
Journal of Engineered Fibers and Fabrics 140 http://www.jeffjournal.org
Volume 9, Issue 4 – 2014

Geometrical Arrangement in the Needle Loop of 
Multifilament Yarn using Genetic Algorithm

Ramin Bakhshpour, Saeed Ajeli, PhD, Hossein Hasani, Ali Asghar Asgharyan Jeddi

Department of Textile Engineering, Isfahan University of Technology, Isfahan  IRAN

Correspondence to:
Saeed Ajeli email:  sajeli@cc.iut.ac.ir

ABSTRACT
In this paper, the loop structure of plain knitted 
fabric, constructed from multifilament yarns is 
geometrically modeled. This model is based on post-
buckling behavior of multifilament yarns composed 
of two, three or seven filaments with circular cross 
sections. In the first step, the classic theory of 
Elastica 2-D post-buckled shape of each filament
position on the yarn structure was investigated. In 
this step, volumetric intersections between filaments 
on the yarn occurred. In the Second step, the 
arrangement of the filaments in 3-D space was
predicted applying an out-plane bending force. To 
find the minimized bending force and reducing the
volumetric intersections between filaments, we used 
genetic algorithm. Genetic Algorithm was used for
reducing the problem complexity and optimizing that
complexity by replacing contact forces between 
filaments with a concentrated out-plane force. The 
geometry position of yarn filaments is also modeled 
using finite element method. Comparison of results 
shows small difference between the two models and 
confirms that the analytical proposed model is 
acceptable.
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INTRODUCTION
Understanding the loop geometry of knitted 
structures is very important in the study of 
dimensional and mechanical behavior of knitted 
fabrics. Leaf [1] proposed the mathematical model of 
Elastica that can be used for loop structure. Munden 
[2] recommended a loop configuration determined by 
condition of minimum energy and suggested his 
model independent of yarn properties and stitch 
length. Grosberg [3] also worked on the geometrical 
properties of the simple warp-knitted fabrics. An 
energy minimization technique has been also used to 
describe the shape of the single bar warp knitted 
fabric structures [4]. Recently, many researchers have 
worked on the loop geometry of the fabrics. A new 3-
D image of the basic warp-knitted structure was

created in a CAD program by employing the data 
obtained from the real loops in fabric [5]. A knitted 
fabric mechanical model was developed using the 
energy model of knitted loop that the shape of the 
yarn after knitting was curved and had non-linear 
mechanical properties. In the developed model, the 
effect of residual torque on yarn was also taken into 
consideration [6, 7]. The 3-D model of a plain weft-
knitted structure results from the assumption that 
yarn cross section changes to ellipse along the loop
[8]. In the other work, the geometrical model of a 
tuck stitch and its effect on the plain knitted fabric 
structure were introduced [9]. Also, the elliptical 
shape for the head of loops and general helices for 
the other parts including arms of the loops were used 
for single pique, half and full cardigan weft knitted 
structures [10]. Using a buckled-twisted elastic rod, 
Ajeli et al. found a 3-D geometry of knitted loop 
structure [11]. Furthermore, Durville approached the 
textile simulation of woven structures problem at the 
fibers scale using 3-D beam model [12]. He also 
proposed a finite element approach which simulates 
the mechanical behavior of beam assemblies that are 
subject to large deformations and that develop 
contact-friction interactions [13]. Robitaille et al.
presented an algorithm that generates geometric 
descriptions of unit cells of textiles and composite 
materials [14]. Lomove et al. used finite element 
model of a unit cell of a textile [15]. 

In the previous studies, modeling was carried out on 
a plain loop knitted from mono-filament yarns or the 
yarn structure has been assumed as a continuous
media. In a real state, knitted loops are produced 
from multi-filaments yarns. Regarding Elastica 
theory, this study aimed at modeling loop geometry
in a multifilament knitted structure.

3-D GEOMETRICAL LOOP MODEL
First Step, 2-D Post-Bucking
It is assumed for simplicity of the model that the 
multifilament yarns are composed of two, three and 
seven filaments with circular cross section. Post-
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buckling behavior of multifilament yarn was 
investigated with respect to Elastica model (Figure 
1). According to Leaf’s Elastica formulation which
describes the deflection of elastic rod, the dimension 
of the loop at any arbitrary point(x,y) is as follows 
[1]:

x= - (1)

y - 0) (2)

0)- 0 0) (3)

Where F( is an elliptic integral of the first kind 
with modulus is an elliptic integral of the 
second kind with modulus and index a is the 
proportion of distance of the base(AA') to the rod 
length. Parameter b can be obtained using the 
equation Bb P

and B and P denote the flexural 

rigidity and buckling load, respectively.

FIGURE 1. Elastica shape.

Solution procedure of Eq. (1), Eq. (2) and Eq. (3)
with different base distance of Elastica curvature, by
assuming the yarn cross section arrangement as 
shown in Figure 2 with circular cross section of 
diameter 1 cm and length of 100 cm of each 
monofilament is provided in Table I.

(a)

(b)

(c)

FIGURE 2.  Proposed Elastica legs cross-section with different 
filaments arrangement. (a), (b) and (c) are ordered two, three and 
seven filaments yarn cross-section.

TABLE I. Critical results in 2-D Post-Buckling using Elastica 
model.

a ym xm

0.01 42.48 10.35

0.03 42.56 10.65

0.02 42.53 10.50

0.04 42.60 10.80

0.05 42.62 10.95

ym and xm are the maximum x and y.

Figures 3, 4 and 5 show the monofilament's position 
in the yarn using proposed loop model for two, three 
and seven monofilament, respectively. Volumetric
intersections between filaments can be easily seen in 
these figures which must be eliminated. Elimination 
process was performed using out-plane deflection 
method of mono filaments and genetic algorithm. 



Journal of Engineered Fibers and Fabrics 142 http://www.jeffjournal.org
Volume 9, Issue 4 – 2014

FIGURE 3. The shape of Post-Buckled yarn composed of 2 
filaments, a. Front view b. Perspective view.

FIGURE 4. The shape of Post-Buckled yarn composed of 3 
filaments, Front view b. Perspective view.

FIGURE 5.The shape of Post-Buckled yarn composed of 7 
filaments, a. Front view b. Perspective view.

Second Step, Out-Plane Deflection
In this step, an out-plane bending force was used to 
eliminate the volumetric intersections of 
monofilament in the yarn model. Furthermore, 
genetic algorithm was utilized to reduce the problem 
complexity and to optimize the contact force. 

All the interactions on a filament have been replaced 
by an out-plane force on the loop head which causes 
bending in the YZ plane. The diagram of a simply
supported beam under a concentrated load is
illustrated In Figure 6. According to Bishop and 
Drucker [16], large deflection of a beam due to 
bending under a concentrated load can be expressed 
as follows:

P(L- -y) (4)

Where B is bending rigidity, P is bending load, s and 
ngth and slope angle, respectively. y is 

also the horizontal coordinate measured from the 
fixed end of the beam. L is the beam length. 
According to Figure 6, and are structure 
deflection for corresponding and s.

FIGURE 6. Large deflection of a beam using load F [16].

Solving Eq. (4), gives:

(5)

(6)

Where and are elliptic integral of first 
and second kind with modulus , respectively and;

(7)
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(8)

If 0 then 1 and 0 denotes the tangent of free 
beam end.

Considering the last four equations, the 3-D shape of 
elastic in Figures 3, 4 and 5 was achieved. Filament 
interactions complexity of this case result from 
friction, torsion, and bending forces that make the 
problem really complicated to be analytically solved.
Numerical approaches are recommended in these 
situations; provided that filament interactions are 
simplified.

Genetic Algorithm (GA) was taken for optimizing the 
out-plane bending forces in the structure and 
elimination of volumetric intersection of the yarn 
filaments. GA is a search method in which the 
possible solutions space (search space) is studied to 
find an optimal solution. Each possible solution can 
be marked by its fitness value, depending on the 
problem definition. GA has a number of important 
features. The first feature is that it is a stochastic 
algorithm; randomness plays an essential role in GA. 
Second point is that a population of solution is taken 
into account. Keeping in memory more than a single 
solution offers a lot of advantages. The algorithm can 
recombine different solutions to get better ones and 
so, it can benefit from assortment. All the above 
mentioned features make GA a powerful 
optimization tool [17].

Each solution is represented through a chromosome. 
After encoding a solution into a chromosome, GA 
starts by generating an initial population of 
chromosomes. Generally the initial population is 
generated randomly. Then the GA loops over an 
iteration process to make the population evolve. Each
iteration consists of the following steps: Selection,
Reproduction, Evaluation, and Replacement. 

In the present research, The GA’s chromosome
includes seven genes, one for each filament, holding 
the value of bending force. GA minimizes fitness 
function which is as follows [17]:

6 7

1 1

( ) ij
i j i

f V V (9)

Where ijV is volumetric intersection between ith and

jth filament. Since ij jiV V , the summations indexes 
are chosen in a way to remove repetitive terms. By 
expansion the Eq. (9), it can be seen that there is no 

repetitive term in the fitness function. The above 
mentioned terms reduce the algorithm performance 
and make the fitness function noisier. The Roulette 
Wheel was chosen as selection operator. Arithmetic 
crossover and uniform mutation were used for 
reproduction operator in which mutation and 
crossover rate were 0.8 and 0.01 respectively. 
Population number was 100. Arithmetic crossover 
operator linearly combines two parents using a 
weighting factor according to the following 
expressions.

1 1 (1 ) 2
2 (1 ) 1 2

offspring parent parent
offspring parent parent

FIGURE 7. Flowchart of GA process.

The flowchart of GA process is shown in Figure 7.
Optimization has been performed on three cases 
including 2, 3 and 7 filaments.

Case I
In this case, a yarn composed of two filaments has 
been optimized. Since the genes were real values and 
the search space was very large, constrains have been 
defined to reduce the search space size and
consequently computing time. Filaments bending 
directions are opposite; therefore one of them can 
bend in positive direction of axis z while another one 
bends in the reverse direction. It is clear that such 
constrain prevents the filaments from being on the 
same side of z-plane simultaneously.

Case II
The purpose of this case was to optimize a yarn 
composed of three filaments. Like the previous case, 
some constrains have been applied on filaments. In 
this case, bending directions of neighbor filaments 
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are opposite. Filaments bending directions are
depicted in Figure 8.

FIGURE 8. Bending direction of filaments in a yarn composed of 3 
filaments.

Case III
In Case III a yarn composed of seven filaments has 
been optimized. In this case, optimization has been 
performed in two steps. In the first step, three 
filaments placed on plane z=0 have been optimized 
then in the second step, optimization of other four 
filaments has been carried out based on fix position 
of three initial ones. Constrains applied on filaments 
are shown in Figure 8. Bending directions of the 
filaments placed on plane z=0 are mutually opposite.
Dashed directions in Figure 9 indicate this constrain.

FIGURE 9. Bending direction of filaments in a yarn composed of 3 
filaments.

GEOMETRIC LOOP MODEL RESULTS 
The optimized structures of the 3-D yarn shape 
obtained by proposed model are illustrated in Figures
10, 11 and 12.

           a                        b                           c

FIGURE 10. Optimal form of the yarn composed of 2 filaments
obtained by proposed model. a, b and c is the side view, front view 
and 3-D view, respectively.

         a                            b                                  c

FIGURE 11. Optimal form of the yarn composed of 3 filaments 
obtained by proposed model. a, b and c is the side view, front view 
and 3-D view, respectively.

             a                           b                                 c

FIGURE 12.Optimal form of the yarn composed of 7 filaments 
obtained by proposed model. a, b and c is the side view, front view 
and 3-D view, respectively.

FINITE ELEMENT METHOD MODELING
The Finite element method (FEM) was utilized to 
verify the results of optimized yarn structure based 
on the proposed model. The Finite element method is 
a numerical computing technique for finding a
solution for partial differential equations. The 
principle is to break a complicated problem into 
smaller interconnected sub-regions to facilitate 
solution procedure [18]. 

Yarn parameters modeled by finite element are the 
same as those of proposed model. The yarn is 
composed of elastic rods with circular cross section 
of diameter 1 cm and length of 100 cm. two, three 
and seven rods with arrangement on Figure 2 was 
considered for multifilament yarns FEM model. The 
main rod parameters of the structure used in FEM 
model are listed in Table II. The dynamic explicit 
method is considered for this analysis. For simple 2-
D problems, static implicit analysis models are 
generally known to be more accurate and efficient 
than dynamic explicit analysis models. However, for 
complex 3-D forming problems, the static implicit 
procedures encounter a number of inherent
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difficulties. Static implicit finite element 
formulations require a very long computational time 
for the analysis of the model. The dynamic explicit
method on the other hand appears to be very effective 
in analyzing complex incremental forming problems. 
In this paper, a comparison of the analysis results 
obtained using dynamic explicit finite element 
method. Figure 13 depicts illustrations of filament
position in the loop structure.

TABLE II. Setting for finite element modeling of the problem.

Parameters Value
Solver Dynamic/ Explicit
Friction Coefficient 0.8
Element Type 3D Stress
Elements No. 400 per filament
Shape/Type Solid/Sweep
Young’s  Modulus 200 GPa
Poisson’s Ratio 0.3
Mass Density 7870 Kg/m3

Section Solid, Homogeneous

                a                          b                             c

FIGURE 13. Finite element results. a, b, and c is a loop composed 
of 2, 3 and 7 rods, respectively.

COMPARING LOOP MODEL AND FEM 
The results of the proposed loop model and FEM
model were compared. The results of the proposed 
model are listed in Tables III, IV and V. The indexes
d, D and zmax are maximum width, maximum height 
and maximum deflection of the filament along z
direction, respectively. Bending load F corresponds 
with calculated force of respective filament in the 
yarn. Plus and minus sign of the F shows the 
direction of the force along z direction hence it shows 
bending direction of the filament. -z and +z in Tables
III, IV, and V show the initial position of the filament 
in negative and positive space of z plane, 
respectively.

Comparison between two models is provided in 
Table VI. The percentage of error is calculated as 
below:

% 100p fem

fem

V V
Error

V
(10)

Where pV and femV account for values of the 
proposed and finite element model, respectively. 
Maximum error happens in z direction of the yarn 
which is composed of two filaments. Small amount 
of error in all cases show that the proposed model 
results are acceptable.

TABLE III. Proposed model results for the yarn composed of 2 
filaments.

a Bending 
Load F d (cm) D (cm) Zmax(cm)

0.01 0.035 20.69 41.92 -0.95
0.03 0.032 21.25 42.05 +0.87

TABLE IV. Proposed model results for the yarn composed of 3 
filaments.

a Bending 
Load F d (cm) D (cm) Zmax(cm)

0.01 -0.056 20.70 41.57 -1.52
0.03 +0.055 21.25 41.67 +1.50
0.05 -0.010 21.88 42.46 -0.27

TABLE V. Proposed model results for the yarn composed of 7 
filaments.

a Bending Load F d (cm) D (cm) Zmax(cm)
0.01 0.056 20.69 41.57 -1.52
0.03 0.055 21.25 41.67 +1.50
0.05 0.010 21.88 42.46 -0.27

-z    0.02 0.065 20.97 41.46 -2.63
+z 0.02 0.013 20.96 40.33 +4.41
-z    0.04 0.119 21.56 40.60 -4.11
+z 0.04 0.065 21.56 41.53 +2.64

TABLE VI. Comparison between proposed model and finite 
element models.
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CONCLUSION
In the present study a geometrical model of a
multifilament yarn is proposed. The model is 
composed of two steps including 2-D post-buckling 
of the filaments yarn and 3-D optimization of the 
filament interactions using genetic algorithm. In the 
first step, the multifilament yarn undergoes post-
buckling phenomenon in 2-D. It is shown that there 
are volumetric overlaps between post-buckled 
filaments which are needed to be eliminated. 
Determining the deflection of the structure is 
analytically impossible, since there is a complicated 
collection of interactions between filaments during 
the post-buckling process. The interactions are
replaced by an out-plane force which causes the
filaments to be bent along the out-plane direction. 
Step two is associated with determining the force 
using genetic algorithm. Fitness function of the 
genetic algorithm is a summation of the overlaps 
between 2-D post-buckled filaments and is needed to 
be minimized. In order to verify the results of the 
proposed model, the yarn is modeled by the finite 
element method. The small difference between the
two models confirms the acceptability of proposed 
model.
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