applying



7.4 Linear Independence. Rank of a Matrix.
Vector Space

Since our next goal is to fully characterize the behavior of linear systems in terms
of existence and uniqueness of solutions (Sec. 7.5), we have to introduce new
fundamental linear algebraic concepts that will aid us in doing so. Foremost among
these are linear independence and the rank of a matrix. Keep in mind that these
concepts are intimately linked with the important Gauss elimination method and how
it works.

Linear Independence and Dependence of Vectors
Given any set of m vectors (with the same number of components), a linear
combination of these vectors is an expression of the form

where are any scalars. Now consider the equation

(1)

Clearly, this vector equation (1) holds if we choose all ’s zero, because then it becomes
. If this is the only m-tuple of scalars for which (1) holds, then our vectors

are said to form a linearly independent set or, more briefly, we call them
linearly independent. Otherwise, if (1) also holds with scalars not all zero, we call these
vectors linearly dependent. This means that we can express at least one of the vectors
as a linear combination of the other vectors. For instance, if (1) holds with, say,

where .

(Some ’s may be zero. Or even all of them, namely, if .)
Why is linear independence important? Well, if a set of vectors is linearly

dependent, then we can get rid of at least one or perhaps more of the vectors until we
get a linearly independent set. This set is then the smallest “truly essential” set with
which we can work. Thus, we cannot express any of the vectors, of this set, linearly
in terms of the others.

a(1) � 0k j

k j � �cj>c1a(1) � k2a(2) � Á � kma(m)

c1 � 0, we can solve (1) for a(1):

a(1), Á , a(m)

0 � 0
cj

c1a(1) � c2a(2) � Á � cma(m) � 0.

c1, c2, Á , cm

c1a(1) � c2a(2) � Á � cma(m)

a(1), Á , a(m)
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Apply to a vector and to a matrix of
your choice. Find , where is
the general matrix. Is B equal to 

(b) Conclude that are obtained by doing
the corresponding elementary operations on the 4 � 4

E1, E2, E3

C � E1E2E3A?4 � 2
A � 3ajk4B � E3E2E1A

4 � 3E1, E2, E3 unit matrix. Prove that if M is obtained from A by an
elementary row operation, then

, 

where E is obtained from the unit matrix by
the same row operation.

Inn � n

M � EA



E X A M P L E  1 Linear Independence and Dependence

The three vectors

are linearly dependent because

Although this is easily checked by vector arithmetic (do it!), it is not so easy to discover. However, a systematic
method for finding out about linear independence and dependence follows below.

The first two of the three vectors are linearly independent because implies (from
the second components) and then (from any other component of 

Rank of a Matrix

D E F I N I T I O N The rank of a matrix A is the maximum number of linearly independent row vectors
of A. It is denoted by rank A.

Our further discussion will show that the rank of a matrix is an important key concept for
understanding general properties of matrices and linear systems of equations.

E X A M P L E  2 Rank

The matrix

(2)

has rank 2, because Example 1 shows that the first two row vectors are linearly independent, whereas all three
row vectors are linearly dependent.

Note further that rank if and only if This follows directly from the definition.

We call a matrix row-equivalent to a matrix can be obtained from by
(finitely many!) elementary row operations.

Now the maximum number of linearly independent row vectors of a matrix does not
change if we change the order of rows or multiply a row by a nonzero c or take a linear
combination by adding a multiple of a row to another row. This shows that rank is
invariant under elementary row operations:

T H E O R E M  1 Row-Equivalent Matrices

Row-equivalent matrices have the same rank.

Hence we can determine the rank of a matrix by reducing the matrix to row-echelon
form, as was done in Sec. 7.3. Once the matrix is in row-echelon form, we count the
number of nonzero rows, which is precisely the rank of the matrix.

A2A2 if A1A1

�A � 0.A � 0

A � D 3 0 2 2

�6 42 24 54

21 �21 0 �15

T

�a(1).c1 � 0
c2 � 0c1a(1) � c2a(2) � 0

6a(1) � 1
2 a(2) � a(3) � 0.

a(1) � 3 3 0 2 24

a(2) � 3�6 42 24 544

a(3) � 3 21 �21 0 �154
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E X A M P L E  3 Determination of Rank

For the matrix in Example 2 we obtain successively

(given)

.

The last matrix is in row-echelon form and has two nonzero rows. Hence rank as before.

Examples 1–3 illustrate the following useful theorem (with and the rank of
).

T H E O R E M  2 Linear Independence and Dependence of Vectors

Consider p vectors that each have n components. Then these vectors are linearly
independent if the matrix formed, with these vectors as row vectors, has rank p.
However, these vectors are linearly dependent if that matrix has rank less than p.

Further important properties will result from the basic

T H E O R E M  3 Rank in Terms of Column Vectors

The rank r of a matrix A equals the maximum number of linearly independent
column vectors of A.

Hence A and its transpose have the same rank.

P R O O F In this proof we write simply “rows” and “columns” for row and column vectors. Let A
be an matrix of rank Then by definition of rank, A has r linearly independent
rows which we denote by (regardless of their position in A), and all the rows

of A are linear combinations of those, say, 

(3)

a(1) � c11v(1) � c12v(2) � Á � c1rv(r)

a(2) � c21v(1) � c22v(2) � Á � c2rv(r)

 .
.
.        .

.

.        .
.
.            .

.

.

a(m) � cm1v(1) � cm2v(2) � Á � cmrv(r).

a(1), Á , a(m)

v(1), Á , v(r)

A � r.m � n

AT

the matrix � 2
n � 3,p � 3,

�A � 2,

Row 3 � 1
2 Row 2

 D 3 0 2 2

0 42 28 58

0 0 0 0

 T
Row 2 � 2 Row 1

Row 3 � 7 Row 1

 D 3 0 2 2

0 42 28 58

0 �21 �14 �29

 T
 A � D 3 0 2 2

�6 42 24 54

21 �21 0 �15

 T



These are vector equations for rows. To switch to columns, we write (3) in terms of
components as n such systems, with 

(4)

and collect components in columns. Indeed, we can write (4) as

(5)

where Now the vector on the left is the kth column vector of A. We see that
each of these n columns is a linear combination of the same r columns on the right. Hence
A cannot have more linearly independent columns than rows, whose number is rank 
Now rows of A are columns of the transpose . For our conclusion is that cannot
have more linearly independent columns than rows, so that A cannot have more linearly
independent rows than columns. Together, the number of linearly independent columns
of A must be r, the rank of A. This completes the proof.

E X A M P L E  4 Illustration of Theorem 3

The matrix in (2) has rank 2. From Example 3 we see that the first two row vectors are linearly independent
and by “working backward” we can verify that Similarly, the first two columns
are linearly independent, and by reducing the last matrix in Example 3 by columns we find that

and

Combining Theorems 2 and 3 we obtain

T H E O R E M  4 Linear Dependence of Vectors

Consider p vectors each having n components. If then these vectors are
linearly dependent.

P R O O F The matrix A with those p vectors as row vectors has p rows and columns; hence
by Theorem 3 it has rank which implies linear dependence by Theorem 2.

Vector Space
The following related concepts are of general interest in linear algebra. In the present
context they provide a clarification of essential properties of matrices and their role in
connection with linear systems.

�A � n 	 p,
n 	 p

n 	 p,

�Column 4 � 2
3 Column 1 � 29

21 Column 2.Column 3 � 2
3 Column 1 � 2

3 Column 2

Row 3 � 6 Row 1 � 1
2 Row 2.

�

ATATAT
A � r.

k � 1, Á , n.

Ea1k

a2k

.

.

.

amk

U � v1k E c11

c21

.

.

.

cm1

U � v2k E c12

c22

.

.

.

cm2

U � Á � vrk E c1r

c2r

.

.

.

cmr

U

a1k �

a2k �

 .
.
.

amk �

c11v1k �

c21v1k �

   .
.
.

cm1v1k �

c12v2k �

c22v2k �

   .
.
.

cm2v2k �

Á � c1rvrk

Á � c2rvrk

       .
.
.

Á � cmrvrk

k � 1, Á , n, 
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Consider a nonempty set V of vectors where each vector has the same number of
components. If, for any two vectors a and b in V, we have that all their linear combinations

any real numbers) are also elements of V, and if, furthermore, a and b satisfy
the laws (3a), (3c), (3d), and (4) in Sec. 7.1, as well as any vectors a, b, c in V satisfy (3b)
then V is a vector space. Note that here we wrote laws (3) and (4) of Sec. 7.1 in lowercase
letters a, b, c, which is our notation for vectors. More on vector spaces in Sec. 7.9.

The maximum number of linearly independent vectors in V is called the dimension of
V and is denoted by dim V. Here we assume the dimension to be finite; infinite dimension
will be defined in Sec. 7.9.

A linearly independent set in V consisting of a maximum possible number of vectors
in V is called a basis for V. In other words, any largest possible set of independent vectors
in V forms basis for V. That means, if we add one or more vector to that set, the set will
be linearly dependent. (See also the beginning of Sec. 7.4 on linear independence and
dependence of vectors.) Thus, the number of vectors of a basis for V equals dim V.

The set of all linear combinations of given vectors with the same number
of components is called the span of these vectors. Obviously, a span is a vector space. If
in addition, the given vectors are linearly independent, then they form a basis
for that vector space.

This then leads to another equivalent definition of basis. A set of vectors is a basis for
a vector space V if (1) the vectors in the set are linearly independent, and if (2) any vector
in V can be expressed as a linear combination of the vectors in the set. If (2) holds, we
also say that the set of vectors spans the vector space V.

By a subspace of a vector space V we mean a nonempty subset of V (including V itself)
that forms a vector space with respect to the two algebraic operations (addition and scalar
multiplication) defined for the vectors of V.

E X A M P L E  5 Vector Space, Dimension, Basis

The span of the three vectors in Example 1 is a vector space of dimension 2. A basis of this vector space consists
of any two of those three vectors, for instance, or etc.

We further note the simple

T H E O R E M  5 Vector Space 

The vector space consisting of all vectors with n components (n real numbers)
has dimension n.

P R O O F A basis of n vectors is 

For a matrix A, we call the span of the row vectors the row space of A. Similarly, the
span of the column vectors of A is called the column space of A.

Now, Theorem 3 shows that a matrix A has as many linearly independent rows as
columns. By the definition of dimension, their number is the dimension of the row space
or the column space of A. This proves

T H E O R E M  6 Row Space and Column Space

The row space and the column space of a matrix A have the same dimension, equal
to rank A.

�a(n) � 30 Á  0 14.

Á ,a(2) � 30 1 0 Á  04,a(1) � 31 0 Á  04,

Rn

Rn

�a(1), a(3),a(1), a(2),

a(1), Á , a(p)

a(1), Á , a(p)

aa � bb (a, b
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Finally, for a given matrix A the solution set of the homogeneous system is a
vector space, called the null space of A, and its dimension is called the nullity of A. In
the next section we motivate and prove the basic relation

(6) rank A � nullity A � Number of columns of A.

Ax � 0
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1–10 RANK, ROW SPACE, COLUMN SPACE
Find the rank. Find a basis for the row space. Find a basis
for the column space. Hint. Row-reduce the matrix and its
transpose. (You may omit obvious factors from the vectors
of these bases.)

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. CAS Experiment. Rank. (a) Show experimentally
that the matrix with 
has rank 2 for any n. (Problem 20 shows ) Try
to prove it.

(b) Do the same when where c is any
positive integer.

(c) What is rank A if ? Try to find other
large matrices of low rank independent of n.

ajk � 2 
j�k�2

ajk � j � k � c, 

n � 4.
ajk � j � k � 1A � 3ajk4n � n

E 5 �2 1 0

�2 0 �4 1

1 �4 �11 2

0 1 2 0

UE9 0 1 0

0 0 1 0

1 1 1 1

0 0 1 0

U
E 2 4 8 16

16 8 4 2

4 8 16 2

2 16 8 4

UD8 0 4 0

0 2 0 4

4 0 2 0

T
D 0 1 0

�1 0 �4

0 4 0

TD0.2 �0.1 0.4

0  1.1 �0.3

0.1 0 �2.1

T
D 6 �4 0

�4 0 2

0 2 6

TD0 3 5

3 5 0

5 0 10

T
ca b

b a
dc 4 �2 6

�2 1 �3
d

12–16 GENERAL PROPERTIES OF RANK
Show the following:

12. rank (Note the order!)

13. rank does not imply rank 
(Give a counterexample.)

14. If A is not square, either the row vectors or the column
vectors of A are linearly dependent.

15. If the row vectors of a square matrix are linearly
independent, so are the column vectors, and conversely.

16. Give examples showing that the rank of a product of
matrices cannot exceed the rank of either factor.

17–25 LINEAR INDEPENDENCE
Are the following sets of vectors linearly independent?
Show the details of your work.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26. Linearly independent subset. Beginning with the
last of the vectors 

and 
omit one after another until you get a linearly
independent set.

[9 0 1 2], 36 0 2 44,312 1 2 44,
36 1 0 04,33 0 1 24,

3�4 �4 �4 �44
 32 2 5 04,36 0 �1 3],

32 6 14
31 3 �54,30 8 14,34 �1 34,

39 8 7 6 54,  39 7 5 3 14

33.0 �0.6 1.5430 0 04,30.4 �0.2 0.24,

32 0 1 04
32 0 0 94,32 0 0 84,32 0 0 74,

34 5 6 74
33 4 5 64,32 3 4 54,31 2 3 44,

30 1 14,  31 1 14,  30 0 14

314 
1
5 

1
6 

1
74

313 
1
4 

1
5 

1
64,312 

1
3 

1
4 

1
54,31 1

2 
1
3 

1
44,

31 16 �12 �224
32 �1 3 74,33 4 0 24,

A2 � rank B2.A � rank B

BTAT � rank AB.

P R O B L E M  S E T  7 . 4



7.5 Solutions of Linear Systems: 
Existence, Uniqueness

Rank, as just defined, gives complete information about existence, uniqueness, and general
structure of the solution set of linear systems as follows.

A linear system of equations in n unknowns has a unique solution if the coefficient
matrix and the augmented matrix have the same rank n, and infinitely many solutions if
that common rank is less than n. The system has no solution if those two matrices have
different rank.

To state this precisely and prove it, we shall use the generally important concept of a
submatrix of A. By this we mean any matrix obtained from A by omitting some rows or
columns (or both). By definition this includes A itself (as the matrix obtained by omitting
no rows or columns); this is practical.

T H E O R E M  1 Fundamental Theorem for Linear Systems

(a) Existence. A linear system of m equations in n unknowns x1, , xn

(1)

is consistent, that is, has solutions, if and only if the coefficient matrix A and the
augmented matrix have the same rank. Here,

(b) Uniqueness. The system (1) has precisely one solution if and only if this
common rank r of A and equals n.A�

A � Ea11
Á a1n

# Á #

# Á #

am1
Á amn

U and A� � E a11
Á a1n b1

# Á # #

# Á # #

am1
Á amn bm

U
A�

a11x1 � a12x2 � Á � a1nxn � b1

a21x1 � a22x2 � Á � a2nxn � b2

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
am1x1 � am2x2 � Á � amnxn � bm

Á

27–35 VECTOR SPACE
Is the given set of vectors a vector space? Give reasons. If
your answer is yes, determine the dimension and find a
basis. denote components.)

27. All vectors in with 

28. All vectors in with 

29. All vectors in with 

30. All vectors in with the first components zeron � 2Rn

v1 
 v2R2

3v2 � v3 � kR3

v1 � v2 � 2v3 � 0R3

(v1, v2, Á
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31. All vectors in with positive components

32. All vectors in with 

33. All vectors in with 

34. All vectors in with for 

35. All vectors in with v1 � 2v2 � 3v3 � 4v4R4

j � 1, Á , nƒvj ƒ � 1Rn

2v1 � 3v2 � 4v3 � 0
3v1 � v3 � 0,R3

4v1 � 5v2 � 0
3v1 � 2v2 � v3 � 0,R3

R5
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(c) Infinitely many solutions. If this common rank r is less than n, the system
(1) has infinitely many solutions. All of these solutions are obtained by determining
r suitable unknowns (whose submatrix of coefficients must have rank r) in terms of
the remaining unknowns, to which arbitrary values can be assigned. (See
Example 3 in Sec. 7.3.)

(d) Gauss elimination (Sec. 7.3). If solutions exist, they can all be obtained by
the Gauss elimination. (This method will automatically reveal whether or not
solutions exist; see Sec. 7.3.)

n � r

P R O O F (a) We can write the system (1) in vector form or in terms of column vectors
of A:

(2)

is obtained by augmenting A by a single column b. Hence, by Theorem 3 in Sec. 7.4,
rank equals rank A or rank Now if (1) has a solution x, then (2) shows that b
must be a linear combination of those column vectors, so that and A have the same
maximum number of linearly independent column vectors and thus the same rank.

Conversely, if rank rank A, then b must be a linear combination of the column
vectors of A, say,

(2*)

since otherwise rank rank But means that (1) has a solution, namely,
as can be seen by comparing and (2).

(b) If rank the n column vectors in (2) are linearly independent by Theorem 3
in Sec. 7.4. We claim that then the representation (2) of b is unique because otherwise

This would imply (take all terms to the left, with a minus sign)

and by linear independence. But this means that the scalars
in (2) are uniquely determined, that is, the solution of (1) is unique.

(c) If rank rank , then by Theorem 3 in Sec. 7.4 there is a linearly
independent set K of r column vectors of A such that the other column vectors of
A are linear combinations of those vectors. We renumber the columns and unknowns,
denoting the renumbered quantities by , so that is that linearly independent
set K. Then (2) becomes

are linear combinations of the vectors of K, and so are the vectors
Expressing these vectors in terms of the vectors of K and collect-

ing terms, we can thus write the system in the form

(3) ĉ(1)y1 � Á � ĉ(r)yr � b

x̂r�1ĉ(r�1), Á , x̂nĉ(n).

ĉ(r�1), Á , ĉ(n)

ĉ(1) x̂1 � Á � ĉ(r) x̂r � ĉ(r�1) x̂r�1 � Á � ĉ(n) x̂n � b,

{ĉ(1), Á , c ˆ (r)}ˆ

n � r
A� � r 	 nA �

x1, Á , xn

x1 � x�1 � 0, Á , xn � x�n � 0

(x1 � x�1)c(1) � Á � (xn � x�n)c (n) � 0

c(1)x1 � Á � c(n)xn � c(1)x�1 � Á � c(n) x�n.

A � n,
(2*)x1 � a1, Á , xn � an,

(2*)A � 1.A� �

b � a1c(1) � Á � anc(n)

A� �

A�
A � 1.A�

A�

c(1) x1 � c(2)x2 � Á � c(n)xn � b.

c(1), Á , c(n)

Ax � b



with where results from the terms here,
Since the system has a solution, there are satisfying (3). These

scalars are unique since K is linearly independent. Choosing fixes the and
corresponding where 

(d) This was discussed in Sec. 7.3 and is restated here as a reminder. �

The theorem is illustrated in Sec. 7.3. In Example 2 there is a unique solution since rank
(as can be seen from the last matrix in the example). In Example 3

we have rank and can choose and arbitrarily. In
Example 4 there is no solution because rank 

Homogeneous Linear System
Recall from Sec. 7.3 that a linear system (1) is called homogeneous if all the ’s are
zero, and nonhomogeneous if one or several ’s are not zero. For the homogeneous
system we obtain from the Fundamental Theorem the following results.

T H E O R E M  2 Homogeneous Linear System

A homogeneous linear system

(4)

always has the trivial solution Nontrivial solutions exist if and
only if rank If rank these solutions, together with form a
vector space (see Sec. 7.4) of dimension called the solution space of (4).

In particular, if and are solution vectors of (4), then 
with any scalars and is a solution vector of (4). (This does not hold for
nonhomogeneous systems. Also, the term solution space is used for homogeneous
systems only.)

P R O O F The first proposition can be seen directly from the system. It agrees with the fact that
implies that rank , so that a homogeneous system is always consistent.

If rank the trivial solution is the unique solution according to (b) in Theorem 1.
If rank there are nontrivial solutions according to (c) in Theorem 1. The solutions
form a vector space because if and are any of them, then 
and this implies as well as 
where c is arbitrary. If rank Theorem 1 (c) implies that we can choose 
suitable unknowns, call them , in an arbitrary fashion, and every solution is
obtained in this way. Hence a basis for the solution space, briefly called a basis of
solutions of (4), is where the basis vector is obtained by choosing

and the other zero; the corresponding first r components of this
solution vector are then determined. Thus the solution space of (4) has dimension 
This proves Theorem 2. �

n � r.
xr�1, Á , xnx r�j � 1

y( j)y(1), Á , y(n�r),

xr�1, Á , xn

n � rA � r 	 n,
A(cx(1)) � cAx(1) � 0,A(x(1) � x(2)) � Ax(1) � Ax(2) � 0

Ax(1) � 0, Ax(2) � 0,x(2)x(1)

A 	 n,
A � n,

A� � rank Ab � 0

c2c1

x � c1x(1) � c2x(2)x(2)x(1)

n � r
x � 0,A � r 	 n,A 	 n.

x1 � 0, Á , xn � 0.

a11x1 � a12x2 � Á � a1nxn � 0

a21x1 � a22x2 � Á � a2nxn � 0

# # # # # # # # # # # # # # # #

am1x1 � am2x2 � Á � amnxn � 0

bj

bj

A � 2 	 rank A� � 3.
x4x3A� � rank A � 2 	 n � 4

A� � rank A � n � 3

j � 1, Á , r.x̂j � yj � bj,
bjx̂r�1, Á , x̂n

y1, Á , yrj � 1, Á , r.
ĉ(r�1) x̂r�1, Á , ĉ(n) x̂n;n � rbjyj � x̂j � bj,
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The solution space of (4) is also called the null space of A because for every x in
the solution space of (4). Its dimension is called the nullity of A. Hence Theorem 2 states that

(5)

where n is the number of unknowns (number of columns of A).
Furthermore, by the definition of rank we have rank in (4). Hence if 

then rank By Theorem 2 this gives the practically important

T H E O R E M  3 Homogeneous Linear System with Fewer Equations Than Unknowns

A homogeneous linear system with fewer equations than unknowns always has
nontrivial solutions.

Nonhomogeneous Linear Systems
The characterization of all solutions of the linear system (1) is now quite simple, as follows.

T H E O R E M  4 Nonhomogeneous Linear System

If a nonhomogeneous linear system (1) is consistent, then all of its solutions are
obtained as

(6)

where is any (fixed) solution of (1) and runs through all the solutions of the
corresponding homogeneous system (4).

P R O O F The difference of any two solutions of (1) is a solution of (4) because
Since x is any solution of (1), we get all

the solutions of (1) if in (6) we take any solution x0 of (1) and let xh vary throughout the
solution space of (4). �

This covers a main part of our discussion of characterizing the solutions of systems of
linear equations. Our next main topic is determinants and their role in linear equations.

Axh � A(x � x0) � Ax � Ax0 � b � b � 0.
xh � x � x0

xhx0

x � x0 � xh

A 	 n.
m 	 n,A � m

rank A � nullity A � n

Ax � 0

SEC. 7.6 For Reference: Second- and Third-Order Determinants 291

7.6 For Reference: 
Second- and Third-Order Determinants

We created this section as a quick general reference section on second- and third-order
determinants. It is completely independent of the theory in Sec. 7.7 and suffices as a
reference for many of our examples and problems. Since this section is for reference, go
on to the next section, consulting this material only when needed.

A determinant of second order is denoted and defined by

(1)

So here we have bars (whereas a matrix has brackets).

D � det A � 2  a11 a12

a21 a22

 2 � a11a22 � a12a21.



Cramer’s rule for solving linear systems of two equations in two unknowns

(2)

is

(3)

with D as in (1), provided

The value appears for homogeneous systems with nontrivial solutions.

P R O O F We prove (3). To eliminate multiply (2a) by and (2b) by and add, 

Similarly, to eliminate multiply (2a) by and (2b) by and add, 

Assuming that dividing, and writing the right sides of these
two equations as determinants, we obtain (3).

E X A M P L E  1 Cramer’s Rule for Two Equations

If

Third-Order Determinants
A determinant of third order can be defined by

(4) D � 3  a11 a12 a13

a21 a22 a23

a31 a32 a33

 3 � a11 2  a22 a23

a32 a33

 2 � a21 2  a12 a13

a32 a33

 2 � a31 2  a12 a13

a22 a23

 2 .

�
4x1 � 3x2 � 12

2x1 � 5x2 � �8
  then  x1 �

2  12 3

�8 5
 2

2  4 3

2 5
 2 � 84

14
� 6,  x2 �

2  4   12

2   �8
 2

2  4   3

2   5
 2 � �56

14
� �4.

�

D � a11a22 � a12a21 � 0, 

(a11a22 � a12a21)x2 � a11b2 � b1a21.

a11�a21x1

(a11a22 � a12a21)x1 � b1a22 � a12b2.

�a12a22x2

D � 0

D � 0.

x2 �

2  a11 b1

a21 b2

 2
D

�
a11b2 � b1a21

D

x1 �

2  b1 a12

b2 a22

 2
D

�
b1a22 � a12b2

D
 ,

(a) a11x1 � a12x2 � b1

(b) a21x1 � a22x2 � b2
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Note the following. The signs on the right are Each of the three terms on the
right is an entry in the first column of D times its minor, that is, the second-order
determinant obtained from D by deleting the row and column of that entry; thus, for a11

delete the first row and first column, and so on.
If we write out the minors in (4), we obtain

(4*)

Cramer’s Rule for Linear Systems of Three Equations

(5)

is

(6)

with the determinant D of the system given by (4) and

Note that are obtained by replacing Columns 1, 2, 3, respectively, by the
column of the right sides of (5).

Cramer’s rule (6) can be derived by eliminations similar to those for (3), but it also
follows from the general case (Theorem 4) in the next section.

7.7 Determinants. Cramer’s Rule
Determinants were originally introduced for solving linear systems. Although impractical
in computations, they have important engineering applications in eigenvalue problems
(Sec. 8.1), differential equations, vector algebra (Sec. 9.3), and in other areas. They can
be introduced in several equivalent ways. Our definition is particularly for dealing with
linear systems.

A determinant of order n is a scalar associated with an (hence square!) matrix
and is denoted by

(1) D � det A � 7  
a11 a12

Á a1n

a21 a22
Á a2n

# # Á #

# # Á #

an1 an2
Á ann

 7
 

.

A � 3ajk4, 
n � n

D1, D2, D3

D1 � 3  b1 a12 a13

b2 a22 a23

b3 a32 a33

 3 ,  D2 � 3  a11 b1 a13

a21 b2 a23

a31 b3 a33

 3 ,  D3 � 3  a11 a12 b1

a21 a22 b2

a31 a32 b3

 3 .
(D � 0)x1 �

D1

D
,  x2 �

D2

D
,  x3 �

D3

D

a11x1 � a12x2 � a13x3 � b1

a21x1 � a22x2 � a23x3 � b2

a31x1 � a32x2 � a33x3 � b3

D � a11a22a33 � a11a23a32 � a21a13a32 � a21a12a33 � a31a12a23 � a31a13a22.

� � �.
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For this determinant is defined by

(2)

For by

(3a)

or

(3b)

Here, 

and is a determinant of order namely, the determinant of the submatrix of A
obtained from A by omitting the row and column of the entry , that is, the jth row and
the kth column.

In this way, D is defined in terms of n determinants of order each of which is,
in turn, defined in terms of determinants of order and so on—until we
finally arrive at second-order determinants, in which those submatrices consist of single
entries whose determinant is defined to be the entry itself.

From the definition it follows that we may expand D by any row or column, that is, choose
in (3) the entries in any row or column, similarly when expanding the ’s in (3), and so on.

This definition is unambiguous, that is, it yields the same value for D no matter which
columns or rows we choose in expanding. A proof is given in App. 4.

Terms used in connection with determinants are taken from matrices. In D we have 
entries also n rows and n columns, and a main diagonal on which 
stand. Two terms are new:

is called the minor of in D, and the cofactor of in D.
For later use we note that (3) may also be written in terms of minors

(4a)

(4b)

E X A M P L E  1 Minors and Cofactors of a Third-Order Determinant

In (4) of the previous section the minors and cofactors of the entries in the first column can be seen directly.
For the entries in the second row the minors are

and the cofactors are and Similarly for the third row—write these
down yourself. And verify that the signs in form a checkerboard pattern

�

� � �

� � �

� � �

Cjk

C23 � �M23.C21 � �M21, C22 � �M22, 

M21 � 2   a12 a13

a32 a33

  2 ,   M22 � 2  a11 a13

a31 a33

 2 ,   M23 � 2  a11 a12

a31 a32

 2

(k � 1, 2, Á , or n).D � a

n

j�1

(�1) 
j�kajkMjk

( j � 1, 2, Á , or n)D � a

n

k�1

(�1) 
j�kajkMjk

ajkCjkajkMjk

a11, a22, Á , annajk,
n2

Cjk

n � 2, n � 1
n � 1, 

ajk

n � 1, Mjk

Cjk � (�1) 
j�kMjk

D � a1kC1k � a2kC2k � Á � ankCnk (k � 1, 2, Á , or n).

D � aj1Cj1 � aj2Cj2 � Á � ajnCjn    ( j � 1, 2, Á , or n)

n  
  2

D � a11.

n � 1, 

294 CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems



E X A M P L E  2 Expansions of a Third-Order Determinant

This is the expansion by the first row. The expansion by the third column is

Verify that the other four expansions also give the value �12.

E X A M P L E  3 Determinant of a Triangular Matrix

Inspired by this, can you formulate a little theorem on determinants of triangular matrices? Of diagonal 
matrices?

General Properties of Determinants
There is an attractive way of finding determinants (1) that consists of applying elementary
row operations to (1). By doing so we obtain an “upper triangular” determinant (see
Sec. 7.1, for definition with “matrix” replaced by “determinant”) whose value is then very
easy to compute, being just the product of its diagonal entries. This approach is similar
(but not the same!) to what we did to matrices in Sec. 7.3. In particular, be aware that
interchanging two rows in a determinant introduces a multiplicative factor of to the
value of the determinant! Details are as follows.

T H E O R E M  1 Behavior of an nth-Order Determinant under Elementary Row Operations

(a) Interchange of two rows multiplies the value of the determinant by �1.

(b) Addition of a multiple of a row to another row does not alter the value of the
determinant.

(c) Multiplication of a row by a nonzero constant c multiplies the value of the
determinant by c. (This holds also when but no longer gives an elementary
row operation.)

P R O O F (a) By induction. The statement holds for because2  a b

c d
 2 � ad � bc,   but  2  c d

a b
 2 � bc � ad.

n � 2

c � 0,

�1

�

3  �3 0 0

6 4 0

�1 2 5

 3 � �3 2  4 0

2 5
 2 � �3 # 4 # 5 � �60.

�

D � 0 2  2 6

�1 0
 2 � 4 2  1 3

�1 0
 2 � 2 2  1 3

2 6
 2 � 0 � 12 � 0 � �12.

 � 1(12 � 0) � 3(4 � 4) � 0(0 � 6) � �12.

 D � 3  1 3 0

2 6 4

�1 0 2

 3 � 1 2  6 4

0 2
 2 � 3 2  2 4

�1 2
 2 � 0 2  2 6

�1 0
 2
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We now make the induction hypothesis that (a) holds for determinants of order 
and show that it then holds for determinants of order n. Let D be of order n. Let E be
obtained from D by the interchange of two rows. Expand D and E by a row that is not
one of those interchanged, call it the jth row. Then by (4a), 

(5)

where is obtained from the minor of in D by the interchange of those two
rows which have been interchanged in D (and which must both contain because we
expand by another row!). Now these minors are of order Hence the induction
hypothesis applies and gives Thus by (5).

(b) Add c times Row i to Row j. Let be the new determinant. Its entries in Row j
are If we expand by this Row j, we see that we can write it as

where has in Row j the whereas has in that Row j the
from the addition. Hence has in both Row i and Row j. Interchanging these

two rows gives back, but on the other hand it gives by (a). Together
, so that 

(c) Expand the determinant by the row that has been multiplied.

CAUTION! det (cA) � cn det A (not c det A). Explain why.

E X A M P L E  4 Evaluation of Determinants by Reduction to Triangular Form

Because of Theorem 1 we may evaluate determinants by reduction to triangular form, as in the Gauss elimination
for a matrix. For instance (with the blue explanations always referring to the preceding determinant)

� � 2 # 5 # 2.4 # 47.25 � 1134.

 � 5  2  0 �4 6

0 5 9 �12

0 0 2.4 3.8

0 0 �0  47.25

 5 
Row 4 � 4.75 Row 3

 � 5  2  0 �4 6

0 5 9 �12

0 0 2.4 3.8

0 0 �11.4 29.2

 5 
Row 3 � 0.4 Row 2

Row 4 � 1.6 Row 2

 � 5  2  0 �4 6  

0 5 9 �12  

0 2 6 �1  

0 8 3 10  

 5 Row 2 � 2 Row 1

Row 4 � 1.5 Row 1

 D � 5  2  0 �4 6

4 5 1 0

0 2 6 �1

�3 8 9 1

 5

�

D� � D1 � D.D2 � �D2 � 0
�D2D2

ajkD2ajk

D2ajk, D1 � DD� � D1 � cD2, 
D�ajk � caik.

D�
E � �DNjk � �Mjk.

n � 1.
Njk

ajkMjkNjk

D � a

n

k�1

(�1) 
j�kajkMjk,   E � a

n

k�1

(�1) 
j�kajkNjk

n � 1  
  2
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T H E O R E M  2 Further Properties of nth-Order Determinants

(a)–(c) in Theorem 1 hold also for columns.

(d) Transposition leaves the value of a determinant unaltered.

(e) A zero row or column renders the value of a determinant zero.

(f ) Proportional rows or columns render the value of a determinant zero. In
particular, a determinant with two identical rows or columns has the value zero.

P R O O F (a)–(e) follow directly from the fact that a determinant can be expanded by any row
column. In (d), transposition is defined as for matrices, that is, the jth row becomes the
jth column of the transpose.

(f) If Row times Row i, then , where has Row Hence
an interchange of these rows reproduces but it also gives by Theorem 1(a).
Hence and Similarly for columns.

It is quite remarkable that the important concept of the rank of a matrix A, which is the
maximum number of linearly independent row or column vectors of A (see Sec. 7.4), can
be related to determinants. Here we may assume that rank because the only matrices
with rank 0 are the zero matrices (see Sec. 7.4).

T H E O R E M  3 Rank in Terms of Determinants

Consider an matrix :

(1) A has rank if and only if A has an submatrix with a nonzero
determinant.

(2) The determinant of any square submatrix with more than r rows, contained
in A (if such a matrix exists!) has a value equal to zero.

Furthermore, if , we have:

(3) An square matrix A has rank n if and only if

P R O O F The key idea is that elementary row operations (Sec. 7.3) alter neither rank (by Theorem
1 in Sec. 7.4) nor the property of a determinant being nonzero (by Theorem 1 in this
section). The echelon form Â of A (see Sec. 7.3) has r nonzero row vectors (which are
the first r row vectors) if and only if rank Without loss of generality, we can
assume that Let R̂ be the submatrix in the left upper corner of Â (so that
the entries of R̂ are in both the first r rows and r columns of Â). Now R̂ is triangular,
with all diagonal entries nonzero. Thus, det R̂ Also det for
the corresponding submatrix R of A because R̂ results from R by elementary row
operations. This proves part (1).

Similarly, for any square submatrix S of or more rows perhaps
contained in A because the corresponding submatrix Ŝ of Â must contain a row of zeros
(otherwise we would have rank ), so that det Ŝ by Theorem 2. This proves
part (2). Furthermore, we have proven the theorem for an matrix.m � n

� 0A  
  r � 1

r � 1det S � 0

r � r
R � 0� r11

Á rrr � 0.rjj

r � rr  
  1.
A � r.

det A � 0.

n � n

m � n

r � rr  
  1

A � 3ajk4m � n

A � 0

�D � cD1 � 0.D1 � 0
�D1D1, 

j � Row i.D1D � cD1j � c
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For an square matrix A we proceed as follows. To prove (3), we apply part (1)
(already proven!). This gives us that rank if and only if A contains an 
submatrix with nonzero determinant. But the only such submatrix contained in our square
matrix A, is A itself, hence This proves part (3).

Cramer’s Rule
Theorem 3 opens the way to the classical solution formula for linear systems known as
Cramer’s rule,2 which gives solutions as quotients of determinants. Cramer’s rule is not
practical in computations for which the methods in Secs. 7.3 and 20.1–20.3 are suitable.
However, Cramer’s rule is of theoretical interest in differential equations (Secs. 2.10 and
3.3) and in other theoretical work that has engineering applications.

T H E O R E M  4 Cramer’s Theorem (Solution of Linear Systems by Determinants)

(a) If a linear system of n equations in the same number of unknowns 

(6)

has a nonzero coefficient determinant the system has precisely one
solution. This solution is given by the formulas

(7)

where is the determinant obtained from D by replacing in D the kth column by
the column with the entries 

(b) Hence if the system (6) is homogeneous and it has only the trivial
solution If the homogeneous system also has
nontrivial solutions.

P R O O F The augmented matrix A� of the system (6) is of size n � (n � 1). Hence its rank can be
at most n. Now if

(8) D � det A � 5  a11
Á a1n

# Á #

# Á #

an1
Á ann

 5 � 0, 

D � 0,x1 � 0, x2 � 0, Á , xn � 0.
D � 0,

b1, Á , bn.
Dk

(Cramer’s rule)x1 �
D1

D
 ,  x2 �

D2

D
 , Á , xn �

Dn

D

D � det A,

a11x1 � a12x2 � Á � a1nxn � b1

a21x1 � a22x2 � Á � a2nxn � b2

# # # # # # # # # # # # # # # # #

an1x1 � an2x2 � Á � annxn � bn

x1, Á , xn

�det A � 0.

n � nA � n  
  1
n � n
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2GABRIEL CRAMER (1704–1752), Swiss mathematician. 



then rank by Theorem 3. Thus rank . Hence, by the Fundamental
Theorem in Sec. 7.5, the system (6) has a unique solution.

Let us now prove (7). Expanding D by its kth column, we obtain

(9)

where is the cofactor of entry in D. If we replace the entries in the kth column of
D by any other numbers, we obtain a new determinant, say, D̂. Clearly, its expansion by
the kth column will be of the form (9), with replaced by those new numbers
and the cofactors as before. In particular, if we choose as new numbers the entries

of the lth column of D (where ), we have a new determinant D̂ which
has the column twice, once as its lth column, and once as its kth because
of the replacement. Hence D̂ by Theorem 2(f). If we now expand D̂ by the column
that has been replaced (the kth column), we thus obtain

(10)

We now multiply the first equation in (6) by on both sides, the second by 
the last by and add the resulting equations. This gives

(11)

Collecting terms with the same xj, we can write the left side as

From this we see that is multiplied by

Equation (9) shows that this equals D. Similarly, is multiplied by

Equation (10) shows that this is zero when Accordingly, the left side of (11) equals
simply so that (11) becomes

Now the right side of this is as defined in the theorem, expanded by its kth column,
so that division by D gives (7). This proves Cramer’s rule.

If (6) is homogeneous and , then each has a column of zeros, so that 
by Theorem 2(e), and (7) gives the trivial solution.

Finally, if (6) is homogeneous and then rank by Theorem 3, so that
nontrivial solutions exist by Theorem 2 in Sec. 7.5.

E X A M P L E  5 Illustration of Cramer’s Rule (Theorem 4)

For see Example 1 of Sec. 7.6. Also, at the end of that section, we give Cramer’s rule for a general
linear system of three equations. �

n � 2, 

�

A 	 nD � 0,

Dk � 0DkD � 0

Dk

xkD � b1C1k � b2C2k � Á � bnCnk.

xkD,
l � k.

a1lC1k � a2lC2k � Á � anlCnk.

x1

a1kC1k � a2kC2k � Á � ankCnk.

xk

x1(a11C1k � a21C2k � Á � an1Cnk) � Á � xn(a1nC1k � a2nC2k � Á � annCnk).

� b1C1k � Á � bnCnk.

C1k(a11x1 � Á � a1nxn) � Á � Cnk(an1x1 � Á � annxn)

Cnk,
C2k, Á , C1k

(l � k).a1lC1k � a2lC2k � Á � anlCnk � 0

� 0
3a1l Á  anl4

T
l � ka1l, Á , anl

Cik

a1k, Á , ank

aikCik

D � a1kC1k � a2kC2k � Á � ankCnk, 

A~ � rank AA � n
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Finally, an important application for Cramer’s rule dealing with inverse matrices will
be given in the next section.
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1–6 GENERAL PROBLEMS
1. General Properties of Determinants. Illustrate each

statement in Theorems 1 and 2 with an example of
your choice.

2. Second-Order Determinant. Expand a general
second-order determinant in four possible ways and
show that the results agree.

3. Third-Order Determinant. Do the task indicated in
Theorem 2. Also evaluate D by reduction to triangular
form.

4. Expansion Numerically Impractical. Show that the
computation of an nth-order determinant by expansion
involves multiplications, which if a multiplication
takes sec would take these times:

n 10 15 20 25

Time
0.004 22 77
sec min years years

5. Multiplication by Scalar. Show that 
(not k det A). Give an example.

6. Minors, cofactors. Complete the list in Example 1.

7–15 EVALUATION OF DETERMINANTS
Showing the details, evaluate:

7. 8.

9. 10.

11. 12.

13. 14. 6   
4 7 0   0

2 8 0 0

0 0 1 5

0 0 �2 2

  66  
0 4 �1 5

�4 0 3 �2

1 �3 0 1

�5 2 �1 0

 6

3  a b c

c a b

b c a

 33  4 �1 8

0 2 3

0 0 5

 3
2  cosh t sinh t

sinh t cosh t
 22  cos nu sin nu

�sin nu cos nu
 2

2  0.4 4.9

1.5 �1.3
 22  cos a sin a

sin b cos b
 2

kn det A
det (kA) �

0.5 # 109

10�9
n!

P R O B L E M  S E T  7 . 7

15.

16. CAS EXPERIMENT. Determinant of Zeros and
Ones. Find the value of the determinant of the 
matrix with main diagonal entries all 0 and all
others 1. Try to find a formula for this. Try to prove it
by induction. Interpret and as incidence matrices
(as in Problem Set 7.1 but without the minuses) of a
triangle and a tetrahedron, respectively; similarly for an
n-simplex, having n vertices and edges (and
spanning ).

17–19 RANK BY DETERMINANTS
Find the rank by Theorem 3 (which is not very practical)
and check by row reduction. Show details.

17. 18.

19.

20. TEAM PROJECT. Geometric Applications: Curves
and Surfaces Through Given Points. The idea is to
get an equation from the vanishing of the determinant
of a homogeneous linear system as the condition for a
nontrivial solution in Cramer’s theorem. We explain
the trick for obtaining such a system for the case of
a line L through two given points and

The unknown line is
say. We write it as To get a
nontrivial solution a, b, c, the determinant of the
“coefficients” x, y, 1 must be zero. The system is

(12)

 ax2 � by2 � c # 1 � 0 (P2 on L).

 ax1 � by1 � c # 1 � 0 (P1 on L)

 ax � by  � c # 1 � 0 (Line L)

ax � by � c # 1 � 0.
ax � by � �c,P2: (x2, y2).
P1: (x1, y1)

D 

1 5 2 2

1 3 2 6

4 0 8 48

 T
D 

0 4 �6

4 0 10

�6 10 0

 TD 

4 9

�8 �6

16 12

 T

Rn�1, n � 5, 6, Á
n (n � 1)>2

A4A3

An

n � n

6  
1 2 0 0

2 4 2 0

0 2 9 2

0 0 2 16

 6



(a) Line through two points. Derive from in
(12) the familiar formula

(b) Plane. Find the analog of (12) for a plane through
three given points. Apply it when the points are

(c) Circle. Find a similar formula for a circle in the
plane through three given points. Find and sketch the
circle through 
(d) Sphere. Find the analog of the formula in (c) for
a sphere through four given points. Find the sphere
through by this
formula or by inspection.
(e) General conic section. Find a formula for a
general conic section (the vanishing of a determinant
of 6th order). Try it out for a quadratic parabola and
for a more general conic section of your own choice.

(0, 0, 5), (4, 0, 1), (0, 4, 1), (0, 0, �3)

(2, 6), (6, 4), (7, 1).

(1, 1, 1), (3, 2, 6), (5, 0, 5).

x � x1

x1 � x2
 �

y � y1

y1 � y2
.

D � 0
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21–25 CRAMER’S RULE
Solve by Cramer’s rule. Check by Gauss elimination and
back substitution. Show details.

21. 22.

23. 24.

25. �4w � x � y � �10

w � 4x � z � 1

w � 4y � z � �7

x � y � 4z � 10

3x � 2y � z � 13

�2x � y � 4z � 11

x � 4y � 5z � �31

3y � 4z � 16

2x � 5y � 7z � �27

�x � 9z � 9

2x � 4y � �24

5x � 2y � 0

3x � 5y � 15.5

6x � 16y � 5.0

7.8 Inverse of a Matrix.
Gauss–Jordan Elimination

In this section we consider square matrices exclusively.
The inverse of an matrix is denoted by and is an matrix

such that

(1)

where I is the unit matrix (see Sec. 7.2).
If A has an inverse, then A is called a nonsingular matrix. If A has no inverse, then

A is called a singular matrix.
If A has an inverse, the inverse is unique.
Indeed, if both B and C are inverses of A, then and so that we obtain

the uniqueness from

We prove next that A has an inverse (is nonsingular) if and only if it has maximum
possible rank n. The proof will also show that implies provided 
exists, and will thus give a motivation for the inverse as well as a relation to linear systems.
(But this will not give a good method of solving numerically because the Gauss
elimination in Sec. 7.3 requires fewer computations.)

T H E O R E M  1 Existence of the Inverse

The inverse of an matrix A exists if and only if , thus (by
Theorem 3, Sec. 7.7) if and only if . Hence A is nonsingular if
and is singular if .rank A 	 n

rank A � n,det A � 0
rank A � nn � nA�1

Ax � b

A�1x � A�1bAx � b

B � IB � (CA)B � C(AB) � CI � C.

CA � I, AB � I

n � n

AA�1 � A�1A � I

n � nA�1A � 3ajk4n � n
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P R O O F Let A be a given matrix and consider the linear system

(2)

If the inverse exists, then multiplication from the left on both sides and use of (1)
gives

.

This shows that (2) has a solution x, which is unique because, for another solution u, we
have , so that . Hence A must have rank n by the Fundamental
Theorem in Sec. 7.5.

Conversely, let rank . Then by the same theorem, the system (2) has a unique
solution x for any b. Now the back substitution following the Gauss elimination (Sec. 7.3)
shows that the components of x are linear combinations of those of b. Hence we can
write

(3)

with B to be determined. Substitution into (2) gives

for any b. Hence , the unit matrix. Similarly, if we substitute (2) into (3) we get

for any x (and ). Hence . Together, exists.

Determination of the Inverse by the 
Gauss–Jordan Method
To actually determine the inverse of a nonsingular matrix A, we can use a
variant of the Gauss elimination (Sec. 7.3), called the Gauss–Jordan elimination.3 The
idea of the method is as follows.

Using A, we form n linear systems

where the vectors are the columns of the unit matrix I; thus,
etc. These are n vector equations

in the unknown vectors . We combine them into a single matrix equationx(1), Á , x(n)

e(1) � 31 0 Á  04T, e(2) � 30 1 0 Á  04T, 
n � ne(1), Á , e(n)

Ax(1) � e(1), Á ,  Ax(n) � e(n)

n � nA�1

�B � A�1BA � Ib � Ax

x � Bb � B(Ax) � (BA)x

C � AB � I

(C � AB)Ax � A(Bb) � (AB)b � Cb � b

x � Bb

x j

A � n

u � A�1b � xAu � b

A�1Ax � x � A�1b

A�1

Ax � b.

n � n

3WILHELM JORDAN (1842–1899), German geodesist and mathematician. He did important geodesic work
in Africa, where he surveyed oases. [See Althoen, S.C. and R. McLaughlin, Gauss–Jordan reduction: A brief
history. American Mathematical Monthly, Vol. 94, No. 2 (1987), pp. 130–142.]

We do not recommend it as a method for solving systems of linear equations, since the number of operations
in addition to those of the Gauss elimination is larger than that for back substitution, which the Gauss–Jordan
elimination avoids. See also Sec. 20.1.



, with the unknown matrix X having the columns Correspondingly,
we combine the n augmented matrices into one wide 
“augmented matrix” . Now multiplication of by from the left
gives Hence, to solve for X, we can apply the Gauss
elimination to . This gives a matrix of the form with upper triangular
U because the Gauss elimination triangularizes systems. The Gauss–Jordan method
reduces U by further elementary row operations to diagonal form, in fact to the unit matrix
I. This is done by eliminating the entries of U above the main diagonal and making the
diagonal entries all 1 by multiplication (see Example 1). Of course, the method operates
on the entire matrix , transforming H into some matrix K, hence the entire 
to . This is the “augmented matrix” of . Now , as shown
before. By comparison, , so that we can read directly from .

The following example illustrates the practical details of the method.

E X A M P L E  1 Finding the Inverse of a Matrix by Gauss–Jordan Elimination

Determine the inverse of

Solution. We apply the Gauss elimination (Sec. 7.3) to the following matrix, where BLUE
always refers to the previous matrix.

This is as produced by the Gauss elimination. Now follow the additional Gauss–Jordan steps, reducing
U to I, that is, to diagonal form with entries 1 on the main diagonal.

 D1 0 0

0 1 0

0 0 1

3  

�0.7 0.2 0.3

�1.3 �0.2 0.7

0.8 0.2 �0.2

T Row 1 � Row 2

 D1 �1 0

0 1 0

0 0 1

3  

0.6 0.4 �0.4

�1.3 �0.2 0.7

0.8 0.2 �0.2

T Row 1 � 2 Row 3

Row 2 – 3.5 Row 3

 D1 �1 �2

0 1 3.5

0 0 1

3  

�1 0 0

1.5 0.5 0

0.8 0.2 �0.2

T �Row 1

0.5 Row 2

�0.2 Row 3

3U H4

 D�1 1 2

0 2 7

0 0 �5

3 1 0 0

3 1 0

�4 �1 1

T 
Row 3 � Row 2

 D�1 1 2

0 2 7

0 2 2

3  

1 0 0

3 1 0

�1 0 1

T Row 2 � 3 Row 1

Row 3 � Row 1

 3A I4 � D�1 1 2

3 �1 1

�1 3 4

3  

1 0 0

0 1 0

0 0 1

T
n � 2n � 3 � 6

A � D�1 1 2

3 �1 1

�1 3 4

T .

A�1

3I K4A�1K � A�1
IX � X � A�1IX � K3I K4

3U H43U H4

3U H4A� � 3A I4
AX � IX � A�1I � A�1.

A�1AX � IA� � 3A I4
n � 2n3A e(1)4, Á , 3A e(n)4

x(1), Á , x(n).AX � I
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The last three columns constitute Check:

Hence Similarly, 

Formulas for Inverses
Since finding the inverse of a matrix is really a problem of solving a system of linear
equations, it is not surprising that Cramer’s rule (Theorem 4, Sec. 7.7) might come into
play. And similarly, as Cramer’s rule was useful for theoretical study but not for
computation, so too is the explicit formula (4) in the following theorem useful for
theoretical considerations but not recommended for actually determining inverse matrices,
except for the frequently occurring case as given in 

T H E O R E M 2 Inverse of a Matrix by Determinants

The inverse of a nonsingular matrix is given by

(4)

where is the cofactor of in det A (see Sec. 7.7). (CAUTION! Note well that
in , the cofactor occupies the same place as (not ) does in A.)

In particular, the inverse of

P R O O F We denote the right side of (4) by B and show that . We first write

(5)

and then show that . Now by the definition of matrix multiplication and because of
the form of B in (4), we obtain (CAUTION! not )

(6) gkl � a

n

s�1

 
Csk

det A
 asl �

1
det A

 (a1lC1k � Á � anlCnk).

CksCsk, 
G � I

BA � G � 3gkl4

BA � I

A � ca11 a12

a21 a22

d  is  A�1 �
1

det A
 c a22 �a12

�a21 a11

d .(4*)

ajkakjCjkA�1
ajkCjk

A�1 �
1

det A
 3Cjk4

T �
1

det A
  EC11 C21

Á Cn1

C12 C22
Á Cn2

# # Á #

C1n C2n
Á Cnn

U  ,

A � 3ajk4n � n

(4*).2 � 2

�A�1A � I.AA�1 � I.

D�1 1 2

3 �1 1

�1 3 4

T  D�0.7 0.2 0.3

�1.3 �0.2 0.7

0.8 0.2 �0.2

T � D1   0   0

0   1   0

0   0   1

T .

A�1.
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Now (9) and (10) in Sec. 7.7 show that the sum on the right is when
, and is zero when . Hence

In particular, for we have in (4), in the first row, and, 
in the second row, This gives 

The special case occurs quite frequently in geometric and other applications. You
may perhaps want to memorize formula (4*). Example 2 gives an illustration of (4*).

E X A M P L E  2 Inverse of a Matrix by Determinants

E X A M P L E  3 Further Illustration of Theorem 2

Using (4), find the inverse of

Solution. We obtain and in (4),

so that by (4), in agreement with Example 1, 

Diagonal matrices when have an inverse if and only if all
Then is diagonal, too, with entries 

P R O O F For a diagonal matrix we have in (4)

etc. �
C11

D
�

a22
Á ann

a11a22
Á ann

�
1

a11
,

1>a11, Á , 1>ann.A�1ajj � 0.
j � k, A � [ajk], ajk � 0

�A�1 � D�0.7 0.2 0.3

�1.3 �0.2 0.7

0.8 0.2 �0.2

T .

 C13 � 2  3 �1

�1 3
 2 � 8,   C23 � � 2  �1 1

�1 3
 2 � 2,   C33 � 2  �1 1

3 �1
 2 � �2, 

 C12 � � 2  3 1

�1 4
 2 � �13,   C22 � 2  �1 2

�1 4
 2 � �2,   C32 � � 2  �1 2

3 1
 2 � 7, 

 C11 � 2  �1 1

3 4
 2 � �7,   C21 � � 2  1 2

3 4
 2 � 2,   C31 � 2  1 2

�1 1
 2 � 3, 

det A � �1(�7) � 1 # 13 � 2 # 8 � 10, 

A � D�1 1 2

3 �1 1

�1 3 4

T .

�A � c3 1

2 4
d ,  A�1 �

1

10
 c 4 �1

�2 3
d � c 0.4 �0.1

�0.2 0.3
d

2 � 2

n � 2

�(4*).C12 � �a21, C22 � a11.
C11 � a22, C21 � �a12n � 2

 gkl � 0 (l � k).

 gkk �
1

det A
 det A � 1, 

l � kl � k
D � det A( Á )
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E X A M P L E  4 Inverse of a Diagonal Matrix

Let

Then we obtain the inverse by inverting each individual diagonal element of A, that is, by taking 
and as the diagonal entries of , that is,

Products can be inverted by taking the inverse of each factor and multiplying these
inverses in reverse order,

(7)

Hence for more than two factors, 

(8)

P R O O F The idea is to start from (1) for AC instead of A, that is, , and multiply
it on both sides from the left, first by which because of gives

and then multiplying this on both sides from the left, this time by and by using

This proves (7), and from it, (8) follows by induction.

We also note that the inverse of the inverse is the given matrix, as you may prove, 

(9)

Unusual Properties of Matrix Multiplication.
Cancellation Laws
Section 7.2 contains warnings that some properties of matrix multiplication deviate from
those for numbers, and we are now able to explain the restricted validity of the so-called
cancellation laws [2] and [3] below, using rank and inverse, concepts that were not yet

(A�1)�1 � A.

�

C�1C(AC)�1 � (AC)�1 � C�1A�1.

C�1C � I, 
C�1

� A�1I � A�1,

A�1AC(AC)�1 � C(AC)�1

A�1A � IA�1, 
AC(AC)�1 � I

(AC Á PQ)�1 � Q�1P�1 Á C�1A�1.

(AC)�1 � C�1A�1.

�A�1 � D�2 0 0

0 0.25 0

0 0 1

T .

A�11
1

1>(�0.5), 14  
,A�1

A � D�0.5 0 0

0 4 0

0 0 1

T .
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available in Sec. 7.2. The deviations from the usual are of great practical importance and
must be carefully observed. They are as follows.

[1] Matrix multiplication is not commutative, that is, in general we have

[2] does not generally imply or (or ); for example, 

[3] does not generally imply (even when 

Complete answers to [2] and [3] are contained in the following theorem.

T H E O R E M 3 Cancellation Laws

Let A, B, C be matrices. Then:

(a) If rank and , then

(b) If rank , then implies . Hence if , but
as well as , then rank and rank 

(c) If A is singular, so are BA and AB.

P R O O F (a) The inverse of A exists by Theorem 1. Multiplication by from the left gives
, hence .

(b) Let rank . Then exists, and implies Similarly
when rank . This implies the second statement in (b).

Rank by Theorem 1. Hence has nontrivial solutions by Theorem 2
in Sec. 7.5. Multiplication by B shows that these solutions are also solutions of 
so that rank by Theorem 2 in Sec. 7.5 and BA is singular by Theorem 1.

is singular by Theorem 2(d) in Sec. 7.7. Hence is singular by part ,
and is equal to by (10d) in Sec. 7.2. Hence AB is singular by Theorem 2(d) in
Sec. 7.7.

Determinants of Matrix Products
The determinant of a matrix product AB or BA can be written as the product of the
determinants of the factors, and it is interesting that , although 
in general. The corresponding formula (10) is needed occasionally and can be obtained
by Gauss–Jordan elimination (see Example 1) and from the theorem just proved.

T H E O R E M 4 Determinant of a Product of Matrices

For any matrices A and B,

(10) .det (AB) � det (BA) � det A det B

n � n

AB � BAdet AB � det BA

�

(AB)T
(c1)BTATAT(c2)

(BA) 	 n
BAx � 0,

Ax � 0A 	 n(c1)
B � n

A�1AB � B � 0.AB � 0A�1A � n
B � CA�1AB � A�1AC

A�1

B 	 n.A 	 nB � 0
A � 0AB � 0B � 0AB � 0A � n

B � C.AB � ACA � n

n � n

A � 0).C � DAC � AD

c1 1

2 2
d  c�1 1

1 �1
d � c0 0

0 0
d .
BA � 0B � 0A � 0AB � 0

AB � BA.
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P R O O F If A or B is singular, so are AB and BA by Theorem 3(c), and (10) reduces to by
Theorem 3 in Sec. 7.7.

Now let A and B be nonsingular. Then we can reduce A to a diagonal matrix Â
by Gauss–Jordan steps. Under these operations, det A retains its value, by Theorem 1 in
Sec. 7.7, (a) and (b) [not (c)] except perhaps for a sign reversal in row interchanging when
pivoting. But the same operations reduce AB to ÂB with the same effect on .
Hence it remains to prove (10) for ÂB; written out,

Â

We now take the determinant (ÂB). On the right we can take out a factor from
the first row, from the second, from the nth. But this product 
equals Â because Â is diagonal. The remaining determinant is . This proves (10)
for , and the proof for follows by the same idea.

This completes our discussion of linear systems (Secs. 7.3–7.8). Section 7.9 on vector
spaces and linear transformations is optional. Numeric methods are discussed in Secs.
20.1–20.4, which are independent of other sections on numerics.

�det (BA)det (AB)
det Bdet 

â11â22
Á ânn

Á , a ˆnnâ22

â11det 

� E â11b11 â11b12
Á â11b1n

â22b21 â22b22
Á â22b2n

.

.

.

ânnbn1 ânnbn2
Á ânnbnn

U .

B � Eâ11 0 Á 0

0 â22
Á 0

. . .

0 0 Á ânn

U Eb11 b12
Á b1n

b21 b22
Á b2n

.

.

.

bn1 bn2
Á bnn

U
det (AB)

� [ajk]

0 � 0

1–10 INVERSE
Find the inverse by Gauss–Jordan (or by if ).
Check by using (1).

1. 2.

3. 4.

5. 6. D�4 0 0

0 8 13

0 3 5

TD1 0 0

2 1 0

5 4 1

T
D0 0 0.1

0 �0.4 0

2.5 0 0

TD0.3 �0.1 0.5

2 6 4

5 0 9

T
c cos 2u sin 2u

�sin 2u cos 2u
dc 1.80 �2.32

�0.25 0.60
d

n � 2(4*)
7. 8.

9. 10.

11–18 SOME GENERAL FORMULAS
11. Inverse of the square. Verify for A

in Prob. 1.

12. Prove the formula in Prob. 11.

(A2)�1 � (A�1)2

D 2
3

1
3

2
3

�2
3

2
3

1
3

1
3

2
3 �2

3

TD0 8 0

0 0 4

2 0 0

T
D1 2 3

4 5 6

7 8 9

TD0 1 0

1 0 0

0 0 1

T
P R O B L E M  S E T  7 . 8



13. Inverse of the transpose. Verify for
A in Prob. 1.

14. Prove the formula in Prob. 13.

15. Inverse of the inverse. Prove that 

16. Rotation. Give an application of the matrix in Prob. 2
that makes the form of the inverse obvious.

17. Triangular matrix. Is the inverse of a triangular
matrix always triangular (as in Prob. 5)? Give reason.

(A�1)�1 � A.

(AT)�1 � (A�1)T
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18. Row interchange. Same task as in Prob. 16 for the
matrix in Prob. 7.

19–20 FORMULA (4) 
Formula (4) is occasionally needed in theory. To understand
it, apply it and check the result by Gauss–Jordan:

19. In Prob. 3

20. In Prob. 6

7.9 Vector Spaces, Inner Product Spaces, 
Linear Transformations Optional

We have captured the essence of vector spaces in Sec. 7.4. There we dealt with special
vector spaces that arose quite naturally in the context of matrices and linear systems. The
elements of these vector spaces, called vectors, satisfied rules (3) and (4) of Sec. 7.1
(which were similar to those for numbers). These special vector spaces were generated
by spans, that is, linear combination of finitely many vectors. Furthermore, each such
vector had n real numbers as components. Review this material before going on.

We can generalize this idea by taking all vectors with n real numbers as components
and obtain the very important real n-dimensional vector space . The vectors are known
as “real vectors.” Thus, each vector in is an ordered n-tuple of real numbers.

Now we can consider special values for n. For , we obtain the vector space
of all ordered pairs, which correspond to the vectors in the plane. For , we obtain

the vector space of all ordered triples, which are the vectors in 3-space. These vectors
have wide applications in mechanics, geometry, and calculus and are basic to the engineer
and physicist.

Similarly, if we take all ordered n-tuples of complex numbers as vectors and complex
numbers as scalars, we obtain the complex vector space , which we shall consider in
Sec. 8.5.

Furthermore, there are other sets of practical interest consisting of matrices, functions,
transformations, or others for which addition and scalar multiplication can be defined in
an almost natural way so that they too form vector spaces.

It is perhaps not too great an intellectual jump to create, from the concrete model
the abstract concept of a real vector space V by taking the basic properties (3) and (4)
in Sec. 7.1 as axioms. In this way, the definition of a real vector space arises.

D E F I N I T I O N Real Vector Space

A nonempty set V of elements a, b, • • • is called a real vector space (or real linear
space), and these elements are called vectors (regardless of their nature, which will
come out from the context or will be left arbitrary) if, in V, there are defined two
algebraic operations (called vector addition and scalar multiplication) as follows.

I. Vector addition associates with every pair of vectors a and b of V a unique
vector of V, called the sum of a and b and denoted by a � b, such that the following
axioms are satisfied.

Rn,

C n

R3, 
n � 3

R2, n � 2
Rn

Rn
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I.1 Commutativity. For any two vectors a and b of V,

a � b � b � a.

I.2 Associativity. For any three vectors a, b, c of V,

(a � b) � c � a � (b � c) (written a � b � c).

I.3 There is a unique vector in V, called the zero vector and denoted by 0, such
that for every a in V,

a � 0 � a.

I.4 For every a in V there is a unique vector in V that is denoted by �a and is
such that

a � (�a) � 0.

II. Scalar multiplication. The real numbers are called scalars. Scalar
multiplication associates with every a in V and every scalar c a unique vector of V,
called the product of c and a and denoted by ca (or ac) such that the following
axioms are satisfied.

II.1 Distributivity. For every scalar c and vectors a and b in V,

c (a � b) � ca � cb.

II.2 Distributivity. For all scalars c and k and every a in V,

(c � k)a � ca � ka.

II.3 Associativity. For all scalars c and k and every a in V,

c(ka) � (ck)a (written cka).

II.4 For every a in V,

1a � a.

If, in the above definition, we take complex numbers as scalars instead of real numbers,
we obtain the axiomatic definition of a complex vector space.

Take a look at the axioms in the above definition. Each axiom stands on its own: It
is concise, useful, and it expresses a simple property of V. There are as few axioms as
possible and together they express all the desired properties of V. Selecting good axioms
is a process of trial and error that often extends over a long period of time. But once
agreed upon, axioms become standard such as the ones in the definition of a real vector
space.



The following concepts related to a vector space are exactly defined as those given in
Sec. 7.4. Indeed, a linear combination of vectors in a vector space V is an
expression

any scalars).

These vectors form a linearly independent set (briefly, they are called linearly
independent) if

(1)

implies that . Otherwise, if (1) also holds with scalars not all zero, the
vectors are called linearly dependent.

Note that (1) with is and shows that a single vector a is linearly
independent if and only if .

V has dimension n, or is n-dimensional, if it contains a linearly independent set of n
vectors, whereas any set of more than n vectors in V is linearly dependent. That set of
n linearly independent vectors is called a basis for V. Then every vector in V can be
written as a linear combination of the basis vectors. Furthermore, for a given basis, this
representation is unique (see Prob. 2).

E X A M P L E  1 Vector Space of Matrices

The real matrices form a four-dimensional real vector space. A basis is

because any matrix has a unique representation .
Similarly, the real matrices with fixed m and n form an mn-dimensional vector space. What is the
dimension of the vector space of all skew-symmetric matrices? Can you find a basis?

E X A M P L E  2 Vector Space of Polynomials

The set of all constant, linear, and quadratic polynomials in x together is a vector space of dimension 3 with
basis under the usual addition and multiplication by real numbers because these two operations give
polynomials not exceeding degree 2. What is the dimension of the vector space of all polynomials of degree
not exceeding a given fixed n? Can you find a basis?

If a vector space V contains a linearly independent set of n vectors for every n, no matter
how large, then V is called infinite dimensional, as opposed to a finite dimensional
(n-dimensional) vector space just defined. An example of an infinite dimensional vector
space is the space of all continuous functions on some interval [a, b] of the x-axis, as we
mention without proof.

Inner Product Spaces
If a and b are vectors in , regarded as column vectors, we can form the product .
This is a matrix, which we can identify with its single entry, that is, with a number.1 � 1

aTbRn

�

{1, x, x2}

�3 � 3
m � n

A � a11B11 �  a12B12 � a21B21 � a22B22A � [ajk]2 � 2

B11 � c1 0

0 0
d ,  B12 � c0 1

0 0
d ,  B21 � c0 0

1 0
d ,  B22 � c0 0

0 1
d

2 � 2

a � 0
ca � 0m � 1

c1 � 0, Á , cm � 0

c1a(1) � Á � cma(m) � 0

(c1, Á , cmc1a(1) � Á � cmam

a(1), Á , a(m)
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This product is called the inner product or dot product of a and b. Other notations for
it are (a, b) and . Thus

.

We now extend this concept to general real vector spaces by taking basic properties of
(a, b) as axioms for an “abstract inner product” (a, b) as follows.

D E F I N I T I O N Real Inner Product Space

A real vector space V is called a real inner product space (or real pre-Hilbert4

space) if it has the following property. With every pair of vectors a and b in V there
is associated a real number, which is denoted by (a, b) and is called the inner
product of a and b, such that the following axioms are satisfied.

I. For all scalars q1 and q2 and all vectors a, b, c in V,

(Linearity).

II. For all vectors a and b in V,

(Symmetry).

III. For every a in V,

(Positive-definiteness).

Vectors whose inner product is zero are called orthogonal.
The length or norm of a vector in V is defined by

(2) .

A vector of norm 1 is called a unit vector.

� a � � 2(a, a) (
  0)

(a, a)  
  0,

(a, a) � 0 if and only if a � 0
 r

(a, b) � (b, a)

(q1a � q2b, c) � q1(a, c) � q2(b, c)

aTb � (a, b) � a • b � 3a1
Á an4 Db1

o

bn

T � a

n

i�1

albl � a1b1 � Á � anbn

a • b
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4DAVID HILBERT (1862–1943), great German mathematician, taught at Königsberg and Göttingen and was
the creator of the famous Göttingen mathematical school. He is known for his basic work in algebra, the calculus
of variations, integral equations, functional analysis, and mathematical logic. His “Foundations of Geometry”
helped the axiomatic method to gain general recognition. His famous 23 problems (presented in 1900 at the
International Congress of Mathematicians in Paris) considerably influenced the development of modern
mathematics.

If V is finite dimensional, it is actually a so-called Hilbert space; see [GenRef7], p. 128, listed in App. 1. 



From these axioms and from (2) one can derive the basic inequality

(3) (Cauchy–Schwarz5 inequality).

From this follows

(4) (Triangle inequality).

A simple direct calculation gives

(5) (Parallelogram equality).

E X A M P L E  3 n-Dimensional Euclidean Space

with the inner product

(6)

(where both a and b are column vectors) is called the n-dimensional Euclidean space and is denoted by or
again simply by . Axioms I–III hold, as direct calculation shows. Equation (2) gives the “Euclidean norm”

(7) .

E X A M P L E  4 An Inner Product for Functions. Function Space

The set of all real-valued continuous functions on a given interval is a real vector
space under the usual addition of functions and multiplication by scalars (real numbers). On this “function
space” we can define an inner product by the integral

(8)

Axioms I–III can be verified by direct calculation. Equation (2) gives the norm

(9)

Our examples give a first impression of the great generality of the abstract concepts of
vector spaces and inner product spaces. Further details belong to more advanced courses
(on functional analysis, meaning abstract modern analysis; see [GenRef7] listed in App.
1) and cannot be discussed here. Instead we now take up a related topic where matrices
play a central role.

Linear Transformations
Let X and Y be any vector spaces. To each vector x in X we assign a unique vector y in
Y. Then we say that a mapping (or transformation or operator) of X into Y is given.
Such a mapping is denoted by a capital letter, say F. The vector y in Y assigned to a vector
x in X is called the image of x under F and is denoted by [or Fx, without parentheses].F (x)

�� f � � 2( f, f ) �G �
b

a

f (x)2 dx.

( f, g) � �
b

a

f (x) g (x) dx.

a � x � bf (x), g (x), Á

�� a � � 2(a, a) � 2aTa � 2a1
2 � Á � an

2

Rn
En

(a, b) � aTb � a1b1 � Á � anbn

Rn

� a � b �2 � � a � b �2 � 2(� a �2 � � b �2)

� a � b � � � a � � � b �

ƒ (a, b) ƒ � � a � � b �
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5HERMANN AMANDUS SCHWARZ (1843–1921). German mathematician, known by his work in complex
analysis (conformal mapping) and differential geometry. For Cauchy see Sec. 2.5. 



F is called a linear mapping or linear transformation if, for all vectors v and x in X
and scalars c, 

(10)

Linear Transformation of Space into Space 
From now on we let and . Then any real matrix gives
a transformation of into , 

(11) .

Since and , this transformation is linear.
We show that, conversely, every linear transformation F of into can be given

in terms of an matrix A, after a basis for and a basis for have been chosen.
This can be proved as follows.

Let be any basis for . Then every x in has a unique representation

.

Since F is linear, this representation implies for the image :

.

Hence F is uniquely determined by the images of the vectors of a basis for . We now
choose for the “standard basis”

(12)

where has its jth component equal to 1 and all others 0. We show that we can now
determine an matrix such that for every x in and image in

,

.

Indeed, from the image we get the condition

y(1) � Fy1
(1)

y2
(1)

.

.

.

ym
(1)

V � Fa11
Á a1n

a21
Á a2n

.

.

.
.
.
.

am1
Á amm

V F10
.
.
.

0

V
y(1) � F (e(1)) of e(1)

y � F (x) � Ax

Rm
y � F (x)RnA � [ajk]m � n

e( j)

e(1) � G
1

0

0

.

.

.

0

W,  e(2) � G
0

1

0

.

.

.

0

W,  Á ,  e(n) � G
0

0

0

.

.

.

1

W
Rn

Rn

F (x) � F (x1e(1) � Á � xne(n)) � x1F (e(1)) � Á � xnF (e(n))

F (x)

x � x1e(1) � Á � xne(n)

RnRne(1), Á , e(n)

RmRnm � n
RmRn

A(cx) � cAxA(u � x) � Au � Ax

y � Ax

RmRn
A � [ajk]m � nY � RmX � Rn

RmRn

 F (cx) � cF (x).

 F (v � x) � F (v) � F (x)
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from which we can determine the first column of A, namely 
. Similarly, from the image of we get the second column of A, and so on.

This completes the proof.

We say that A represents F, or is a representation of F, with respect to the bases for 
and . Quite generally, the purpose of a “representation” is the replacement of one
object of study by another object whose properties are more readily apparent.

In three-dimensional Euclidean space the standard basis is usually written 
. Thus, 

(13) .

These are the three unit vectors in the positive directions of the axes of the Cartesian
coordinate system in space, that is, the usual coordinate system with the same scale of
measurement on the three mutually perpendicular coordinate axes.

E X A M P L E  5 Linear Transformations

Interpreted as transformations of Cartesian coordinates in the plane, the matrices

represent a reflection in the line , a reflection in the -axis, a reflection in the origin, and a stretch 
(when , or a contraction when ) in the -direction, respectively.

E X A M P L E  6 Linear Transformations

Our discussion preceding Example 5 is simpler than it may look at first sight. To see this, find A representing
the linear transformation that maps onto 

Solution. Obviously, the transformation is

From this we can directly see that the matrix is

. Check: .

If A in (11) is square, , then (11) maps into . If this A is nonsingular, so that
exists (see Sec. 7.8), then multiplication of (11) by from the left and use of

gives the inverse transformation

(14) .

It maps every onto that x, which by (11) is mapped onto . The inverse of a linear
transformation is itself linear, because it is given by a matrix, as (14) shows.

y0y � y0

x � A�1y

A�1A � I
A�1A�1

RnRnn � n

�c y1

y2

d � c2 �5

3    4
d c x1

x2

d � c 2x1 � 5x2

3x1 � 4x2

dA � c2 �5

3 4
d

 y2 � 3x1 � 4x2.

 y1 � 2x1 � 5x2

(2x1 � 5x2, 3x1 � 4x2).(x1, x2)

�x10 	 a 	 1a � 1
x1x2 � x1

c0 1

1 0
d ,  c1 0

0 �1
d ,  c�1 0

0 �1
d ,  ca 0

0 1
d

i � D10
0

T ,  j � D01
0

T ,  k � D00
1

T 

e(2) � j, e(3) � k
e(1) � i,E 3

Rm
Rn

�

e(2)am1 � ym
(1)

Á ,a21 � y2
(1),a11 � y1

(1),
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Composition of Linear Transformations
We want to give you a flavor of how linear transformations in general vector spaces work.
You will notice, if you read carefully, that definitions and verifications (Example 7) strictly
follow the given rules and you can think your way through the material by going in a
slow systematic fashion.

The last operation we want to discuss is composition of linear transformations. Let X,
Y, W be general vector spaces. As before, let F be a linear transformation from X to Y.
Let G be a linear transformation from W to X. Then we denote, by H, the composition
of F and G, that is, 

,

which means we take transformation G and then apply transformation F to it (in that
order!, i.e. you go from left to right).

Now, to give this a more concrete meaning, if we let w be a vector in W, then 
is a vector in X and is a vector in Y. Thus, H maps W to Y, and we can write

(15)

which completes the definition of composition in a general vector space setting. But is
composition really linear? To check this we have to verify that H, as defined in (15), obeys
the two equations of (10).

E X A M P L E  7 The Composition of Linear Transformations Is Linear

To show that H is indeed linear we must show that (10) holds. We have, for two vectors in W,

(by linearity of G)

(by linearity of F)

(by (15))

(by definition of H).

Similarly, 

.

We defined composition as a linear transformation in a general vector space setting and
showed that the composition of linear transformations is indeed linear.

Next we want to relate composition of linear transformations to matrix multiplication.
To do so we let and . This choice of particular vector spaces

allows us to represent the linear transformations as matrices and form matrix equations,
as was done in (11). Thus F can be represented by a general real matrix 
and G by an matrix . Then we can write for F, with column vectors x
with n entries, and resulting vector y, with m entries

(16) y � Ax

B � 3bjk4n � p
A � 3ajk4m � n

W � RpX � Rn, Y � Rm, 

� � cF (G (w2)) � c (F � G)(w2) � cH(w2)

 H (cw2) � (F � G)(cw2) � F (G (cw2)) � F (c (G (w2))

 � H (w1) � H (w2)

 � (F � G)(w1) � (F � G)(w2)

 � F (G (w1)) � F (G (w2))

 � F (G (w1) � G (w2))

 � F (G (w1 � w2))

 H (w1 � w2) � (F � G)(w1 � w2)

w1, w2

H (w) � (F � G) (w) � (FG) (w) � F(G(w)),

F (G (w))
G (w)

H � F � G � FG � F(G)
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and similarly for G, with column vector w with p entries, 

(17)

Substituting (17) into (16) gives

(18) where .

This is (15) in a matrix setting, this is, we can define the composition of linear transfor-
mations in the Euclidean spaces as multiplication by matrices. Hence, the real 
matrix C represents a linear transformation H which maps to with vector w, a
column vector with p entries.

Remarks. Our discussion is similar to the one in Sec. 7.2, where we motivated the
“unnatural” matrix multiplication of matrices. Look back and see that our current, more
general, discussion is written out there for the case of dimension and 
(You may want to write out our development by picking small distinct dimensions, such
as and , and writing down the matrices and vectors. This is a trick
of the trade of mathematicians in that we like to develop and test theories on smaller
examples to see that they work.)

E X A M P L E  8 Linear Transformations. Composition

In Example 5 of Sec. 7.9, let A be the first matrix and B be the fourth matrix with . Then, applying B to
a vector , stretches the element by a in the direction. Next, when we apply A to the
“stretched” vector, we reflect the vector along the line , resulting in a vector . But this
represents, precisely, a geometric description for the composition H of two linear transformations F and G
represented by matrices A and B. We now show that, for this example, our result can be obtained by
straightforward matrix multiplication, that is, 

and as in (18) calculate

, 

which is the same as before. This shows that indeed , and we see the composition of linear
transformations can be represented by a linear transformation. It also shows that the order of matrix multiplication
is important (!). You may want to try applying A first and then B, resulting in BA. What do you see? Does it
make geometric sense? Is it the same result as AB?

We have learned several abstract concepts such as vector space, inner product space,
and linear transformation. The introduction of such concepts allows engineers and
scientists to communicate in a concise and common language. For example, the concept
of a vector space encapsulated a lot of ideas in a very concise manner. For the student,
learning such concepts provides a foundation for more advanced studies in engineering.

This concludes Chapter 7. The central theme was the Gaussian elimination of Sec. 7.3
from which most of the other concepts and theory flowed. The next chapter again has a
central theme, that is, eigenvalue problems, an area very rich in applications such as in
engineering, modern physics, and other areas.

�

AB � C

ABw � c0 1

a 0
d  cw1

w2

d � c w2

aw1

d

AB � c0 1

1 0
d  ca 0

0 1
d � c0 1

a 0
d

y � [w2 aw1]Tx1 � x2

x1w1w � [w1 w2]T
a � 1

p � 4m � 2, n � 3,

p � 2.n � 2,m � 2,

RnRp
m � p

C � ABy � Ax � A(Bw) � (AB)w � ABw � Cw

x � Bw.
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1. Basis. Find three bases of 

2. Uniqueness. Show that the representation 
of any given vector in an n-dimensional

vector space V in terms of a given basis 
for V is unique. Hint. Take two representations and
consider the difference.

3–10 VECTOR SPACE

(More problems in Problem Set 9.4.) Is the given set, taken
with the usual addition and scalar multiplication, a vector
space? Give reason. If your answer is yes, find the dimen-
sion and a basis.

3. All vectors in satisfying 

4. All skew-symmetric matrices.

5. All polynomials in x of degree 4 or less with
nonnegative coefficients.

6. All functions with arbitrary
constants a and b.

7. All functions with any constant a
and b.

8. All matrices A with fixed n and .

9. All matrices with .

10. All matrices with first column any multiple
of 

11–14 LINEAR TRANSFORMATIONS

Find the inverse transformation. Show the details.

11. 12. y1 � 3x1 � 2x2

y2 � 4x1 � x2

y1 � 0.5x1 � 0.5x2

y2 � 1.5x1 � 2.5x2

[3 0 �5]T.
[ajk]3 � 2

a11 � a22 � 0[ajk]2 � 2

det A � 0n � n

y (x) � (ax � b)e�x

y (x) � a cos 2x � b sin 2x

3 � 3

�4v1 � v2 � v3 � 0.
�v1 � 2v2 � 3v3 � 0,R3

a(1), Á , a(n)

� Á � cna(n)

v � c1a(1)

R2. 13.

14.

15–20 EUCLIDEAN NORM
Find the Euclidean norm of the vectors:

15. 16.

17.

18. 19.

20.

21–25 INNER PRODUCT. ORTHOGONALITY
21. Orthogonality. For what value(s) of k are the vectors

and orthogonal?

22. Orthogonality. Find all vectors in orthogonal to
Do they form a vector space?

23. Triangle inequality. Verify (4) for the vectors in
Probs. 15 and 18.

24. Cauchy–Schwarz inequality. Verify (3) for the
vectors in Probs. 16 and 19.

25. Parallelogram equality. Verify (5) for the first two
column vectors of the coefficient matrix in Prob. 13.

32 0 14.
R3

35 k 0 1
44

T32 1
2 �4 04T

312  �
1
2  �

1
2

1
24

T

323 
2
3 

1
3   04T3�4 8 �14T

31 0 0 1 �1 0 �1 14T
312

1
3   �

1
2   �

1
34

T33 1 �44T

y1 � 0.2x1 � 0.1x2

y2 � � 0.2x2 � 0.1x3

y3 � 0.1x1 � 0.1x3

y1 � 5x1 � 3x2 � 3x3

y2 � 3x1 � 2x2 � 2x3

y3 � 2x1 � x2 � 2x3

P R O B L E M  S E T  7 . 9

1. What properties of matrix multiplication differ from
those of the multiplication of numbers?

2. Let A be a matrix and B a matrix.
Are the following expressions defined or not? 

Give
reasons.

3. Are there any linear systems without solutions? With
one solution? With more than one solution? Give
simple examples.

4. Let C be matrix and a a column vector with
10 components. Are the following expressions defined
or not? Ca, CTa, CaT, aC, aTC, (CaT)T.

10 � 10

A2, B2, AB, BA, AAT, BTA, BTB, BBT, BTAB. 
A � B,

100 � 50100 � 100

5. Motivate the definition of matrix multiplication.

6. Explain the use of matrices in linear transformations.

7. How can you give the rank of a matrix in terms of row
vectors? Of column vectors? Of determinants?

8. What is the role of rank in connection with solving
linear systems?

9. What is the idea of Gauss elimination and back
substitution?

10. What is the inverse of a matrix? When does it exist?
How would you determine it?
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11–20 MATRIX AND VECTOR CALCULATIONS
Showing the details, calculate the following expressions or
give reason why they are not defined, when

11. AB, BA 12.

13. 14.

15. 16.

17.

18. 19.

20.

21–28 LINEAR SYSTEMS 
Showing the details, find all solutions or indicate that no
solution exists.

21.

22.

23.

24.

25.

26. 2x � 3y � 7z � 3

�4x � 6y � 14z � 7

0.3x � 0.7y � 1.3z � 3.24

0.9y � 0.8z � �2.53

0.7z � 1.19

�6x � 39y � 9z � �12

2x � 13y � 3z � 4

9x � 3y � 6z � 60

2x � 4y � 8z � 4

5x � 3y � z � 7

2x � 3y � z � 0

8x � 9y � 3z � 2

4y � z � 0

12x � 5y � 3z � 34

�6x � 4z � 8

(A � AT)(B � BT)

AB � BA(A2)�1,  (A�1)2

det A,  det A2,  (det A)2,  det B

A�1,  B�1uTAu,  vTBv

uTv,  uvTAu,  uTA

AT,  BT

v � D 7

�3

3

Tu � D 2

0

�5

T ,

B � D 0 4 1

�4 0 �2

�1 2 0

T ,A � D 3 1 �3

1 4 2

�3 2 5

T ,
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27.

28.

29–32 RANK
Determine the ranks of the coefficient matrix and the
augmented matrix and state how many solutions the linear
system will have.

29. In Prob. 23

30. In Prob. 24

31. In Prob. 27

32. In Prob. 26

33–35 NETWORKS
Find the currents.

33.

34.

35.

10 V

130 V30 Ω

10 Ω

20 Ω

I2

I1

I3

10 Ω

5 Ω

20 Ω

I2

I1

I3

220 V

240 V

10 Ω

20 Ω

110 V

I1

I3

I2

�8x � 2z � 1

6y � 4z � 3

 12x � 2y � 2

x � 2y � 6

3x � 5y � 20

�4x � y � �42
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An matrix is a rectangular array of numbers or functions
(“entries,” “elements”) arranged in m horizontal rows and n vertical columns. If

, the matrix is called square. A matrix is called a row vector and an
matrix a column vector (Sec. 7.1).

The sum of matrices of the same size (i.e., both is obtained by
adding corresponding entries. The product of A by a scalar c is obtained by
multiplying each by c (Sec. 7.1).

The product of an matrix A by an matrix is
defined only when , and is the matrix with entries

(1)

This multiplication is motivated by the composition of linear transformations
(Secs. 7.2, 7.9). It is associative, but is not commutative: if AB is defined, BA may
not be defined, but even if BA is defined, in general. Also may
not imply or or (Secs. 7.2, 7.8). Illustrations:

The transpose of a matrix is ; rows become columns
and conversely (Sec. 7.2). Here, A need not be square. If it is and , then A
is called symmetric; if , it is called skew-symmetric. For a product,

(Sec. 7.2).
A main application of matrices concerns linear systems of equations

(2) (Sec. 7.3)

(m equations in n unknowns A and b given). The most important method
of solution is the Gauss elimination (Sec. 7.3), which reduces the system to
“triangular” form by elementary row operations, which leave the set of solutions
unchanged. (Numeric aspects and variants, such as Doolittle’s and Cholesky’s
methods, are discussed in Secs. 20.1 and 20.2.)

x1, Á , xn;

Ax � b

(AB)T � BTAT
A � �AT

A � AT
AT � 3akj4A � 3ajk4AT

c3
4
d [1 2] � c3 6

4 8
d .[1 2] c3

4
d � [11],

 c�1 1

1 �1
d c1 1

2 2
d � c 1 1

�1 �1
d

 c1 1

2 2
d c�1 1

1 �1
d � c0 0

0 0
d

BA � 0B � 0A � 0
AB � 0AB � BA

(row j of A times

column k of B).
cjk � aj1b1k � aj2b2k � Á � ajnbnk

C � 3cjk4m � pr � n
B � [bjk]r � pm � nC � AB

ajk

m � n)A � B
m � 1

1 � nm � n

A � [ajk]m � n

SUMMARY OF CHAPTER 7
Linear Algebra: Matrices, Vectors, Determinants. 
Linear Systems



Cramer’s rule (Secs. 7.6, 7.7) represents the unknowns in a system (2) of n
equations in n unknowns as quotients of determinants; for numeric work it is
impractical. Determinants (Sec. 7.7) have decreased in importance, but will retain
their place in eigenvalue problems, elementary geometry, etc.

The inverse of a square matrix satisfies . It exists if and
only if det A 0. It can be computed by the Gauss–Jordan elimination (Sec. 7.8).

The rank r of a matrix A is the maximum number of linearly independent rows
or columns of A or, equivalently, the number of rows of the largest square submatrix
of A with nonzero determinant (Secs. 7.4, 7.7).

The system (2) has solutions if and only if rank , where 
is the augmented matrix (Fundamental Theorem, Sec. 7.5).

The homogeneous system

(3)

has solutions (“nontrivial solutions”) if and only if rank , in the case
equivalently if and only if (Secs. 7.6, 7.7).

Vector spaces, inner product spaces, and linear transformations are discussed in
Sec. 7.9. See also Sec. 7.4. 

det A � 0m � n
A 	 nx � 0

Ax � 0

[A b]A � rank [A b]

�
AA�1 � A�1A � IA�1

Summary of Chapter 7 321
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C H A P T E R 8

Linear Algebra: 
Matrix Eigenvalue Problems

A matrix eigenvalue problem considers the vector equation

(1)

Here A is a given square matrix, an unknown scalar, and x an unknown vector. In a
matrix eigenvalue problem, the task is to determine ’s and x’s that satisfy (1). Since

is always a solution for any and thus not interesting, we only admit solutions
with 

The solutions to (1) are given the following names: The ’s that satisfy (1) are called
eigenvalues of A and the corresponding nonzero x’s that also satisfy (1) are called
eigenvectors of A.

From this rather innocent looking vector equation flows an amazing amount of relevant
theory and an incredible richness of applications. Indeed, eigenvalue problems come up
all the time in engineering, physics, geometry, numerics, theoretical mathematics, biology,
environmental science, urban planning, economics, psychology, and other areas. Thus, in
your career you are likely to encounter eigenvalue problems.

We start with a basic and thorough introduction to eigenvalue problems in Sec. 8.1 and
explain (1) with several simple matrices. This is followed by a section devoted entirely
to applications ranging from mass–spring systems of physics to population control models
of environmental science. We show you these diverse examples to train your skills in
modeling and solving eigenvalue problems. Eigenvalue problems for real symmetric,
skew-symmetric, and orthogonal matrices are discussed in Sec. 8.3 and their complex
counterparts (which are important in modern physics) in Sec. 8.5. In Sec. 8.4 we show
how by diagonalizing a matrix, we obtain its eigenvalues.

COMMENT. Numerics for eigenvalues (Secs. 20.6–20.9) can be studied immediately
after this chapter.

Prerequisite: Chap. 7.
Sections that may be omitted in a shorter course: 8.4, 8.5.
References and Answers to Problems: App. 1 Part B, App. 2.

l

x � 0.
lx � 0

l

l

Ax � lx.
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The following chart identifies where different types of eigenvalue problems appear in the
book.

Topic Where to find it

Matrix Eigenvalue Problem (algebraic eigenvalue problem) Chap. 8
Eigenvalue Problems in Numerics Secs. 20.6–20.9
Eigenvalue Problem for ODEs (Sturm–Liouville problems) Secs. 11.5, 11.6
Eigenvalue Problems for Systems of ODEs Chap. 4
Eigenvalue Problems for PDEs Secs. 12.3–12.11

8.1 The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

Consider multiplying nonzero vectors by a given square matrix, such as

We want to see what influence the multiplication of the given matrix has on the vectors.
In the first case, we get a totally new vector with a different direction and different length
when compared to the original vector. This is what usually happens and is of no interest
here. In the second case something interesting happens. The multiplication produces a
vector which means the new vector has the same direction as
the original vector. The scale constant, which we denote by is 10. The problem of
systematically finding such ’s and nonzero vectors for a given square matrix will be the
theme of this chapter. It is called the matrix eigenvalue problem or, more commonly, the
eigenvalue problem.

We formalize our observation. Let be a given nonzero square matrix of
dimension Consider the following vector equation:

(1)

The problem of finding nonzero x’s and ’s that satisfy equation (1) is called an eigenvalue
problem.

Remark. So A is a given square matrix, x is an unknown vector, and is an
unknown scalar. Our task is to find ’s and nonzero x’s that satisfy (1). Geometrically,
we are looking for vectors, x, for which the multiplication by A has the same effect as
the multiplication by a scalar in other words, Ax should be proportional to x. Thus,
the multiplication has the effect of producing, from the original vector x, a new vector

that has the same or opposite (minus sign) direction as the original vector. (This was
all demonstrated in our intuitive opening example. Can you see that the second equation in
that example satisfies (1) with and and A the given matrix?
Write it out.) Now why do we require x to be nonzero? The reason is that is
always a solution of (1) for any value of because This is of no interest.A0 � 0.l,

x � 0
2 � 2x � [3 4]T,l � 10

lx

l;

l

l(!)

l

Ax � lx.

n � n.
A � [ajk]

l

l

[30 40]T � 10 [3 4]T,

c6 3

4 7
d c5

1
d � c33

27
d ,  c6 3

4 7
d c3

4
d � c30

40
d .
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We introduce more terminology. A value of for which (1) has a solution is
called an eigenvalue or characteristic value of the matrix A. Another term for is a latent
root. (“Eigen” is German and means “proper” or “characteristic.”). The corresponding
solutions of (1) are called the eigenvectors or characteristic vectors of A
corresponding to that eigenvalue . The set of all the eigenvalues of A is called the
spectrum of A. We shall see that the spectrum consists of at least one eigenvalue and at
most of n numerically different eigenvalues. The largest of the absolute values of the
eigenvalues of A is called the spectral radius of A, a name to be motivated later.

How to Find Eigenvalues and Eigenvectors
Now, with the new terminology for (1), we can just say that the problem of determining
the eigenvalues and eigenvectors of a matrix is called an eigenvalue problem. (However,
more precisely, we are considering an algebraic eigenvalue problem, as opposed to an
eigenvalue problem involving an ODE or PDE, as considered in Secs. 11.5 and 12.3, or
an integral equation.)

Eigenvalues have a very large number of applications in diverse fields such as in
engineering, geometry, physics, mathematics, biology, environmental science, economics,
psychology, and other areas. You will encounter applications for elastic membranes,
Markov processes, population models, and others in this chapter.

Since, from the viewpoint of engineering applications, eigenvalue problems are the most
important problems in connection with matrices, the student should carefully follow our
discussion.

Example 1 demonstrates how to systematically solve a simple eigenvalue problem.

E X A M P L E  1 Determination of Eigenvalues and Eigenvectors

We illustrate all the steps in terms of the matrix

Solution. (a) Eigenvalues. These must be determined first. Equation (1) is

Transferring the terms on the right to the left, we get

(2 )

This can be written in matrix notation

(3 )

because (1) is which gives (3 ). We see that this is a homogeneous
linear system. By Cramer’s theorem in Sec. 7.7 it has a nontrivial solution (an eigenvector of A we are
looking for) if and only if its coefficient determinant is zero, that is,

(4 ) D (l) � det (A � lI) � 2�5 � l 2

2 �2 � l
2 � (�5 � l)(�2 � l) � 4 � l2 � 7l � 6 � 0.*

x � 0
*Ax � lx � Ax � lIx � (A � lI)x � 0,

(A � lI)x � 0*

(�5 � l)x1 � 2x2 � 0

2x1 � (�2 � l)x2 � 0.
*

Ax � c�5 2

2 �2
d c x1

x2

d � l c x1

x2

d ;  in components,  
�5x1 � 2x2 � lx1

2x1 � 2x2 � lx2.

A � c�5 2

2 �2
d .

l

x � 0

l

x � 0,l,



We call the characteristic determinant or, if expanded, the characteristic polynomial, and 
the characteristic equation of A. The solutions of this quadratic equation are and . These
are the eigenvalues of A.

( ) Eigenvector of A corresponding to . This vector is obtained from (2 ) with , that is,

A solution is , as we see from either of the two equations, so that we need only one of them. This
determines an eigenvector corresponding to up to a scalar multiple. If we choose , we obtain
the eigenvector

( ) Eigenvector of A corresponding to . For , equation (2 ) becomes

A solution is with arbitrary . If we choose , we get Thus an eigenvector of A
corresponding to is

For the matrix in the intuitive opening example at the start of Sec. 8.1, the characteristic equation is
The eigenvalues are Corresponding eigenvectors are

and , respectively. The reader may want to verify this.

This example illustrates the general case as follows. Equation (1) written in components is

Transferring the terms on the right side to the left side, we have

(2)

In matrix notation,

(3) (A � lI)x � 0.

(a11 � l)x1 � a12x2 � Á � a1nxn � 0

a21x1 � (a22 � l)x2 � Á � a2nxn � 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1x1 � an2x2 � Á � (ann � l)xn � 0.

a11x1 � Á � a1nxn � lx1

a21x1 � Á � a2nxn � lx2

# # # # # # # # # # # # # # # # # # # # # # #

an1x1 � Á � annxn � lxn.

�[�1 1]T[3 4]T
{10, 3}.l2 � 13l � 30 � (l � 10)(l � 3) � 0.

x2 � c 2

�1
d ,   Check:   Ax2 � c�5 2

2 �2
d c 2

�1
d � c�12

6
d � (�6)x2 � l2x2.

l2 � �6
x2 � �1.x1 � 2x1x2 � �x1>2

 2x1 � 4x2 � 0.

 x1 � 2x2 � 0

*l � l2 � �6l2b2

x1 � c1
2
d ,   Check:   Ax1 � c�5 2

2 �2
d c1

2
d � c�1

�2
d � (�1)x1 � l1x1.

x1 � 1l1 � �1
x2 � 2x1

 2x1 � x2 � 0.

 �4x1 � 2x2 � 0

l � l1 � �1*l1b1

l2 � �6l1 � �1
D (l) � 0D (l)
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By Cramer’s theorem in Sec. 7.7, this homogeneous linear system of equations has a
nontrivial solution if and only if the corresponding determinant of the coefficients is zero:

(4)

is called the characteristic matrix and the characteristic determinant of
A. Equation (4) is called the characteristic equation of A. By developing we obtain
a polynomial of nth degree in . This is called the characteristic polynomial of A.

This proves the following important theorem.

T H E O R E M  1 Eigenvalues

The eigenvalues of a square matrix A are the roots of the characteristic equation
(4) of A.

Hence an n � n matrix has at least one eigenvalue and at most n numerically
different eigenvalues.

For larger n, the actual computation of eigenvalues will, in general, require the use 
of Newton’s method (Sec. 19.2) or another numeric approximation method in Secs.
20.7–20.9.

The eigenvalues must be determined first. Once these are known, corresponding
eigenvectors are obtained from the system (2), for instance, by the Gauss elimination,
where is the eigenvalue for which an eigenvector is wanted. This is what we did in
Example 1 and shall do again in the examples below. (To prevent misunderstandings:
numeric approximation methods, such as in Sec. 20.8, may determine eigenvectors first.)

Eigenvectors have the following properties.

T H E O R E M  2 Eigenvectors, Eigenspace

If w and x are eigenvectors of a matrix A corresponding to the same eigenvalue
so are (provided ) and kx for any .

Hence the eigenvectors corresponding to one and the same eigenvalue of A,
together with 0, form a vector space (cf. Sec. 7.4), called the eigenspace of A
corresponding to that .

P R O O F and imply and 
hence 

In particular, an eigenvector x is determined only up to a constant factor. Hence we
can normalize x, that is, multiply it by a scalar to get a unit vector (see Sec. 7.9). For 
instance, in Example 1 has the length hence 

is a normalized eigenvector (a unit eigenvector).[1>15 2>15]T
�x1� � 212 � 22 � 15;x1 � [1 2]T

�A (kw � /x) � l (kw � /x).A (kw) � k (Aw) � k (lw) � l (kw);
A(w � x) � Aw � Ax � lw � lx � l(w � x)Ax � lxAw � lw

l

l

k � 0x � �ww � x
l,

l

l

D(l)
D (l)A � lI

D(l) � det (A � lI) � 5a11 � l a12
Á a1n

a21 a22 � l Á a2n

# # Á #

an1 an2
Á ann � l

5 � 0.



Examples 2 and 3 will illustrate that an matrix may have n linearly independent
eigenvectors, or it may have fewer than n. In Example 4 we shall see that a real matrix
may have complex eigenvalues and eigenvectors.

E X A M P L E  2 Multiple Eigenvalues

Find the eigenvalues and eigenvectors of

Solution. For our matrix, the characteristic determinant gives the characteristic equation

The roots (eigenvalues of A) are (If you have trouble finding roots, you may want to
use a root finding algorithm such as Newton’s method (Sec. 19.2). Your CAS or scientific calculator can find
roots. However, to really learn and remember this material, you have to do some exercises with paper and pencil.)
To find eigenvectors, we apply the Gauss elimination (Sec. 7.3) to the system , first with 
and then with . For the characteristic matrix is

Hence it has rank 2. Choosing we have from and then from
Hence an eigenvector of A corresponding to is .

For the characteristic matrix

Hence it has rank 1. From we have Choosing and
, we obtain two linearly independent eigenvectors of A corresponding to [as they must

exist by (5), Sec. 7.5, with and 

and

The order of an eigenvalue as a root of the characteristic polynomial is called the
algebraic multiplicity of The number of linearly independent eigenvectors
corresponding to is called the geometric multiplicity of Thus is the dimension
of the eigenspace corresponding to this l.

mll.l

mll.
lMl

�x3 � D30
1

T .

x2 � D�2

1

0

T
n � 3],rank � 1

l � �3x2 � 0, x3 � 1
x2 � 1, x3 � 0x1 � �2x2 � 3x3.x1 � 2x2 � 3x3 � 0

A � lI � A � 3I � D 1 2 �3

2 4 �6

�1 �2 3

T  row-reduces to  D1 2 �3

0 0 0

0 0 0

T .
l � �3

x1 � [1 2 �1]Tl � 5�7x1 � 2x2 � 3x3 � 0.
x1 � 1� 

24
7  x2 � 48

7  x3 � 0x2 � 2x3 � �1

A � lI � A � 5I � D�7 2 �3

2 �4 �6

�1 �2 �5

T .  It row-reduces to  D�7 2 �3

0 � 
24
7  � 

48
7  

0 0 0

T .
l � 5l � �3

l � 5(A � lI)x � 0

l1 � 5, l2 � l3 � �3.

�l3 � l2 � 21l � 45 � 0.

A � D�2 2 �3

2 1 �6

�1 �2 0

T .

n � n

SEC. 8.1 The Matrix Eigenvalue Problem. Determining Eigenvalues and Eigenvectors 327



328 CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

Since the characteristic polynomial has degree n, the sum of all the algebraic
multiplicities must equal n. In Example 2 for we have In general,

, as can be shown. The difference is called the defect of 
Thus in Example 2, but positive defects can easily occur:

E X A M P L E  3 Algebraic Multiplicity, Geometric Multiplicity. Positive Defect

The characteristic equation of the matrix

Hence is an eigenvalue of algebraic multiplicity . But its geometric multiplicity is only 
since eigenvectors result from , hence , in the form . Hence for the defect
is 

Similarly, the characteristic equation of the matrix

Hence is an eigenvalue of algebraic multiplicity , but its geometric multiplicity is only 
since eigenvectors result from in the form 

E X A M P L E  4 Real Matrices with Complex Eigenvalues and Eigenvectors

Since real polynomials may have complex roots (which then occur in conjugate pairs), a real matrix may have
complex eigenvalues and eigenvectors. For instance, the characteristic equation of the skew-symmetric matrix

It gives the eigenvalues . Eigenvectors are obtained from and
, respectively, and we can choose to get

In the next section we shall need the following simple theorem.

T H E O R E M  3 Eigenvalues of the Transpose

The transpose AT of a square matrix A has the same eigenvalues as A.

P R O O F Transposition does not change the value of the characteristic determinant, as follows from
Theorem 2d in Sec. 7.7. �

Having gained a first impression of matrix eigenvalue problems, we shall illustrate their
importance with some typical applications in Sec. 8.2.

�c1
i
d  and  c 1

�i
d .

x1 � 1ix1 � x2 � 0
�ix1 � x2 � 0l1 � i (� 1�1), l2 � �i

A � c 0 1

�1 0
d  is  det (A � lI) � 2  �l 1

�1 �l
 2 � l2 � 1 � 0.

�[x1 0]T.0x1 � 2x2 � 0
m3 � 1,M3 � 2l � 3

A � c3 2

0 3
d  is  det (A � lI) � 2  3 � l 2

0 3 � l
 2 � (3 � l)2 � 0.

¢0 � 1.
l � 0[x1 0]Tx2 � 0�0x1 � x2 � 0

m0 � 1,M0 � 2l � 0

A � c0 1

0 0
d  is  det (A � lI) � 2  �l 1

0 �l
 2 � l2 � 0.

¢l¢�3 � 0
l.¢l � Ml � mlml � Ml

ml � Ml � 2.l � �3
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1–16 EIGENVALUES, EIGENVECTORS
Find the eigenvalues. Find the corresponding eigenvectors.
Use the given or factor in Probs. 11 and 15.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11.

12. 13.

14. D2 0 �1

0 1
2 0

1 0 4

T
D13 5 2

2 7 �8

5 4 7

TD3 5 3

0 4 6

0 0 1

T
D 6 2 �2

2 5 0

�2 0 7

T , l � 3

c cos u �sin u

sin u cos u
dc 0.8 �0.6

0.6 0.8
d

c a b

�b a
dc0 1

0 0
d

c1 2

0 3
dc 0 3

�3 0
d

c 1 2

2 4
dc5 �2

9 �6
d

c0 0

0 0
dc3.0 0

0 �0.6
d

l 15.

16.

17–20 LINEAR TRANSFORMATIONS 
AND EIGENVALUES

Find the matrix A in the linear transformation 
where ( ) are Cartesian
coordinates. Find the eigenvalues and eigenvectors and
explain their geometric meaning.

17. Counterclockwise rotation through the angle about
the origin in .

18. Reflection about the -axis in 

19. Orthogonal projection (perpendicular projection) of 
onto the -axis.

20. Orthogonal projection of onto the plane 

21–25 GENERAL PROBLEMS

21. Nonzero defect. Find further and 
matrices with positive defect. See Example 3.

22. Multiple eigenvalues. Find further and 
matrices with multiple eigenvalues. See Example 2.

23. Complex eigenvalues. Show that the eigenvalues of a
real matrix are real or complex conjugate in pairs.

24. Inverse matrix. Show that exists if and only if
the eigenvalues are all nonzero, and then

has the eigenvalues 

25. Transpose. Illustrate Theorem 3 with examples of your
own.

1>l1, Á , 1>ln.A�1
l1, Á , ln

A�1

3 � 32 � 2

3 � 32 � 2

x2 � x1.R3

x2

R2

R2.x1

R2
p>2

x � [x1 x2 x3]Tx � [x1 x2]T
y � Ax,

E�3 0 4 2

0 1 �2 4

2 4 �1 �2

0 2 �2 3

U
E�1 0 12 0

0 �1 0 12

0 0 �1 �4

0 0 �4 �1

U, (l � 1)2

P R O B L E M  S E T  8 . 1

8.2 Some Applications of Eigenvalue Problems
We have selected some typical examples from the wide range of applications of matrix
eigenvalue problems. The last example, that is, Example 4, shows an application involving
vibrating springs and ODEs. It falls into the domain of Chapter 4, which covers matrix
eigenvalue problems related to ODE’s modeling mechanical systems and electrical



networks. Example 4 is included to keep our discussion independent of Chapter 4.
(However, the reader not interested in ODEs may want to skip Example 4 without loss
of continuity.)

E X A M P L E  1 Stretching of an Elastic Membrane

An elastic membrane in the -plane with boundary circle (Fig. 160) is stretched so that a point
P: goes over into the point Q: given by

(1)

Find the principal directions, that is, the directions of the position vector x of P for which the direction of the
position vector y of Q is the same or exactly opposite. What shape does the boundary circle take under this
deformation?

Solution. We are looking for vectors x such that . Since , this gives , the equation
of an eigenvalue problem. In components, is

(2) or

The characteristic equation is

(3)

Its solutions are and These are the eigenvalues of our problem. For our system (2)
becomes

For , our system (2) becomes

We thus obtain as eigenvectors of A, for instance, corresponding to and corresponding to
(or a nonzero scalar multiple of these). These vectors make and angles with the positive x1-direction.

They give the principal directions, the answer to our problem. The eigenvalues show that in the principal
directions the membrane is stretched by factors 8 and 2, respectively; see Fig. 160.

Accordingly, if we choose the principal directions as directions of a new Cartesian -coordinate system,
say, with the positive -semi-axis in the first quadrant and the positive -semi-axis in the second quadrant of
the -system, and if we set then a boundary point of the unstretched circular
membrane has coordinates Hence, after the stretch we have

Since , this shows that the deformed boundary is an ellipse (Fig. 160)

(4) �
z1

2

82
 �

z2
2

22
 � 1.

cos2 � � sin2 � � 1

z1 � 8 cos �,  z2 � 2 sin �.

cos �, sin �.
u1 � r cos �, u2 � r sin �,x1x2

u2u1

u1u2

135°45°l2

[1 �1]Tl1[1 1]T

3x1 � 3x2 � 0,

3x1 � 3x2 � 0.
 2 Solution x2 � �x1, x1 arbitrary,

for instance, x1 � 1, x2 � �1.

l2 � 2

�3x1 � 3x2 � 0,

3x1 � 3x2 � 0.
 2 Solution x2 � x1, x1 arbitrary,

for instance, x1 � x2 � 1.

l � l1 � 8,l2 � 2.l1 � 8

2  5 � l 3

3 5 � l
 2 � (5 � l)2 � 9 � 0.

(5 � l)x1 �   3x2  � 0

3x1 � (5 � l)x2 � 0.

5x1 � 3x2 � lx1

3x1 � 5x2 � lx2

Ax � lx
Ax � lxy � Axy � lx

y � c y1

y2

d � Ax � c5 3

3 5
d c x1

x2

d ;  in components,  
y1 � 5x1 � 3x2

y2 � 3x1 � 5x2.

(y1, y2)(x1, x2)
x1

2 � x2
2 � 1x1x2
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Fig. 160. Undeformed and deformed membrane in Example 1
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E X A M P L E  2 Eigenvalue Problems Arising from Markov Processes

Markov processes as considered in Example 13 of Sec. 7.2 lead to eigenvalue problems if we ask for the limit
state of the process in which the state vector x is reproduced under the multiplication by the stochastic matrix
A governing the process, that is, . Hence A should have the eigenvalue 1, and x should be a corresponding
eigenvector. This is of practical interest because it shows the long-term tendency of the development modeled
by the process.

In that example,

Hence has the eigenvalue 1, and the same is true for A by Theorem 3 in Sec. 8.1. An eigenvector x of A
for is obtained from

Taking , we get from and then from This
gives It means that in the long run, the ratio Commercial:Industrial:Residential will approach
2:6:1, provided that the probabilities given by A remain (about) the same. (We switched to ordinary fractions
to avoid rounding errors.)

E X A M P L E  3 Eigenvalue Problems Arising from Population Models. Leslie Model

The Leslie model describes age-specified population growth, as follows. Let the oldest age attained by the
females in some animal population be 9 years. Divide the population into three age classes of 3 years each. Let
the “Leslie matrix” be

(5)

where is the average number of daughters born to a single female during the time she is in age class k, and
is the fraction of females in age class that will survive and pass into class j. (a) What is the

number of females in each class after 3, 6, 9 years if each class initially consists of 400 females? (b) For what initial
distribution will the number of females in each class change by the same proportion? What is this rate of change?

j � 1lj, j�1( j � 2, 3)
l1k

L � [ljk] � D0 2.3 0.4

0.6 0 0

0 0.3 0

T

�

x � [2 6 1]T.
�3x1>10 � x2>10 � 0.x1 � 2�x2>30 � x3>5 � 0x2 � 6x3 � 1

A � I � D�0.3 0.1 0

0.2 �0.1 0.2

0.1 0 �0.2

T ,   row-reduced to   D� 3
10

1
10 0

0 � 1
30

1
5

0 0 0

T .
l � 1

AT

A � D0.7 0.1 0

0.2 0.9 0.2

0.1 0 0.8

T .   For the transpose,   D0.7 0.2 0.1

0.1 0.9 0

0 0.2 0.8

T D11
1

T � D11
1

T .

Ax � x
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Solution. (a) Initially, After 3 years,

Similarly, after 6 years the number of females in each class is given by and
after 9 years we have 

(b) Proportional change means that we are looking for a distribution vector x such that , where is
the rate of change (growth if decrease if ). The characteristic equation is (develop the characteristic
determinant by the first column)

A positive root is found to be (for instance, by Newton’s method, Sec. 19.2) A corresponding eigenvector
x can be determined from the characteristic matrix

where is chosen, then follows from and from
To get an initial population of 1200 as before, we multiply x by
Answer: Proportional growth of the numbers of females in the three classes

will occur if the initial values are 738, 369, 92 in classes 1, 2, 3, respectively. The growth rate will be 1.2 per
3 years.

E X A M P L E  4 Vibrating System of Two Masses on Two Springs (Fig. 161)

Mass–spring systems involving several masses and springs can be treated as eigenvalue problems. For instance,
the mechanical system in Fig. 161 is governed by the system of ODEs

(6)

where and are the displacements of the masses from rest, as shown in the figure, and primes denote
derivatives with respect to time t. In vector form, this becomes

(7)

Fig. 161. Masses on springs in Example 4

k
1 

= 3

k
2 

= 2 (Net change in
 spring length
  = y

2 
– y

1
)

System in
motion

System in
static

equilibrium 

m
1 

= 1(y
1 

= 0)

(y
2 

= 0) m
2 

= 1

y
1

y
2

y
2

y
1

ys � c y1s

y2s
d � Ay � c�5 2

2 �2
d c y1

y2

d .

y2y1

y1s � �3y1 � 2(y1 � y2) � �5y1 � 2y2

y2s � �2(y2 � y1) � 2y1 � 2y2

�

1200>(1 � 0.5 � 0.125) � 738.
�1.2x1 � 2.3x2 � 0.4x3 � 0.

x1 � 10.3x2 � 1.2x3 � 0,x2 � 0.5x3 � 0.125

A � 1.2I � D�1.2 2.3 0.4

0.6 �1.2 0

0 0.3 �1.2

T ,   say,   x � D 1

0.5

0.125

T
l � 1.2.

det (L � lI) � �l3 � 0.6(�2.3l � 0.3 # 0.4) � �l3 � 1.38l � 0.072 � 0.

l 	 1l � 1,
lLx � lx

x(9)
T � (Lx(6))

T � [1519.2 360 194.4].
x(6)

T � (Lx(3))
T � [600 648 72],

x(3) � Lx(0) � D0 2.3 0.4

0.6 0 0

0 0.3 0

T D400

400

400

T � D1080

240

120

T .
x(0)

T � [400 400 400].
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1–6 ELASTIC DEFORMATIONS
Given A in a deformation find the principal
directions and corresponding factors of extension or
contraction. Show the details.

1. 2.

3. 4.

5. 6. c1.25 0.75

0.75 1.25
dc1 1

2

1
2 1

d
c5 2

2 13
dc 7 16

16 2
d

c 2.0 0.4

0.4 2.0
dc3.0 1.5

1.5 3.0
d

y � Ax,

7–9 MARKOV PROCESSES
Find the limit state of the Markov process modeled by the
given matrix. Show the details.

7.

8. 9. D0.6 0.1 0.2

0.4 0.1 0.4

0 0.8 0.4

TD0.4 0.3 0.3

0.3 0.6 0.1

0.3 0.1 0.6

T
c0.2 0.5

0.8 0.5
d

P R O B L E M  S E T  8 . 2

We try a vector solution of the form

(8)

This is suggested by a mechanical system of a single mass on a spring (Sec. 2.4), whose motion is given by
exponential functions (and sines and cosines). Substitution into (7) gives

Dividing by and writing we see that our mechanical system leads to the eigenvalue problem

(9) where 

From Example 1 in Sec. 8.1 we see that A has the eigenvalues and Consequently,
and respectively. Corresponding eigenvectors are

(10)

From (8) we thus obtain the four complex solutions [see (10), Sec. 2.2]

By addition and subtraction (see Sec. 2.2) we get the four real solutions

A general solution is obtained by taking a linear combination of these,

with arbitrary constants (to which values can be assigned by prescribing initial displacement and
initial velocity of each of the two masses). By (10), the components of y are

These functions describe harmonic oscillations of the two masses. Physically, this had to be expected because
we have neglected damping. �

y2 � 2a1 cos t � 2b1 sin t � a2 cos 16 t � b2 sin 16 t.

y1 � a1 cos t � b1 sin t � 2a2 cos 16 t � 2b2 sin 16 t

a1, b1, a2, b2

y � x1 (a1 cos t � b1 sin t) � x2  (a2 cos 16 t � b2 sin 16 t)

x1 cos t,  x1 sin t,  x2 cos 16 t,  x2 sin 16 t.

 x2e�i26t � x2 (cos 16 t � i sin 16 t).

 x1e�it � x1 (cos t � i sin t),

x1 � c1
2
d  and  x2 � c 2

�1
d .

1�6 � �i16,v � �1�1 � �i
l2 � �6.l1 � �1

l � v2.Ax � lx

v2 � l,evt

v2xevt � Axevt.

y � xevt.



334 CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

1WASSILY LEONTIEF (1906–1999). American economist at New York University. For his input–output
analysis he was awarded the Nobel Prize in 1973.

10–12 AGE-SPECIFIC POPULATION
Find the growth rate in the Leslie model (see Example 3)
with the matrix as given. Show the details.

10. 11.

12.

13–15 LEONTIEF MODELS1

13. Leontief input–output model. Suppose that three
industries are interrelated so that their outputs are used
as inputs by themselves, according to the 
consumption matrix

where is the fraction of the output of industry k
consumed (purchased) by industry j. Let be the price
charged by industry j for its total output. A problem is
to find prices so that for each industry, total
expenditures equal total income. Show that this leads
to , where , and find a
solution p with nonnegative 

14. Show that a consumption matrix as considered in Prob.
13 must have column sums 1 and always has the
eigenvalue 1.

15. Open Leontief input–output model. If not the whole
output but only a portion of it is consumed by the

p1, p2, p3.
p � [p1 p2 p3]TAp � p

pj

ajk

A � [ajk] � D0.1 0.5 0

0.8 0 0.4

0.1 0.5 0.6

T
3 � 3

E0 3.0 2.0 2.0

0.5 0 0 0

0 0.5 0 0

0 0 0.1 0

U
D0 3.45 0.60

0.90 0 0

0 0.45 0

TD0 9.0 5.0

0.4 0 0

0 0.4 0

T
industries themselves, then instead of (as in Prob.
13), we have , where 
is produced, Ax is consumed by the industries, and, thus,
y is the net production available for other consumers.
Find for what production x a given demand vector

can be achieved if the consump-
tion matrix is

16–20 GENERAL PROPERTIES OF EIGENVALUE
PROBLEMS

Let be an matrix with (not necessarily
distinct) eigenvalues Show.

16. Trace. The sum of the main diagonal entries, called
the trace of A, equals the sum of the eigenvalues of A.

17. “Spectral shift.” has the eigenvalues
and the same eigenvectors as A.

18. Scalar multiples, powers. kA has the eigenvalues
has the eigenvalues

. The eigenvectors are those of A.

19. Spectral mapping theorem. The “polynomial
matrix”

has the eigenvalues

where , and the same eigenvectors as A.

20. Perron’s theorem. A Leslie matrix L with positive
has a positive eigenvalue. (This is a

special case of the Perron–Frobenius theorem in Sec.
20.7, which is difficult to prove in its general form.)

l12, l13, l21, l32

j � 1, Á , n

p (lj) � kmlj
m � km�1lj

m�1 � Á � k1lj � k0

p (A) � kmAm � km�1Am�1 � Á � k1A � k0I

l1
m, Á , ln

m
kl1, Á , kln. Am(m � 1, 2, Á )

l1 � k, Á , ln � k
A � kI

l1, Á , ln.
n � nA � [ajk]

A � D0.1 0.4 0.2

0.5 0 0.1

0.1 0.4 0.4

T .
y � [0.1 0.3 0.1]T

x � [x1 x2 x3]Tx � Ax � y
Ax � x

8.3 Symmetric, Skew-Symmetric, 
and Orthogonal Matrices

We consider three classes of real square matrices that, because of their remarkable
properties, occur quite frequently in applications. The first two matrices have already been
mentioned in Sec. 7.2. The goal of Sec. 8.3 is to show their remarkable properties.
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D E F I N I T I O N S Symmetric, Skew-Symmetric, and Orthogonal Matrices

A real square matrix is called
symmetric if transposition leaves it unchanged,

(1) thus

skew-symmetric if transposition gives the negative of A,

(2) , thus

orthogonal if transposition gives the inverse of A,

(3)

E X A M P L E  1 Symmetric, Skew-Symmetric, and Orthogonal Matrices

The matrices

are symmetric, skew-symmetric, and orthogonal, respectively, as you should verify. Every skew-symmetric
matrix has all main diagonal entries zero. (Can you prove this?)

Any real square matrix A may be written as the sum of a symmetric matrix R and a skew-
symmetric matrix S, where

(4) and

E X A M P L E  2 Illustration of Formula (4)

T H E O R E M  1 Eigenvalues of Symmetric and Skew-Symmetric Matrices

(a) The eigenvalues of a symmetric matrix are real.

(b) The eigenvalues of a skew-symmetric matrix are pure imaginary or zero.

This basic theorem (and an extension of it) will be proved in Sec. 8.5.

�A � D9 5 2

2 3 �8

5 4 3

T � R � S � D9.0 3.5 3.5

3.5 3.0 �2.0

3.5 �2.0 3.0

T � D 0 1.5 �1.5

�1.5 0 �6.0

1.5 6.0 0

T

S � 1
2 (A � AT).R � 1

2 (A � AT)

�

D�3 1 5

1 0 �2

5 �2 4

T ,  D 0 9 �12

�9 0 20

12 �20 0

T ,  D 2
3

1
3

2
3

�2
3

2
3

1
3

1
3

2
3 �2

3

T

AT � A�1.

akj � �ajk,AT � �A

akj � ajk,AT � A,

A � [ajk]



E X A M P L E  3 Eigenvalues of Symmetric and Skew-Symmetric Matrices

The matrices in (1) and (7) of Sec. 8.2 are symmetric and have real eigenvalues. The skew-symmetric matrix
in Example 1 has the eigenvalues 0, �25 i, and 25 i. (Verify this.) The following matrix has the real eigenvalues
1 and 5 but is not symmetric. Does this contradict Theorem 1?

Orthogonal Transformations and Orthogonal Matrices
Orthogonal transformations are transformations

(5) where A is an orthogonal matrix.

With each vector x in such a transformation assigns a vector y in . For instance,
the plane rotation through an angle 

(6)

is an orthogonal transformation. It can be shown that any orthogonal transformation in
the plane or in three-dimensional space is a rotation (possibly combined with a reflection
in a straight line or a plane, respectively).

The main reason for the importance of orthogonal matrices is as follows.

T H E O R E M 2 Invariance of Inner Product

An orthogonal transformation preserves the value of the inner product of vectors
a and b in , defined by

(7)

That is, for any a and b in , orthogonal matrix A, and 
we have

Hence the transformation also preserves the length or norm of any vector a in
given by

(8)

P R O O F Let A be orthogonal. Let and . We must show that Now
by (10d) in Sec. 7.2 and by (3). Hence

(9)

From this the invariance of follows if we set �b � a.� a �

u • v � uTv � (Aa)TAb � aTATAb � aTIb � aTb � a • b.

ATA � A�1A � I(Aa)T � aTAT
u • v � a • b.v � Abu � Aa

� a � � 1a • a � 2aTa.

Rn

u • v � a • b.
u � Aa, v � Abn � nRn

a • b � aTb � [a1 
Á

 an] Db1

.

.

.

bn

T .
Rn

y � c y1

y2

d � c cos u �sin u

sin u cos u
d c x1

x2

d
u

RnRn

y � Ax

�c3 4

1 3
d

336 CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems



SEC. 8.3 Symmetric, Skew-Symmetric, and Orthogonal Matrices 337

Orthogonal matrices have further interesting properties as follows.

T H E O R E M 3 Orthonormality of Column and Row Vectors

A real square matrix is orthogonal if and only if its column vectors (and
also its row vectors) form an orthonormal system, that is,

(10)

P R O O F (a) Let A be orthogonal. Then . In terms of column vectors 

(11)

The last equality implies (10), by the definition of the unit matrix I. From (3) it
follows that the inverse of an orthogonal matrix is orthogonal (see CAS Experiment 12).
Now the column vectors of are the row vectors of A. Hence the row vectors
of A also form an orthonormal system.
(b) Conversely, if the column vectors of A satisfy (10), the off-diagonal entries in (11)
must be 0 and the diagonal entries 1. Hence , as (11) shows. Similarly, 
This implies because also and the inverse is unique. Hence
A is orthogonal. Similarly when the row vectors of A form an orthonormal system, by
what has been said at the end of part (a).

T H E O R E M  4 Determinant of an Orthogonal Matrix

The determinant of an orthogonal matrix has the value or

P R O O F From (Sec. 7.8, Theorem 4) and (Sec. 7.7,
Theorem 2d), we get for an orthogonal matrix

E X A M P L E  4 Illustration of Theorems 3 and 4

The last matrix in Example 1 and the matrix in (6) illustrate Theorems 3 and 4 because their determinants are 
and , as you should verify.

T H E O R E M  5 Eigenvalues of an Orthogonal Matrix

The eigenvalues of an orthogonal matrix A are real or complex conjugates in pairs
and have absolute value 1.

��1�1

�1 � det  I � det (AA�1) � det (AAT) � det A det AT � (det A)2.

det  AT � det  Adet  AB � det  A det B

�1.�1

�

A�1A � AA�1 � IAT � A�1
AAT � I.ATA � I

A�1(�AT)

n � n

I � A�1A � ATA � Da1
T

.

.

.

an
T

T [a1
Á an] � Da1

Ta1 a1
Ta2 � �� a1

Tan

� � � � � �

an
Ta1 an

Ta2 � �� an
Tan

T .
a1, Á , an,A�1A � ATA � I

aj • ak � aj
Tak � e 0 if j � k

1 if j � k.

a1, Á , an



P R O O F The first part of the statement holds for any real matrix A because its characteristic
polynomial has real coefficients, so that its zeros (the eigenvalues of A) must be as 
indicated. The claim that will be proved in Sec. 8.5.

E X A M P L E  5 Eigenvalues of an Orthogonal Matrix

The orthogonal matrix in Example 1 has the characteristic equation

Now one of the eigenvalues must be real (why?), hence or . Trying, we find . Division by 
gives and the two eigenvalues and , which have absolute
value 1. Verify all of this.

Looking back at this section, you will find that the numerous basic results it contains have
relatively short, straightforward proofs. This is typical of large portions of matrix
eigenvalue theory.

�
(5 � i111)>6(5 � i111)>6�(l2 � 5l>3 � 1) � 0

l � 1�1�1�1

�l3 � 2
3 l2 � 2

3 l � 1 � 0.

�ƒl ƒ � 1
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1–10 SPECTRUM
Are the following matrices symmetric, skew-symmetric, or
orthogonal? Find the spectrum of each, thereby illustrating
Theorems 1 and 5. Show your work in detail.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. WRITING PROJECT. Section Summary. Sum-
marize the main concepts and facts in this section,
giving illustrative examples of your own.

12. CAS EXPERIMENT. Orthogonal Matrices.

(a) Products. Inverse. Prove that the product of two
orthogonal matrices is orthogonal, and so is the inverse
of an orthogonal matrix. What does this mean in terms
of rotations?

D 4
9

8
9

1
9

�7
9

4
9 �4

9

�4
9

1
9

8
9

TD 0 0 1

0 1 0

�1 0 0

T
D1 0 0

0 cos u �sin u

0 sin u cos u

TD 0 9 �12

�9 0 20

12 �20 0

T
Da k k

k a k

k k a

TD6 0 0

0 2 �2

0 �2 5

T
c cos u �sin u

sin u cos u
dc 2 8

�8 2
d

c a b

�b a
dc 0.8 0.6

�0.6 0.8
d

(b) Rotation. Show that (6) is an orthogonal trans-
formation. Verify that it satisfies Theorem 3. Find the
inverse transformation.

(c) Powers. Write a program for computing powers
of a matrix A and their

spectra. Apply it to the matrix in Prob. 1 (call it A). To
what rotation does A correspond? Do the eigenvalues
of have a limit as ?

(d) Compute the eigenvalues of where A is
the matrix in Prob. 1. Plot them as points. What is their
limit? Along what kind of curve do these points
approach the limit?

(e) Find A such that is a counterclockwise
rotation through in the plane.

13–20 GENERAL PROPERTIES

13. Verification. Verify the statements in Example 1.

14. Verify the statements in Examples 3 and 4.

15. Sum. Are the eigenvalues of sums of the
eigenvalues of A and of B?

16. Orthogonality. Prove that eigenvectors of a symmetric
matrix corresponding to different eigenvalues are
orthogonal. Give examples.

17. Skew-symmetric matrix. Show that the inverse of a
skew-symmetric matrix is skew-symmetric.

18. Do there exist nonsingular skew-symmetric 
matrices with odd n?

19. Orthogonal matrix. Do there exist skew-symmetric
orthogonal matrices?

20. Symmetric matrix. Do there exist nondiagonal
symmetric matrices that are orthogonal? 3 � 3

3 � 3

n � n

A � B

30°
y � Ax

(0.9A)m,

m: Am

2 � 2Am (m � 1, 2, Á )

P R O B L E M  S E T  8 . 3
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8.4 Eigenbases. Diagonalization. 
Quadratic Forms

So far we have emphasized properties of eigenvalues. We now turn to general properties
of eigenvectors. Eigenvectors of an matrix A may (or may not!) form a basis for

If we are interested in a transformation such an “eigenbasis” (basis of
eigenvectors)—if it exists—is of great advantage because then we can represent any x in

uniquely as a linear combination of the eigenvectors say,

And, denoting the corresponding (not necessarily distinct) eigenvalues of the matrix A by
we have so that we simply obtain

(1)

This shows that we have decomposed the complicated action of A on an arbitrary vector
x into a sum of simple actions (multiplication by scalars) on the eigenvectors of A. This
is the point of an eigenbasis.

Now if the n eigenvalues are all different, we do obtain a basis:

T H E O R E M  1 Basis of Eigenvectors

If an matrix A has n distinct eigenvalues, then A has a basis of eigenvectors
for

P R O O F All we have to show is that are linearly independent. Suppose they are not. Let
r be the largest integer such that is a linearly independent set. Then 
and the set is linearly dependent. Thus there are scalars 
not all zero, such that

(2)

(see Sec. 7.4). Multiplying both sides by A and using we obtain

(3)

To get rid of the last term, we subtract times (2) from this, obtaining

Here since is linearly independent.
Hence , since all the eigenvalues are distinct. But with this, (2) reduces to

hence since (an eigenvector!). This contradicts the fact
that not all scalars in (2) are zero. Hence the conclusion of the theorem must hold. �

xr�1 � 0cr�1 � 0,cr�1xr�1 � 0,
c1 � Á � cr � 0

{x1, Á , x r}c1(l1 � lr�1) � 0, Á , cr(lr � lr�1) � 0

c1(l1 � lr�1)x1 � Á � cr(lr � lr�1)xr � 0.

lr�1

A(c1x1 � Á � cr�1xr�1) � c1l1x1 � Á � cr�1lr�1xr�1 � A0 � 0.

Axj � ljxj,

c1x1 � Á � cr�1xr�1 � 0

c1, Á , cr�1,{x1, Á , xr, xr�1}
r 	 n{x1, Á , xr}

x1, Á , xn

Rn.x1, Á , xn

n � n

 � c1l1x1 � Á � cnlnxn.

 � c1Ax1 � Á � cnAxn

 y � Ax � A(c1x1 � Á � cnxn)

Axj � ljxj,l1, Á , ln,

x � c1x1 � c2x2 � Á � cnxn.

x1, Á , xn,Rn

y � Ax,Rn.
n � n



E X A M P L E  1 Eigenbasis. Nondistinct Eigenvalues. Nonexistence

The matrix has a basis of eigenvectors corresponding to the eigenvalues 

(See Example 1 in Sec. 8.2.)
Even if not all n eigenvalues are different, a matrix A may still provide an eigenbasis for . See Example 2

in Sec. 8.1, where 
On the other hand, A may not have enough linearly independent eigenvectors to make up a basis. For

instance, A in Example 3 of Sec. 8.1 is

and has only one eigenvector , arbitrary).

Actually, eigenbases exist under much more general conditions than those in Theorem 1.
An important case is the following.

T H E O R E M  2 Symmetric Matrices

A symmetric matrix has an orthonormal basis of eigenvectors for

For a proof (which is involved) see Ref. [B3], vol. 1, pp. 270–272.

E X A M P L E  2 Orthonormal Basis of Eigenvectors

The first matrix in Example 1 is symmetric, and an orthonormal basis of eigenvectors is 

Similarity of Matrices. Diagonalization
Eigenbases also play a role in reducing a matrix A to a diagonal matrix whose entries are
the eigenvalues of A. This is done by a “similarity transformation,” which is defined as
follows (and will have various applications in numerics in Chap. 20).

D E F I N I T I O N Similar Matrices. Similarity Transformation

An matrix is called similar to an matrix A if

(4)

for some (nonsingular!) matrix P. This transformation, which gives from
A, is called a similarity transformation.

The key property of this transformation is that it preserves the eigenvalues of A:

T H E O R E M  3 Eigenvalues and Eigenvectors of Similar Matrices

If is similar to A, then has the same eigenvalues as A.
Furthermore, if x is an eigenvector of A, then is an eigenvector of

corresponding to the same eigenvalue.
Ây � P�1x

ÂÂ

Ân � n

Â � P�1AP

n � nÂn � n

�[1>12 �1>124T.
31>12 1>124T,

Rn.

�(k � 0c k
0
dA � c0 1

0 0
d

n � 3.
Rn

l2 � 2.

l1 � 8,c1
1
d , c 1

�1
dA � c5 3

3 5
d
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P R O O F From an eigenvalue, we get Now By
this identity trick the equation gives

Hence is an eigenvalue of and a corresponding eigenvector. Indeed, 
because would give , contradicting 

E X A M P L E  3 Eigenvalues and Vectors of Similar Matrices

Let, and

Then

Here was obtained from (4*) in Sec. 7.8 with . We see that has the eigenvalues 
The characteristic equation of A is It has the roots (the eigenvalues
of A) , confirming the first part of Theorem 3.

We confirm the second part. From the first component of we have . For
this gives say, For it gives , say, . In

Theorem 3 we thus have

Indeed, these are eigenvectors of the diagonal matrix 
Perhaps we see that and are the columns of P. This suggests the general method of transforming a

matrix A to diagonal form D by using , the matrix with eigenvectors as columns.

By a suitable similarity transformation we can now transform a matrix A to a diagonal
matrix D whose diagonal entries are the eigenvalues of A:

T H E O R E M  4 Diagonalization of a Matrix

If an matrix A has a basis of eigenvectors, then

(5)

is diagonal, with the eigenvalues of A as the entries on the main diagonal. Here X
is the matrix with these eigenvectors as column vectors. Also, 

(5*) .(m � 2, 3, Á )Dm � X�1AmX

D � X�1AX

n � n

�P � X
x2x1

Â.

y1 � P�1x1 � c 4 �3

�1 1
d c1

1
d � c1

0
d ,    y2 � P�1x2 � c 4 �3

�1 1
d c3

4
d � c0

1
d .

x2 � 33 44T4x1 � 3x2 � 0l � 2x1 � 31 14T.3x1 � 3x2 � 0,l � 3
(6 � l)x1 � 3x2 � 0(A � lI)x � 0

l1 � 3, l2 � 2
(6 � l)(�1 � l) � 12 � l2 � 5l � 6 � 0.

l1 � 3, l2 � 2.Âdet P � 1P�1

Â � c 4 �3

�1 1
d c6 �3

4 �1
d c1 3

1 4
d � c3 0

0 2
d .

P � c1 3

1 4
d .A � c6 �3

4 �1
d

�x � 0.x � Ix � PP�1x � P0 � 0P�1x � 0
P�1x � 0P�1xÂl

P�1Ax � P�1AIx � P�1APP�1x � (P�1AP)P�1x � Â(P�1x) � lP�1x.

P�1Ax � lP�1x
I � PP�1.P�1Ax � lP�1x.x � 0)(lAx � lx



P R O O F Let be a basis of eigenvectors of A for . Let the corresponding eigenvalues
of A be , respectively, so that . Then

has rank n, by Theorem 3 in Sec. 7.4. Hence exists by Theorem 1
in Sec. 7.8. We claim that

(6)

where D is the diagonal matrix as in (5). The fourth equality in (6) follows by direct
calculation. (Try it for and then for general n.) The third equality uses 
The second equality results if we note that the first column of AX is A times the first
column of X, which is , and so on. For instance, when and we write

, , we have

Column 1 Column 2

If we multiply (6) by from the left, we obtain (5). Since (5) is a similarity
transformation, Theorem 3 implies that D has the same eigenvalues as A. Equation (5*)
follows if we note that

etc.

E X A M P L E  4 Diagonalization

Diagonalize

Solution. The characteristic determinant gives the characteristic equation The roots
(eigenvalues of A) are By the Gauss elimination applied to with

we find eigenvectors and then by the Gauss–Jordan elimination (Sec. 7.8, Example 1). The
results are

Calculating AX and multiplying by from the left, we thus obtain

�D � X�1AX � D�0.7 0.2 0.3

�1.3 �0.2 0.7

0.8 0.2 �0.2

T  D�3 �4 0

9 4 0

�3 �12 0

T � D3 0 0

0 �4 0

0 0 0

T .
X�1

D�1

3

�1

T , D 1

�1

3

T , D21
4

T ,  X � D�1 1 2

3 �1 1

�1 3 4

T ,  X�1 � D�0.7 0.2 0.3

�1.3 �0.2 0.7

0.8 0.2 �0.2

T .
X�1l � l1, l2, l3

(A � lI)x � 0l1 � 3, l2 � �4, l3 � 0.
�l3 � l2 � 12l � 0.

A � D 7.3 0.2 �3.7

�11.5 1.0 5.5

17.7 1.8 �9.3

T .

�D2 � DD � (X�1AX)(X�1AX) � X�1A(XX�1)AX � X�1AAX � X�1A2X,

X�1

 � ca11x11 � a12x21  a11x12 � a12x22

a21x11 � a22x21 a21x12 � a22x22

d � 3Ax1 Ax24.

 AX � A3x1 x24 � ca11 a12

a21 a22

d  c x11 x12

x21 x22

d
x2 � 3x12 x224x1 � 3x11 x214

n � 2x1

Axk � lkxk.n � 2

Ax � A3x1 
Á

 xn4 � 3Ax1 
Á

 Axn4 � 3l1x1 
Á

 lnxn4 � XD

X�1X � 3x1
Á  xn4

Ax1 � l1x1, Á , Axn � lnxnl1, Á , ln

Rnx1, Á , xn
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Quadratic Forms. Transformation to Principal Axes
By definition, a quadratic form Q in the components of a vector x is a sum
of terms, namely, 

(7)

is called the coefficient matrix of the form. We may assume that A is
symmetric, because we can take off-diagonal terms together in pairs and write the result
as a sum of two equal terms; see the following example.

E X A M P L E  5 Quadratic Form. Symmetric Coefficient Matrix

Let

Here From the corresponding symmetric matrix , where 
thus , we get the same result; indeed, 

Quadratic forms occur in physics and geometry, for instance, in connection with conic
sections (ellipses , etc.) and quadratic surfaces (cones, etc.). Their
transformation to principal axes is an important practical task related to the diagonalization
of matrices, as follows.

By Theorem 2, the symmetric coefficient matrix A of (7) has an orthonormal basis of
eigenvectors. Hence if we take these as column vectors, we obtain a matrix X that is
orthogonal, so that . From (5) we thus have . Substitution
into (7) gives

(8)

If we set , then, since , we have and thus obtain

(9)

Furthermore, in (8) we have and , so that Q becomes simply

(10) Q � yTDy � l1y1
2 � l2y2

2 � Á � lnyn
2 .

XTx � yxTX � (XTx)T � yT

x � Xy.

X�1x � yXT � X�1XTx � y

Q � xTXDXTx.

A � XDX�1 � XDXTX�1 � XT

x1
2>a2 � x2

2>b2 � 1

�xTCx � 3x1 x24 c3 5

5 2
d  c x1

x2

d � 3x1
2 � 5x1x2 � 5x2x1 � 2x2

2 � 3x1
2 � 10x1x2 � 2x2

2.

c11 � 3, c12 � c21 � 5, c22 � 2
cjk � 1

2 (ajk � akj),C � [cjk44 � 6 � 10 � 5 � 5.

xTAx � 3x1 x24 c3 4

6 2
d  c x1

x2

d � 3x1
2 � 4x1x2 � 6x2x1 � 2x2

2 � 3x1
2 � 10x1x2 � 2x2

2.

A � 3ajk4

 � an1xnx1 � an2xnx2 � Á
 � annxn

2 .

 � # # # # # # # # # # # # # # # # # # # # # # # # # # #
 � a21x2x1  � a22x2

2  � Á  � a2nx2xn

�  a11x1
2  � a12x1x2  � Á

 � a1nx1xn

 Q � xTAx � a

n

j�1

 a

n

k�1

ajkx jxk

n2
x1, Á , xn



This proves the following basic theorem.

T H E O R E M  5 Principal Axes Theorem

The substitution (9) transforms a quadratic form

to the principal axes form or canonical form (10), where are the (not
necessarily distinct) eigenvalues of the (symmetric!) matrix A, and X is an
orthogonal matrix with corresponding eigenvectors , respectively, as
column vectors.

E X A M P L E  6 Transformation to Principal Axes. Conic Sections

Find out what type of conic section the following quadratic form represents and transform it to principal axes:

Solution. We have , where

,

This gives the characteristic equation . It has the roots . Hence (10)
becomes

We see that represents the ellipse that is, 

If we want to know the direction of the principal axes in the -coordinates, we have to determine normalized
eigenvectors from with and and then use (9). We get

and

hence

,

This is a rotation. Our results agree with those in Sec. 8.2, Example 1, except for the notations. See also
Fig. 160 in that example. �

45°

x1 � y1>12 � y2>12

x2 � y1>12 � y2>12.
x � Xy � c1>12 �1>12

1>12 1>12
d  c y1

y2

d

c�1>12

1>12
d ,c1>12

1>12
d

l � l2 � 32l � l1 � 2(A � lI)x � 0
x1x2

y1
2

82
 �

y2
2

22
 � 1.

2y1
2 � 32y2

2 � 128,Q � 128

Q � 2y1
2 � 32y2

2.

l1 � 2, l2 � 32(17 � l)2 � 152 � 0

x � c x1

x2

d .A � c 17 �15

�15 17
d

Q � xTAx

Q � 17x1
2 � 30x1x2 � 17x2

2 � 128.

x1, Á , xn

l1, Á , ln

Q � xTAx � a

n

j�1

 a

n

k�1

ajkx jxk  (akj � ajk)
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1–5 SIMILAR MATRICES HAVE EQUAL
EIGENVALUES

Verify this for A and If y is an eigenvector
of P, show that are eigenvectors of A. Show the
details of your work.

1.

2.

3.

4.

5.

6. PROJECT. Similarity of Matrices. Similarity is
basic, for instance, in designing numeric methods.

(a) Trace. By definition, the trace of an matrix
is the sum of the diagonal entries, 

trace 

Show that the trace equals the sum of the eigenvalues,
each counted as often as its algebraic multiplicity
indicates. Illustrate this with the matrices A in Probs.
1, 3, and 5.

(b) Trace of product. Let be . Show
that similar matrices have equal traces, by first proving

trace 

(c) Find a relationship between in (4) and

(d) Diagonalization. What can you do in (5) if you
want to change the order of the eigenvalues in D, for
instance, interchange and ?

7. No basis. Find further and matrices
without eigenbasis.

3 � 32 � 2

d22 � l2d11 � l1

Â � PAP�1.
Â

AB � a

n

i�1

 a

n

l�1

ailbli � trace BA.

n � nB � 3bjk4

A � a11 � a22 � Á � ann.

A � 3ajk4
n � n

A � D�5

3

�5

0

4

0

15

�9

15

T ,   P � D01
0

1

0

0

0

0

1

T
l1 � 3

A � D00
1

0

3

0

2

2

1

T ,  P � D20
3

0

1

0

3

0

5

T ,
A � c8

2

�4

2
d  ,   P � c 0.28

�0.96

0.96

0.28
S

A � c1
2

0

�1
d  ,   P � c 7

10

�5

�7
d

A � c3
4

4

�3
d  ,   P � c�4

3

2

�1
d

x � Py
A � P�1AP.

8. Orthonormal basis. Illustrate Theorem 2 with further
examples.

9–16 DIAGONALIZATION OF MATRICES
Find an eigenbasis (a basis of eigenvectors) and diagonalize.
Show the details.

9. 10.

11. 12.

13.

14.

15.

16.

17–23 PRINCIPAL AXES. CONIC SECTIONS
What kind of conic section (or pair of straight lines) is given
by the quadratic form? Transform it to principal axes.
Express in terms of the new coordinate
vector , as in Example 6.

17.

18.

19.

20.

21.

22.

23. �11x1
2 � 84x1x2 � 24x2

2 � 156

4x1
2 � 12x1x2 � 13x2

2 � 16

x1
2 � 12x1x2 � x2

2 � 70

9x1
2 � 6x1x2 � x2

2 � 10

3x1
2 � 22x1x2 � 3x2

2 � 0

3x1
2 � 8x1x2 � 3x2

2 � 10

7x1
2 � 6x1x2 � 7x2

2 � 200

yT � 3y1 y24
xT � 3x1 x24

D11
0

1

1

0

0

0

�4

T
D43
3

3

6

1

3

1

6

T ,   l1 � 10

D �5

�9

�12

�6

�8

�12

6

12

16

T ,   l1 � �2

D 4

12

21

0

�2

�6

0

0

1

T
c�4.3

1.3

7.7

9.3
dc�19

�42

7

16
d

c 1
2

0

�1
dc1

2

2

4
d
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24. Definiteness. A quadratic form and its
(symmetric!) matrix A are called (a) positive definite
if for all (b) negative definite if

for all (c) indefinite if takes
both positive and negative values. (See Fig. 162.)

and A are called positive semidefinite (negative
semidefinite) if for all x.] Show
that a necessary and sufficient condition for (a), (b),
and (c) is that the eigenvalues of A are (a) all positive,
(b) all negative, and (c) both positive and negative.

Hint. Use Theorem 5.

25. Definiteness. A necessary and sufficient condition for
positive definiteness of a quadratic form 
with symmetric matrix A is that all the principal minors
are positive (see Ref. [B3], vol. 1, p. 306), that is, 

Show that the form in Prob. 22 is positive definite,
whereas that in Prob. 23 is indefinite.

3  a11

a12

a13

a12

a22

a23

a13

a23

a33

 3 � 0,  Á ,  det A � 0.

a11 � 0,   2  a11

a12

a12

a22

 2 � 0,

Q (x) � xTAx

Q (x) 
 0 (Q (x) � 0)
3Q (x)

Q (x)x � 0,Q (x) 	 0
x � 0,Q (x) � 0

Q (x) � xTAx

Q(x)

Q(x)

x1
x2

(a) Positive definite form

Q(x)

(c) Indefinite form

x1

x2

(b) Negative definite form

x1

x2

Fig. 162. Quadratic forms in two variables (Problem 24)

8.5 Complex Matrices and Forms. Optional
The three classes of matrices in Sec. 8.3 have complex counterparts which are of practical
interest in certain applications, for instance, in quantum mechanics. This is mainly because
of their spectra as shown in Theorem 1 in this section. The second topic is about extending
quadratic forms of Sec. 8.4 to complex numbers. (The reader who wants to brush up on
complex numbers may want to consult Sec. 13.1.)

Notations

is obtained from by replacing each entry 
real) with its complex conjugate Also, is the transpose

of hence the conjugate transpose of A.

E X A M P L E  1 Notations

If then and �A 
T

� c3 � 4i

1 � i

6

2 � 5i
d  .A � c3 � 4i

6

1 � i

2 � 5i
dA � c3 � 4i

6

1 � i

2 � 5i
d  ,

A,
A 

T
� 3akj4ajk � a � ib.(a, b

ajk � a � ibA � 3ajk4A � 3ajk4
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D E F I N I T I O N Hermitian, Skew-Hermitian, and Unitary Matrices

A square matrix is called 

Hermitian if that is,

skew-Hermitian if that is,

unitary if

The first two classes are named after Hermite (see footnote 13 in Problem Set 5.8).
From the definitions we see the following. If A is Hermitian, the entries on the main

diagonal must satisfy that is, they are real. Similarly, if A is skew-Hermitian,
then If we set this becomes Hence 
so that must be pure imaginary or 0.

E X A M P L E  2 Hermitian, Skew-Hermitian, and Unitary Matrices

are Hermitian, skew-Hermitian, and unitary matrices, respectively, as you may verify by using the definitions.

If a Hermitian matrix is real, then Hence a real Hermitian matrix is a
symmetric matrix (Sec. 8.3).

Similarly, if a skew-Hermitian matrix is real, then Hence a real skew-
Hermitian matrix is a skew-symmetric matrix.

Finally, if a unitary matrix is real, then Hence a real unitary matrix
is an orthogonal matrix.

This shows that Hermitian, skew-Hermitian, and unitary matrices generalize symmetric,
skew-symmetric, and orthogonal matrices, respectively.

Eigenvalues
It is quite remarkable that the matrices under consideration have spectra (sets of eigenvalues;
see Sec. 8.1) that can be characterized in a general way as follows (see Fig. 163).

A 
T

� AT � A�1.

A 
T

� AT � �A.

A 
T

� AT � A.

�

C � c 12 i

1
2 13

 1
2 13

  
1
2 i

d  B � c 3i

� 2 � i

 2 � i

� i
d  A � c 4

1 � 3i

 1 � 3i

7
d  

ajj

a � 0,a � ib � �(a � ib).ajj � a � ib,ajj � �ajj.
ajj � ajj;

 A 
T

� A�1.

akj � �ajk A 
T

� �A,

akj � ajk A 
T

� A,

A � 3akj4

Fig. 163. Location of the eigenvalues of Hermitian, skew-Hermitian, 
and unitary matrices in the complex -planel

Re λ1

Im λ Skew-Hermitian (skew-symmetric)

Unitary (orthogonal)

Hermitian (symmetric)
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T H E O R E M  1 Eigenvalues

(a) The eigenvalues of a Hermitian matrix (and thus of a symmetric matrix)
are real.

(b) The eigenvalues of a skew-Hermitian matrix (and thus of a skew-symmetric
matrix) are pure imaginary or zero.

(c) The eigenvalues of a unitary matrix (and thus of an orthogonal matrix) have
absolute value 1.

E X A M P L E  3 Illustration of Theorem 1

For the matrices in Example 2 we find by direct calculation

Matrix Characteristic Equation Eigenvalues

A Hermitian 9, 2
B Skew-Hermitian
C Unitary

and 

P R O O F We prove Theorem 1. Let be an eigenvalue and x an eigenvector of A. Multiply 
from the left by thus and divide by 

which is real and not 0 because This gives

(1)

(a) If A is Hermitian,  or and we show that then the numerator in (1)
is real, which makes real. is a scalar; hence taking the transpose has no effect. Thus

(2)

Hence, equals its complex conjugate, so that it must be real. 
implies 

(b) If A is skew-Hermitian, and instead of (2) we obtain

(3)

so that equals minus its complex conjugate and is pure imaginary or 0.
implies 

(c) Let A be unitary. We take and its conjugate transpose

and multiply the two left sides and the two right sides, 

(Ax )TAx � llxTx � ƒl ƒ 2 xTx.

(Ax )T � (lx )T � lxT

Ax � lx
a � 0.)(a � ib � �(a � ib)

xTAx

( xTAx)xTAx � �

AT � �A
b � 0.)

(a � ib � a � ibxTAx

xTAx � (xTAx)T � xTATx � xT
 Ax � ( xTAx).

xTAxl

AT � AA 
T

� A

l �
xTAx

xTx
 .

x � 0.ƒ x1 ƒ 2 � Á � ƒ xn ƒ 2,
xTx � x1x1 � Á � xnxn �xTAx � lxTx,xT,

Ax � lxl

�ƒ�1
2 13 � 1

2 i ƒ 2 � 3
4 � 1

4 � 1.

1
2 13 � 1

2 i, �1
2 13 � 1

2 il2 � il � 1 � 0
4i, �2il2 � 2il � 8 � 0

l2 � 11l � 18 � 0
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But A is unitary, , so that on the left we obtain

Together, We now divide by to get Hence 
This proves Theorem 1 as well as Theorems 1 and 5 in Sec. 8.3.

Key properties of orthogonal matrices (invariance of the inner product, orthonormality of
rows and columns; see Sec. 8.3) generalize to unitary matrices in a remarkable way.

To see this, instead of we now use the complex vector space of all complex
vectors with n complex numbers as components, and complex numbers as scalars. For
such complex vectors the inner product is defined by (note the overbar for the complex
conjugate)

(4)

The length or norm of such a complex vector is a real number defined by

(5)

T H E O R E M  2 Invariance of Inner Product

A unitary transformation, that is, with a unitary matrix A, preserves the
value of the inner product (4), hence also the norm (5).

P R O O F The proof is the same as that of Theorem 2 in Sec. 8.3, which the theorem generalizes.
In the analog of (9), Sec. 8.3, we now have bars, 

.

The complex analog of an orthonormal system of real vectors (see Sec. 8.3) is defined as
follows.

D E F I N I T I O N Unitary System

A unitary system is a set of complex vectors satisfying the relationships

(6)

Theorem 3 in Sec. 8.3 extends to complex as follows.

T H E O R E M  3 Unitary Systems of Column and Row Vectors

A complex square matrix is unitary if and only if its column vectors (and also its
row vectors) form a unitary system.

aj • ak � aj
Tak � b 

0

1

if

if

j � k

j � k.

u • v � uTv � (Aa)TAb � aT
 A 

TAb � aTIb � aTb � a • b

y � Ax

� a � � 2a • a � 2aj
Ta � 2a1a1 � Á � anan � 2 ƒa1 ƒ 2 � Á � ƒan ƒ 2.

a • b � aTb.

C nRn

�

ƒl ƒ � 1.ƒl ƒ 2 � 1.xTx (�0)xTx � ƒl ƒ 2 xTx.

(Ax )TAx � xT
 A 

TAx � xTA�1Ax � xTIx � xTx.

A 
T

� A�1
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P R O O F The proof is the same as that of Theorem 3 in Sec. 8.3, except for the bars required in
and in (4) and (6) of the present section.

T H E O R E M  4 Determinant of a Unitary Matrix

Let A be a unitary matrix. Then its determinant has absolute value one, that is,

P R O O F Similarly, as in Sec. 8.3, we obtain

Hence (where det A may now be complex).

E X A M P L E  4 Unitary Matrix Illustrating Theorems 1c and 2–4

For the vectors and we get and 
and with

also and

as one can readily verify. This gives illustrating Theorem 2. The matrix is unitary. Its
columns form a unitary system, 

and so do its rows. Also, The eigenvalues are and with eigenvectors 
and respectively.

Theorem 2 in Sec. 8.4 on the existence of an eigenbasis extends to complex matrices as
follows.

T H E O R E M  5 Basis of Eigenvectors

A Hermitian, skew-Hermitian, or unitary matrix has a basis of eigenvectors for 
that is a unitary system.

For a proof see Ref. [B3], vol. 1, pp. 270–272 and p. 244 (Definition 2).

E X A M P L E  5 Unitary Eigenbases

The matrices A, B, C in Example 2 have the following unitary systems of eigenvectors, as you should verify.

A:

B:

C: �
112

 31 14T (l � 1
2 (i � 13)) ,    

112
 31 �14T (l � 1

2 (i � 13)) .

1130
 31 � 2i �54T (l � �2i),    

1130
 35 1 � 2i4T (l � 4i)

1135
 31 � 3i 54T (l � 9),    

1114
 31 � 3i �24T (l � 2)

C n

�31 �14T,
31 14T�0.6 � 0.8i,0.6 � 0.8idet A � �1.

 a2
Ta2 � 0.62 � (�0.8i)0.8i � 1

 a1
Ta1 � �0.8i # 0.8i � 0.62 � 1,   a1

Ta2 � �0.8i # 0.6 � 0.6 # 0.8i � 0,

(Aa)TAb � �2 � 2i,

Ab � c�0.8 � 3.2i

�2.6 � 0.6i
d ,Aa � c i

2
dA � c0.8i

0.6

0.6

0.8i
d

aTb � 2(1 � i) � 4 � �2 � 2iaT � 32 i4TbT � 31 � i 4i4aT � 32 �i4

�ƒdet A ƒ � 1

 � det A det A � ƒdet A ƒ 2.

 1 � det (AA�1) � det (AA 
T) � det A det A 

T
� det A det A

ƒdet A ƒ � 1.

A 
T

� A�1
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Hermitian and Skew-Hermitian Forms
The concept of a quadratic form (Sec. 8.4) can be extended to complex. We call the
numerator in (1) a form in the components of x, which may now be
complex. This form is again a sum of terms

(7)

A is called its coefficient matrix. The form is called a Hermitian or skew-Hermitian
form if A is Hermitian or skew-Hermitian, respectively. The value of a Hermitian form
is real, and that of a skew-Hermitian form is pure imaginary or zero. This can be seen
directly from (2) and (3) and accounts for the importance of these forms in physics. Note
that (2) and (3) are valid for any vectors because, in the proof of (2) and (3), we did not
use that x is an eigenvector but only that is real and not 0.

E X A M P L E  6 Hermitian Form

For A in Example 2 and, say, we get

Clearly, if A and x in (4) are real, then (7) reduces to a quadratic form, as discussed in
the last section.

�xTAx � 31 � i �5i4 c 4

1 � 3i

1 � 3i

7
d  c1 � i

5i
d � 31 � i �5i4 c4(1 � i) � (1 � 3i) # 5i

(1 � 3i)(1 � i) � 7 # 5i
d � 223.

x � 31 � i 5i4T

xTx

 � an1xnx1 � Á
 � annxnxn.

� # # # # # # # # # # # # # # # # # # #
 � a21x2x1  � Á

 � a2nx2xn

�   a11x1x1  � Á
 � a1nx1xn

xTAx � a

n

j�1

 a

n

k�1

ajk x j xk

n2
x1, Á , xn xTAx

1–6 EIGENVALUES AND VECTORS
Is the given matrix Hermitian? Skew-Hermitian? Unitary?
Find its eigenvalues and eigenvectors.

1. 2.

3. 4.

5. 6. D 0

2 � 2i

0

2 � 2i

0

2 � 2i

0

2 � 2i

0

TD i

0

0

0

0

i

0

i

0

T
c0

i

i

0
dc 12

i23
4

i23
4

1
2

d
c i

�1 � i

1 � i

0
dc 6

�i

i

6
d

7. Pauli spin matrices. Find the eigenvalues and eigen-
vectors of the so-called Pauli spin matrices and show
that 
where

8. Eigenvectors. Find eigenvectors of A, B, C in
Examples 2 and 3.

Sz � c1
0

0

�1
d  .

Sy � c0
i

�i

0
d  ,Sx � c0

1

1

0
d  ,

Sx
2 � Sy

2 � Sz
2 � I,SySx � �iSz,SxSy � iSz,

P R O B L E M  S E T  8 . 5
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9–12 COMPLEX FORMS
Is the matrix A Hermitian or skew-Hermitian? Find 
Show the details.

9.

10.

11.

12.

13–20 GENERAL PROBLEMS
13. Product. Show that for any

Hermitian A, skew-Hermitian B, and unitary C.n � n
(ABC) 

T � �C�1BA

A � D 1

�i

4

i

3

0

4

0

2

T ,   x � D 1

i

�i

T
A � D i

�1

�2 � i

1

0

3i

2 � i

3i

i

T ,   x � D 1

i

�i

T
A � c i

2 � 3i

�2 � 3i

0
S  ,   x � c2i

8
d

A � c 4

3 � 2i

3 � 2i

�4
d  ,   x � c �4i

2 � 2i
d

xTAx.

14. Product. Show for A and B in
Example 2. For any Hermitian A and 
skew-Hermitian B.

15. Decomposition. Show that any square matrix may be
written as the sum of a Hermitian and a skew-Hermitian
matrix. Give examples.

16. Unitary matrices. Prove that the product of two
unitary matrices and the inverse of a unitary
matrix are unitary. Give examples.

17. Powers of unitary matrices in applications may
sometimes be very simple. Show that in
Example 2. Find further examples.

18. Normal matrix. This important concept denotes a
matrix that commutes with its conjugate transpose,

Prove that Hermitian, skew-Hermitian,
and unitary matrices are normal. Give corresponding
examples of your own.

19. Normality criterion. Prove that A is normal if and
only if the Hermitian and skew-Hermitian matrices in
Prob. 18 commute.

20. Find a simple matrix that is not normal. Find a normal
matrix that is not Hermitian, skew-Hermitian, or
unitary.

AA 
T � A 

TA.

C12 � I

n � n

n � n
(BA) 

T � �AB
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1. In solving an eigenvalue problem, what is given and
what is sought?

2. Give a few typical applications of eigenvalue problems.

3. Do there exist square matrices without eigenvalues?

4. Can a real matrix have complex eigenvalues? Can a
complex matrix have real eigenvalues?

5. Does a matrix always have a real eigenvalue?

6. What is algebraic multiplicity of an eigenvalue? Defect?

7. What is an eigenbasis? When does it exist? Why is it
important?

8. When can we expect orthogonal eigenvectors?

9. State the definitions and main properties of the three
classes of real matrices and of complex matrices that
we have discussed.

10. What is diagonalization? Transformation to principal axes?

11–15 SPECTRUM
Find the eigenvalues. Find the eigenvectors.

11. 12.

13. c8
5

�1

2
d

c �7

�12

4

7
dc 2.5

0.5

0.5

2.5
d

5 � 5

14.

15.

16–17 SIMILARITY
Verify that A and have the same spectrum.

16.

17.

18. A � D�4

0

�1

6

2

1

6

0

1

T ,   P � D10
0

8

1

0

�7

3

1

T
A � c 7

12

�4

�7
d  ,   P � c5

3

3

5
d

A � c19

12

12

1
d  ,   P � c2

4

4

2
d

Â � p�1AP

D0 �3 �6

3 0 �6

6 6 0

T
D 7 2 �1

2 7 1

�1 1 8.5

T
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19–21 DIAGONALIZATION
Find an eigenbasis and diagonalize.

9. 20.

21. D�12

8

�8

22

2

20

6

6

16

T
c 72

�56

�56

513
dc�1.4

�1.0

1.0

1.1
d

22–25 CONIC SECTIONS. PRINCIPAL AXES
Transform to canonical form (to principal axes). Express

in terms of the new variables 

22.

23.

24.

25. 3.7x1
2 � 3.2x1x2 � 1.3x2

2 � 4.5

5x1
2 � 24x1x2 � 5x2

2 � 0

4x1
2 � 24x1x2 � 14x2

2 � 20

9x1
2 � 6x1x2 � 17x2

2 � 36

3y1 y24
T.3x1 x24

T

The practical importance of matrix eigenvalue problems can hardly be overrated.
The problems are defined by the vector equation

(1)

A is a given square matrix. All matrices in this chapter are square. is a scalar. To
solve the problem (1) means to determine values of , called eigenvalues (or
characteristic values) of A, such that (1) has a nontrivial solution x (that is, 
called an eigenvector of A corresponding to that . An matrix has at least
one and at most n numerically different eigenvalues. These are the solutions of the
characteristic equation (Sec. 8.1)

(2)

is called the characteristic determinant of A. By expanding it we get the
characteristic polynomial of A, which is of degree n in . Some typical applications
are shown in Sec. 8.2.

Section 8.3 is devoted to eigenvalue problems for symmetric skew-
symmetric and orthogonal matrices Section 8.4
concerns the diagonalization of matrices and the transformation of quadratic forms
to principal axes and its relation to eigenvalues.

Section 8.5 extends Sec. 8.3 to the complex analogs of those real matrices, called
Hermitian skew-Hermitian and unitary matrices

All the eigenvalues of a Hermitian matrix (and a symmetric one) are
real. For a skew-Hermitian (and a skew-symmetric) matrix they are pure imaginary
or zero. For a unitary (and an orthogonal) matrix they have absolute value 1.

(A 
T � A�1).

(AT � �A),(AT � A),

(AT � A�1).(AT � �A),
(AT � A),

l

D (l)

D (l) � det (A � lI) � 5  a11 � l

a21

#

an1

a12

a22 � l

#

an2

Á

Á

Á

Á

a1n

a2n

#

ann � l 

5 � 0.

n � nl

x � 0),
l

l

Ax � lx.
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