
57 
 

*Corresponding author 
email address: mehdi.shirani@cc.iut.ac.ir 
 

 
 
 

Assessment of different methods for fatigue life prediction of steel in 
rotating bending and axial loading 

 
 

J. Amiriana, H. Safarib, M. Shiranib,*, M. Moradia and S. Shabanib 
 
 

aDepartment of Mechanical Engineering, Isfahan University of Technology, 84156-83111, Iran 
bSubsea Research and Development Center, Isfahan University of Technology, 84156-83111, Iran 

 
 

Article info:  Abstract 
Generally, fatigue failure in an element happens at the notch on a surface 
where the stress level rises because of the stress concentration effect. The 
present paper investigates the effect of a notch on the fatigue life of the 
HSLA100 (high strength low alloy) steel which is widely applicable in the 
marine industry. Tensile test was conducted on specimens and mechanical 
properties were obtained. Rotating bending and axial fatigue tests were 
performed at room temperature on smooth and notched specimens and S-N 
curves were obtained. Using the obtained S-N curve for smooth specimens, 
the fatigue strength factor for the notched specimens were predicted by 
Weibull's weakest-link, Peterson, Neuber, stress gradient and critical 
distance methods and compared with experimental results. It was found that 
the critical distance and also Weibull’s weakest-link methods have the best 
agreement with experimental results. 
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1. Introduction 
 
A component with an unchanging cross-sectional 
area under a load has a uniform and homogeneous 
stress and strain distribution. Any type of notch 
existence or sudden changes in cross-section 
causes an inhomogeneous distribution of stress 
and strain. In general, fatigue failure in an element 
arises where the stress level rises due to the stress 
concentration effect such as a notch on a surface. 
Notch is usually defined as a geometric 
discontinuity. A notch may be introduced either by 
designing or by a manufacturing process. A hole 
in a component is an example of a designed notch. 

Fabrication defects such as weld defects, 
inclusions, casting defects, or machining marks are 
notches which are introduced due to the 
manufacturing process [1]. 
Theoretically, the nominal strength of a notched 
component should be lower than that of a smooth 
one by a factor of kt. But, experiments show that at 
the fatigue limit, the fatigue strength of a smooth 
part decreases by a factor of kf and not the factor of 
kt [1]. The presence of a notch on a component 
causes stress gradient at the notched area. Based 
on this phenomenon, empirical methods such as 
Neuber and Peterson were proposed to predict the 
fatigue life of notched components [2]. Stress 
gradient method presented by Siebel and Stieler 
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[3] and critical distance method presented by 

Taylor [4] are two other methods proposed for. 

Critical distance method is based on the critical 

distance at the notch root. These methods are 

mainly based on empirical tests, which are 

conducted on many metals.  

It should be considered that these methods are not 

consistent with finite element results. This 

shortcoming is solved by weakest-link theory 

presented by Weibull, in which the probability of 

fatigue failure is obtained from finite element 

results [5-10]. In Weibull's weakest-link theory, 

critical defects are assumed statistically scattered 

in the volume of a component.  In this theory, the 

size of defects is supposed very small compared to 

the distance between them and therefore the 

defects do not interact [11-13]. Just as a chain is as 

strong as its weakest link, the fracture of the 

weakest link yields the failure of a complete 

component. Therefore, the weakest-link theory 

supposes that probability of survival of 

the whole component equals to the production of 

the probabilities of survival of all the elements. In 

this study, HSLA100 (high strength low alloy) 

steel is investigated. This material is applicable in 

marine industry, where different types of severe 

fatigue loading are applied on the marine structure 

during its life; therefore, accurate life investigation 

of this steel is essential for the marine 

industries [14, 15]. 

HSLA steels are designed to deliver particular 

advantageous mixtures of properties such as 

toughness, strength, weldability, formability and 

atmospheric corrosion resistance. In order to retain 

formability and weldability, carbon content in 

HSLA steel is between 0.05–0.25 percent [16, 17]. 

HSLA100 steel is designed for the yield strength ≥ 

700MPa and impact strength ≥/ 81 J at 84 °C [18, 

19]. 

The main goal of this research is to compare 

different methods of predicting fatigue life of 

notched HSLA100 specimens and find which ones 

yield better results. In order to do that, fatigue tests 

were conducted on smooth and notched specimens 

to obtain the S-N curves. Neuber, Peterson, stress 

gradient, critical distance and Weibull's weakest-

link methods were used to predict the S-N curve 

for the notched specimens based on the S-N curve 

for smooth specimens. The obtained theoretical 

results were compared with experimental data. 

2. Experimental procedure 
 

2.1 Material Properties and specimens 
 

Experimental results obtained from testing were 

used for analysing and comparing with the 

theoretical methods. Tensile tests were 

performed according to ASTM E8 [20] and 

mechanical properties of the studied material were 

obtained. Figure 1 shows a typical engineering 

stress-strain curve for the tested steel and Fig. 2 

shows the test equipment. Tables 1 and 2 

summarize the mechanical properties and 

chemical composition of the used material, 

respectively. 

Rotating bending [21] and axial fatigue tests [22] 

were carried out on smooth and notched 

specimens. Figure 3 shows dimensions of the 

smooth and notched cylindrical specimens for 

rotating bending and axial fatigue tests. 

 

 
Fig. 1. The engineering stress-strain curve for the tested 

steel. 

 

 
Fig. 2. The tensile test equipment. 
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Table 1. Mechanical properties of the studied 

HSLA100. 
Yield 

strength 

Sy (MPa) 

Ultimate 

strength 

Su (MPa) 

Strain at 

break 

Eu (%) 

Modulus of 

elasticity 

E (GPa) 

791 895 31 197 

 
Table 2. Chemical composition of the studied 

HSLA100 (wt %.). 
Ni Mn Cu Cr Mo Si C Nb Al 

3.59 0.91 1.59 0.59 0.58 0.25 0.03 0.03 0.02 

 

 
Fig. 3. Detailed drawings of specimens; (a) smooth and 

(b) notched specimens (all dimensions are in mm). 
 

2.2 Fatigue tests 
 

In the rotating bending test, a constant load was 

applied perpendicular to the cylindrical specimen 

rotating at 50 Hz. In the axial test, the cylindrical 

specimen was cyclically loaded to the failure by 

servo-hydraulic testing machine using a sinusoidal 

signal. Fourteen smooth and twelve notched 

specimens were rotating bending and axially 

fatigue tested each. Experimental equipment used 

for testing smooth and notched specimens are 

shown in Fig. 4 and 5.  

 

2.3 Test results 
 
Fatigue test results are presented in Fig. 6. The 

number of cycles before failure, Nf, was plotted 

against the net section stress amplitude, σa. Based 

on the rotating bending test data, fatigue limit for 

the smooth and notched cylindrical specimens are 

310MPa and 170MPa, respectively. Also, based 

on the axial test data, fatigue limit for the 

cylindrical smooth and notched specimens 

are 270MPa and 140MPa respectively. Fatigue 

strength factor (kf) for the notched specimen in 

rotating bending and axial fatigue tests are 1.82 

and 1.93, respectively. kf is obtained by dividing 

fatigue limit of smooth specimen to fatigue limit 

of notched specimen. The fatigue strength factor 

(kf) is a function of the notch geometry and the type 

of loading. 

 

 

 
Fig. 4. Experimental equipment for rotating bending 

tests 

 

 
Fig. 5. Experimental equipment for axial tests 

 

Line equation passing through the rotating bending 

fatigue test results for smooth specimens, is as 

follow: 
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 (1) log(σa)=-0.1073 log(Nf) + 3.1588 

 

and for the notched specimen is: 

 

(2) log(σa)=-0.1295 log(Nf) + 3.0239 

 

Also, line equation passing through the axial 

fatigue test results for the smooth specimens, is as 

follow: 

      (3) log(σa)=-0.1041 log(Nf)+3.0843 

and for notched specimen is: 

 

(4) log(σa)=-0.131 log(Nf) + 2.9626 

Usually, Basquin equation is used to describe the 

S-N curve in the high-cycle-region. Basquin 

equation is as follow: 

 

(5) σa=σf
′(Nf)

−1

m    
 

 

where σf
'is the fatigue strength coefficient and 

-1 / m  is the fatigue strength exponent. This curve  

will be a straight line on a log-log plot and may be 

found by linear regression analysis of fatigue data 

points. The logarithm of Eq. (5), gives the 

following linear relationship: 

(6) log(σa)= log(σf
') -

1

m
log(Nf) 

or 

(7) y(x)=ax+b                
with 

 y(x)= log(σa) , x= log(Nf) , a=-
1

m
, b= log(σf

').  

By comparison of line equations for smooth and 

notched specimens with Eq. (6), the fatigue 

strength coefficient and the fatigue strength 

exponent in rotating bending fatigue will be 

m=9.34, σf
'=1441.45 for the smooth specimens, 

and m=7.75, σf
'=1056.8 for the notched specimens. 

Also, the fatigue strength coefficient and the 

fatigue strength exponent in axial fatigue will be 

m=9.61, σf
'=1214.2 for the smooth specimens, and 

m=7.63, σf
'=917.5 for the notched specimens. 

 

 

 

Fig. 6. Fatigue behaviour of the HSLA100 cylindrical specimens with and without notch (a:  rotating bending loading 

and b: axial loading). 
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3. Prediction of notch effect on fatigue life of 
HSLA100 specimens 
 

In this section, Weibull's weakest-link, Neuber, 

Peterson, stress gradient and critical distance 

methods are used to predict notch effect on fatigue 

life of the HSLA100 steel. Stress concentration 

factor, kt, is required to use Neuber, Peterson and 

stress gradient methods. This factor is obtained by 

simulation of stress distribution for both smooth 

and notched specimens by finite element method. 

kt  is obtained by dividing maximum stress at the 

notch root by average cross section stress. 

Stress concentration factor for the notched 

specimen, Fig. 3, is kt =2.73 for the bending load 

and kt =2.86 for the axial load. However, the tests 

indicated that at the fatigue limit, the presence of a 

notch on a component under cycling nominal 

stresses reduces the fatigue strength of the smooth 

component by a factor of kf and not the factor of kt. 

A formula, which is acceptable in engineering 

applications and expresses fatigue strength factor 

is as follow [1]: 

 

(8) kf=1+q(kt-1) 

 

As can be seen, this formula empirically relates 

fatigue strength factor to the elastic stress 

concentration factor by a notch sensitivity factor q.  

In critical distance method, it is required to 

determine stress gradient at the notch root. So the 

bending and axial load were applied on the 

notched specimen and stress gradient was 

obtained. 

 

3.1 Weibull’s weakest-link theory 
 

In the weakest link theory, the probability of 

component failure [5] is described as: 

 

(9) pf,v=1-exp [-(
σa̅

σ*
A0

)

bσ

] 

 

Equation (9) is called Weibull fatigue strength 

distribution and corresponds to a two-parameter 

Weibull distribution. bσ, is the Weibull shape or 

shape parameter and refers to the measure of 

reference specimens fatigue strength scatter. σ*
A0, 

is the scale parameter and refers to the fatigue 

characteristic of the reference fatigue test 

specimen. aσ  is the Weibull stress amplitude and 

illustrate the fatigue-effective stress amplitude. 

There are two different methods based on the 

weakest link theory for estimating the probability 

of failure of specimens [5, 23]. In the first 

approach, called the volume method, the critical 

defect is assumed to lie somewhere within the 

volume of the specimen. In the second approach, 

the controlling defects are assumed to be located 

on the surface of the specimen. This approach is 

therefore called the surface method. 

In the volume formulation of Weibull's weakest-

link method, aσ is defined as: 

 

(10) σa̅=(
1

v0
∫σa

bσ

v
𝑑𝑣)

1
bσ

 

 

where v0 is an arbitrary reference volume or the 

volume of reference fatigue test specimen and v is 

the component volume. 

In the surface formulation of Weibull's weakest-

link method,  aσ is defined as: 

 

(11) σa̅=(
1

𝐴0
∫σa

bσ𝑑𝐴
A

)

1
bσ

 

 

where A0 is an arbitrary reference surface or the 

surface of reference fatigue test specimen and 𝐴 is 

the component surface. Weibull fatigue strength 

distribution (Eq. (9)) can be transformed into a 

Weibull fatigue life distribution through the 

Basquin equation (Eq. (5)), and finally Weibull 

fatigue life distribution will be obtained as follow: 

 

(12) Pf,v=1-exp [-(
n

N*
0(R,σa̅)

)

bn

] 

 

where bn and N*
0 are shape parameter and scale 

parameter, respectively. The bn is related to bσ by 

following equation: 

 

(13) bn=
bσ

m
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where m is the fatigue strength exponent. Weakest-

link theory assumes that if the component is 

divided into small elements, the probability of 

survival of a component is the product of the 

probabilities of survival of the (small) elements. 

The probability of survival of an element is a 

function of the stress cycle, the fatigue strength 

characteristic, material scatters and also the size of 

the element. 

For applying the weakest-link theory, an in-house 

developed software was used in this research. This 

software is a fatigue post-processor which uses the 

results from a standard finite element stress 

analysis. In order to compute the fatigue life of 

a component by this software, the required inputs 

are as follows: 

 Mechanical properties of the HSLA100 

(ultimate strength, fatigue strength) obtained from 

the tensile and fatigue tests in section 2. 

 The parameters of S-N curve for the smooth 

specimen (fatigue strength coefficient, fatigue 

strength exponent) obtained from the rotating 

bending and axial fatigue tests in section 2. 

 Weibull constants for the smooth specimen (-

shape parameter, scale parameter) which will be 

obtained in section 3.1.  

 Finite element file of the simulated notched 

specimen (a file containing the element topology, 

nodal coordinates, and nodal coordinate stresses) 

which will be explained in section 3.2. 

The volume of reference fatigue test specimen v0 

and the surface of reference fatigue test specimen 

𝐴0, in this research, is calculated as 1536 mm3 and 

1053 mm2, respectively. 

 

3.1.1. Statistical analysis of fatigue data to find the 
Weibull distribution constants 
 

In this section, statistical analysis of fatigue test 

results is performed to find the Weibull 

distribution constants. If several specimens are 

tested until fatigue failure, the obtained fatigue 

lives will differ from specimen to specimen. If a 

sufficient number of test specimens at each stress 

level are available, and then the Weibull 

distribution is fitted to each stress level, an S-N 

curve for different probabilities of failure can be 

obtained [24]. In this research, 14 smooth 

specimens were tested in two rotating bending 

and axial fatigue tests each. This number of 

replications was not sufficient to create S–N curves 

for different probabilities of failure at each stress 

level. Therefore, a special curve fitting technique 

used by the authors in their other published works 

was applied [25]. S–N curves for various 

probabilities of fatigue failure will be moved by a 

uniform value in the vertical direction (stress 

direction) if it is supposed that the coefficient of 

variation in strength is constant. Thus, as shown in 

Fig. 7, if k data points are accessible, it is practical 

to move k parallel S–N curves (on a log-log plot) 

through these data points and from each S–N curve 

one probability of failure will be obtained. 

With this technique, different probabilities of 

fatigue failure (k) can be obtained and at each 

fatigue strength, σa, there will be k number of life 

values. Then by applying Weibull distribution to 

these k lives at an arbitrary stress level, bn and N*
0 

are obtained for the studied material (bn=2.78, 
N*

0=5.76×105 for the rotating bending load and 

bn=2.71, N*
0=5.96×105 for the axial load). Also 

with these two values (bn and N*
0) and using Eq. (5 

and 13), bσ and σ*
A0 are obtained (bσ=25.91, 

σ*
A0=347.32 for the rotating bending load and 

bσ=26.04, σ*
A0=304.55 for the axial load). It should 

be noted that m and σf
'belong to the smooth 

specimen equation. In the following sections, it 

will be explained how parallel S-N curves are 

drawn.  

As mentioned in section 2, it is often assumed that 

the S–N curve follows the Basquin equation and 

will be a straight line on a log-log plot. In 

standard S–N curves, stress is an independent 

variable and number of cycles to failure is a 

dependent variable so in this curve stress is plotted 

on the ordinate and number of cycles to failure is 

plotted on the abscissa. The standard method in 

curve fitting assumes that independent and 

dependent variables are plotted on the abscissa 

and ordinate, respectively. But it should be noted 

that with fatigue data, stress is actually the 

independent variable which should be plotted on 

the abscissa. To treat cycles as the independent 

variable, it can lead to errors in the curve fitting 

[26]. So in this section, life-stress curve is plotted 

(life on the ordinate and stress on the abscissa) and 

the standard least squares method can be used for 

curve fitting. Passing line equation for rotating 

bending load is obtained as follow: 
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(14) log(Nf)= -8.90 log(σa)+28.35 

 

and for axial load is: 

 

(15) log(Nf)= -9.36 log(σa)+29 

The slope of these parallel S-N curves is equal to 

the slope of the rotating bending S-N curve and the 

axial S-N curve, -8.90 and -9.36 respectively. 

 

3.1.2 Stress analysis of axial and rotating bending 
notched specimen 
 

In axial fatigue loading, stresses can easily be 

obtained. In the weakest link theory, maximum 

stress in notched specimen under fatigue loading is 

required. This can be obtained by the use of 

available commercial finite element softwares. 

Therefore, the notched specimen is simulated in 

the finite element software under axial loading and 

the stresses are calculated. 

But stress amplitude distribution in an 

axisymmetric specimen under rotating bending 

cannot directly be obtained by a finite element 

analysis.  

However, by superimposing suitably weighted 

FEA stress distributions from bending      about the 

y- and z-axes, Fig. 7, the stress amplitude 

distribution in rotating bending can be readily 

obtained [27].  

A bending moment M is applied to a rotating 

cylindrical specimen. Cross section of this 

specimen is shown in Fig. 8. At the particular 

instant, the radius OA is perpendicular to the 

moment vector and the axial stress at this moment 

(point A in Fig. 8) reaches its maximum. During 

rotating bending, the stress state at the 

position x for an arbitrary angle of rotation (point 

A), θ, is: 

(16

) 
σx(A)=

Mcosθ .  OAcosθ
I

+
Msinθ .  OAsinθ

I
 

 

or 

(17) σx(A)=σMy(A)cosθ+σMz(A)sinθ 

where σMy(A) and σMz(A) are the resulting stress 

tensor fields for bending around the specimen's y- 

and z-axis, respectively for point A. y and z are 

perpendicular to each other and also to the length 

axis (x-axis) of the specimen. 

 

Fig. 7. A family of S–N curves passing through each data point for the smooth specimens (a: rotating bending and b: 

axial 
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The stress fields σMy(A) and σMz(A) can be 

determined by means of two separate load cases 

for a finite-element model of the rotating bend 

specimen. Similarly, for all points of the specimen 

(all nodes of the simulated specimen by finite 

element method) the stress field is obtained. 

By applying the above-mentioned methodology, 

an axisymmetric stress field is obtained for the 

notched specimens, Fig. 9, to be used in the 

weakest-link analysis. 

 

 
Fig. 8. Cross-section of a rotating bending specimen 

subjected to a bending moment M. 
 

 

 
Fig. 9. Stress distribution for the notched specimen; (a) 

rotating bending load and (b) static load. 

 

3.1.3 Weibull's weakest-link results 
 

kf in weakest-link theory is obtained by dividing 

the effective stress to the stress amplitude. As 

specified in Table 3, the surface method yields 

more conservative predictions than the volume 

method. The fatigue-effective stress amplitude is 

calculated by integrating the stress over the surface 

in the surface method and over the volume for the 

volume method. Since surface stresses are larger 

than volume stresses, the calculated fatigue-

effective stress amplitude in the surface method is 

larger than volume method at the same applied 

stress amplitude.  

 

3.2 Peterson method 
 

Peterson assumes that fatigue failure occurs when 

stress at a point in a critical distance (ap) away 

from the notch root is equal to the fatigue strength 

of a smooth specimen. The following empirical 

equation is proposed for q: 

 

(18) q=
1

1 +
ap

r
 

 

where ap is the material constant which is 

dependent on the loading and size and r is the 

notch root radius [28]. ap is obtained from 

experimental curves that are provided by Peterson 

[28]. By applying Eq. (8 and 18), the fatigue 

strength factor for the rotating bending and axial 

fatigue tests is obtained 2.09 and 2.17, 

respectively. 

 

3.3 Neuber method 
 

In Neuber method [29] it is assumed that fatigue 

damage occurs if the average stress over a distance 

(an) from the notch root equals to the fatigue limit 

of a smooth specimen. Neuber presented the 

following empirical equation for q: 

 

(19) 
q=

1

1 + √
an
r

 

where r is the notch root radius and an is the 

Neuber’s material constant related to the grain 

size. Neuber’s material constant is determined 

versus the ultimate tensile strength. By applying 

Eq. (8 and 19), the fatigue strength factor for the 

rotating bending and axial fatigue tests is obtained 

2.16 and 2.25, respectively.  
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Table 3.Weibull's weakest-link results for probability of fatigue failure of 50 percent.

Method 

Axial load Rotating bending load 

stress amplitude 

𝜎𝑎(MPa) 

effective stress 

𝜎𝑎̅̅ ̅ (MPa) 
𝑁𝑓 

(cycle) 

stress amplitude 

𝜎𝑎(MPa) 

effective stress 

𝜎𝑎̅̅ ̅ (MPa) 
𝑁𝑓 

(cycle) 

Volume method 213.03 342.7 650611 198.09 342.7 650611 

Surface method 181.47 342.7 650611 172.21 342.7 650611 

 

3.4 Stress gradient method 
 

Siebel and Stieler [3] used the stress gradient 

effects on the fatigue strength reduction instead of 

the notch root radius. They introduced a new 

parameter, the relative stress gradient (RSG), 

defined as follow: 

 

(20) RSG=
1

σe(x)
(

dσe(x)
dx

)
x=0

 

 

where x is the normal distance from the notch root 

and σe(x) is the theoretically calculated elastic 

stress distribution. By testing fatigue strength of 

the smooth and notched specimens, they provided 

empirical curves relating /t fk k to RSG for 

various materials. These curves can be expressed 

by the empirical formula. The fatigue strength 

factor for the rotating bending and axial fatigue 

tests is obtained 2.53 and 2.66, respectively. 

  

3.5 Critical distance method 
 

Theory of critical distance contains three different 

approaches [4]. This section starts with point 

method and then the line method and area method. 

In these methods, the stress gradient in front of the 

notch root and a critical distance from the notch 

root are required. Stress gradient in front of the 

notch root obtained by finite element analysis and 

critical distance is as follow: 

(21) L=
1

π
(

∆kth

∆σ0

)

2

 

 

 

This equation relates critical distance to two 

materials constants, Δkth and Δσ0, where Δkth is 

stress intensity threshold and Δσ0 is fatigue limit.  

 

 

Distance on the stress–distance curve is denoted by 

r and stress by Δσ(r). 
According to the point method, fatigue failure 

occurs when the stress value reaches the strength 

of a smooth specimen in half of the critical 

distance, i.e.: 

 

(22) ∆σ(r=
𝐿

2
)=∆σ0 

 

In the line method, the average stress over r = 

[0,𝐿 2⁄ ] is used, and fatigue failure occurs when 

this average stress is equal to the strength of a 

smooth specimen. The area method involves 

averaging the stresses over some areas in the 

vicinity of the notch. In the area method, fatigue 

failure occurs when this average stress is equal to 

the strength of a smooth specimen [4]. 

To obtain critical distance, the stress intensity 

threshold (Δkth) and the fatigue limit (Δσ0) should 

be available, but the stress intensity threshold of 

HSLA100 is not available; therefore, an alternative 

method is used. 

Peterson [28] presented an empirical equation that 

relates critical distance to ultimate strength for 

bending load: 

 

(23) 𝐿(𝑚𝑚) = 2 × 0.0254 × (
2079

su (MPa)
)

1.8

 

 

Through this method, for the HSLA100, the 

critical distance is obtained (L=0.2316). Since in 

critical distance method it is required to calculate 

stress gradient at the notch root, 

the bending and axial load are applied on 

the notched specimen. 
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Table 4. Fatigue strength factors (kf) predicted by experiments and also different methods. 

Method Experiment Peterson Neuber 
Stress 

Gradient 

Weibull's weakest link Critical Distance 

Volume 

method 

Surface 

method 

Point 

Method 

Line 

Method 

Area 

Method 

𝑘𝑓 1.82 2.09 2.16 2.53 1.61 1.89 1.89 1.92 1.96 

𝑘𝑓 1.93 2.17 2.25 2.63 1.73 1.99 2.02 2.06 2.09 

Table 5. Different classical methods prediction error percent (ep). 

method Peterson Neuber 
Stress 

Gradient 

Weibull's weakest link Critical Distance 

Volume 

method 

Surface 

method 

Point 

Method 

Line 

Method 

Area 

Method 

ep 0.15 0.19 0.39 0.11 0.04 0.04 0.05 0.08 

ep 0.12 0.16 0.36 0.10 0.03 0.05 0.07 0.08 

 

 

stress gradient at the notch root, 

the bending and axial load are applied on 

the notched specimen. 

The obtained fatigue strength factor, kf, in rotating 

bending fatigue is 1.89, 1.92, and 1.96 for point, 

line, and area methods, respectively. In axial 

fatigue, this factor is 2.02, 2.06, and 2.07 for point, 

line, and area methods, respectively.  

 

4. Results and discussion 
 

The predicted fatigue strength factors of the 

foregoing analysis are summarized in Table 4. 

Also different classical methods prediction error 

percent have been summarized in Table 5. 

According to Tables 4 and 5, the fatigue strength 

factors predicted by critical distance and Weibull's 

weakest-link methods are the closest to the 

experimental results. But it should be noted that to 

apply critical distance, stress intensity threshold is  

required which is not available for the studied 

material. Therefore, an empirical equation is used 

to obtain critical distance. Neuber, Peterson, and 

stress gradient methods are the mainly empirical 

approaches and easy to use. According to Tables 4 

and 5, the predictions made by these methods are 

conservative, which is some consolation for 

engineering designers, but nevertheless, the errors 

are high. 

It should be considered that these methods are not 

consistent with the finite element results. To select 

an appropriate method of assessing the notch effect 

in components subjected to fatigue, availability of 

the required materials data, the predictive  

 

capability and the compatibility with FEA stresses 

are usually the most important criterion for a 

design engineer. So with considering these points, 

Weibull’s weakest-link theory is recommended to 

predict fatigue life among the studied methods in 

this research. 

 

5. Conclusions 
 

Tensile, axial and rotating bending fatigue tests 

were conducted on cylindrical specimens. Fatigue 

experiments were carried out on two sets of -

notched and smooth specimens in rotating bending 

and axial fatigue loads. The material under 

investigation was HSLA100 steel, which is widely 

applicable in the marine industry. Mechanical 

properties of the HSLA100 steel and fatigue 

properties for notched and smooth specimens were 

presented. Notch effect on fatigue strength of the 

HSLA100 steel in rotating bending and axial 

fatigue loads was experimentally evaluated, and S–
N curve was obtained. 

Weibull's weakest-link, Neuber, Peterson, stress 

gradient and critical distance methods were used to 

predict fatigue strength factor for the notched 

specimen based on the obtained S-N curve of 

the smooth specimen. The obtained theoretical 

results were compared with experimental data. It 

was found that the critical distance and Weibull’s 

weakest-link methods have the best agreement 

with experimental results. 
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