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Abstract

Nearly a recent century of work is divided to Nucleon-Nucleon (NN) interaction issue. We

review some overall perspectives of NN interaction with a brief discussion about deuteron, gen-

eral structure and symmetries of NN Lagrangian as well as equations of motion and solutions.

Meanwhile, the main NN interaction models, as frameworks to build NN potentials, are re-

viewed concisely. We try to include and study almost all well-known potentials in a similar way,

discuss more on various commonly used plain forms for two-nucleon interaction with an empha-

sis on the phenomenological and meson-exchange potentials as well as the constituent-quark

potentials and new ones based on chiral effective field theory and working in coordinate-space

mostly. The potentials are constructed in a way that fit NN scattering data, phase shifts,

and are also compared in this way usually. An extra goal of this study is to start comparing

various potentials forms in a unified manner. So, we also comment on the advantages and

disadvantages of the models and potentials partly with reference to some relevant works and

probable future studies.
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1 Introduction

In 1953, Bethe stated [1] that in the quarter of the current century, many experiments, labor

and mental works is allocated to the Nucleon-Nucleon (NN) problem; probably more than any

other question in the history of humankind. NN interaction is the most fundamental problem

in nuclear physics yet. In fact, since the discovery of neutron by Chadwick in 1932, the subject

has been in the focus of attention; as, at the first, ”nuclear physics” was often equal to ”nuclear

force”. The reasons for this outstanding role are clear. The main reason is that describing the

atomic-nuclei properties in terms of the interactions between the nucleon pairs is indeed the

main goal of nuclear physics.

In nuclear structure studies, ”nucleons” are always considered as ”fundamental” objects, which

is of course reasonable in the scale of nuclear physics with MeV energies. Although by the com-

ing of Quantum Chromo Dynamics (QCD), it is established that nucleons are not fundamental,

but by comparing the results from this traditional approach with the more fundamental ones,

one may still understand better the advantages and disadvantages of the approaches. NN

interaction is nowadays known more than any other parts of strong interaction both because

of long-term researches (more than 80 years) and many experimental data as well as improved
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theoretical understanding of its various aspects.

The oldest theory of nuclear forces was presented by Yukawa [2] based on which the mesons me-

diate the NN (pp, pn, nn) interactions. Again, although the meson theory is not fundamental

in the view of QCD, the meson-exchange approach has improved our understanding of nuclear

forces besides giving some good qualitative results. Still, the mesons need in today’s standard

NN models/potentials, with the quarks and gluons, is avoidable to describe well many nuclear

interactions and to build better models/potentials with more satisfactory results. In fact, by

the advent of Effective Field Theory (EFT) and applying it to the low-energy QCD, we are

somehow coming back to the meson-exchange theories with the aid of Chiral Perturbation

Theory (CHPT).

Most basic questions were settled in the 1960’s - 1990’s. In recent years, the focuses are on

the subtleties and various extensions of the idea for this special force leading to setting up

more sophisticated two- and few-nucleon potentials. As a result, various high-quality models

and forms for NN interaction are present nowadays. According to this, we can absolutely not

address all on this rich and long-lived subject here but some basic facts and important issues

of our favorite of course. By the way, we will discuss various potentials in more details in that

one may intend to study and compare them in future studies–For some general and up-to-date

views to the subject, look, for instance, at [3], [4] and [5].

This note is organized as follows. In Section 2, we briefly discuss some basics of NN

interaction, deuteron as the unique bound-state of two-nucleon systems, the symmetries of

two-nucleon Lagrangian, general forms of NN potentials in configuration/coordinate-space (r-

space from now on), equations of motion and partial-wave analysis. There, we also present

a brief view to the scattering-length, effective-range and momentum space (p-space from now

on) formalisms as well as relativistic NN scattering. In Section 3, we review the four main

NN interaction models qualitatively. There are the Phenomenological models with many free

parameters to be fitted to experimental NN data, the Boson-Exchange models based on the

field-theoretical and dispersion-relations methods, the QCD-inspired models based on the fun-

damental quarks and gluons degrees of freedom, and the models based on EFT by using the

chiral symmetry of QCD. As there are many NN interaction models and potentials forms and

detailed studies need more times and places so, in Section 4, we try to review almost all-

important two-nucleon potentials together with addressing the original papers for technical

studies. There, we also mention the road of modeling and improving exact NN potentials. In

addition, we study some high-precession potentials in more details as samples of the various

existing potentials to do further studies and comparisons in an almost common scheme. Next,

in Section 5, we mention few other models and potentials not mentioned in Section 4, which

are the Mean Field Theory (MFT) methods and the Renormalization Group (RG) approaches

as well as the Lattice QCD techniques. Finally, in Section 6, we make few comments about

the current status and problems as well as the probable futures tries to be made on the rich

way of nuclear force studies.
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2 A Brief of Nucleon-Nucleon Interaction

One can estimate, with an introductory evaluation (e.g. by uncertainty principle) that two-

nucleon interaction has the greatest contribution to nuclear force and four- and few-body

interactions have almost negligible roles in most nuclear calculations.

In this section, we discuss some basics about NN interaction mainly in r-space and nonrelativis-

tic theory. The aim is to introduce the beginners with the subject by referring the interested

readers to the relevant textbooks and lecture notes for various technical and advanced studies.

2.1 Three Interaction Parts in Two-Nucleon Systems

Nucleon-Nucleon interaction is always divided into three parts, first in [6], as follows:

a) The long-range (LR from now on) part (r & 2fm): In most models, it is considered as

One-Pion-Exchange Potential (OPEP) and is added to the other parts of the potential as a

tail. In a simple form in r-space, it reads

V
(1)
OPEP (r) =

g2pi
3
(~τ1.~τ2)

[

e−µr

r
(~σ1.~σ2) +

(

1 +
3

µr
+

3

(µr)2

)

e−µr

r
S12

]

, (2.1)

where µ = 1
r0
, r0 =

~
mpic

and S12 = 3(~σ1.r̂)(~σ2.r̂)− (~σ1.~σ2) is the usual tensor operator; and gpi
is the coupling constant, which is obtained from the experiments with mesons (meson-nucleon

scattering). This potential has earned some improvements such as considering the difference

between the neutral and charged pions and that it is different for pp, nn, np interactions be-

sides the clear forms raised from some new models of NN interaction.

b) The intermediate/medium (MR from now on)-range part (1fm . r . 2fm): It comes from

the various single-meson exchanges and mainly from the scalar-meson exchanges (two pions

and heavier mesons).

c) The short-range (SR from now on) part (r . 1fm): It is always given by exchanges of the

vector bosons (heavier mesons and multi-pion exchanges) as well as the QCD effects.

In some of the potential forms, various Feynman diagrams, depended on the considered ex-

changes, in each of the three mentioned parts, are used. A general scheme for NN potential is

shown in Figure 1.

2.2 Deuteron: The Sole Bound-State of Two-Nucleon Systems

One way to study the nuclear two-body interactions is using a two-nucleon system such as

deuteron (the 2H nuclei). Detailed studies need a general system of two-nucleon, which is, in

turn, framed through scattering a nucleon from another nucleon. Nevertheless, deuteron is still

fundamental to understand some basic properties of NN interaction. Deuteron is the exclusive

loosely bound-state of two-nucleon system. From the symmetry considerations, 3S1 and 3D1
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Figure 1: A general scheme for nucleon-nucleon potential.

are its states. Its nonzero electric quadrupole-moment [7],

Q =

√
2

10

∫ ∞

0

uwr2dr − 1

20

∫ ∞

0

w2r2dr, (2.2)

confirms the presence of D-state and leads to introduce the tensor force. As a partial way to

measure the quality of a potential, one may insert the wave functions for the S-state (u(r)) and

the D-state (w(r)), gained from a special potential, into the last equation and then compares

the results with the experimental values. For a technical study of deuteron, look at [8].

2.3 General Symmetries of Two-Nucleon Hamiltonian

In general, the invariance of NN interaction under both rotation of coordinate system (the

isotropic property of space) and translation of the origin of coordinate system (the homogeneous

property of space) as well as time reversal, charge-independent (CI) and charge-symmetry

(CS) are considered commonly. There are already some witnesses for symmetry breaking of

the interaction, such as violating CI and CS [9]–Look also at section 4 for more references.

Nowadays, almost all accurate and high-precession NN potentials include these violations–We

remember that charge dependence (CD) of NN interaction means that the interactions of pp

(Tz = 1), np (Tz = 0), and nn (Tz = −1) are different, whereas CS of NN interaction means

that just the interactions of pp and nn are different.

From symmetry considerations, one can find out the various two-nucleon states under the

condition that

PrPσPτψ(~r, ~σ1, ~σ2, ~τ1, ~τ2) = −ψ(~r, ~σ1, ~σ2, ~τ1, ~τ2), (2.3)
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where Pr, Pσ, Pτ are the space-exchange (Majorana), spin-exchange (Bartlett) and isospin-

exchange operators, respectively. For instance, in np system, some states read

{

S = 0 : 1P1 ,
1F3 ,

1H5 ,
1K7 ,

1M9 , ...

S = 1 : (3S1 − 3D1) ,
3D2 , (

3D3 − 3G3) ,
3G4 , (

3G5 − 3I5) ,
3I6, (

3I7 − 3L7), ... .
(2.4)

The references [10, 11, 12, 13, 14], and [15] may be useful to earn more basic and general

information about NN interaction.

2.4 More About NN Interaction

2.4.1 Potential Forms, Equations of Motion, and Wave Functions in r-Space

Generally, one can construct the following combinations











~A . ~B (scalar)
~A × ~B, ~A± ~B (vector)

Sij = 1
2
(AiBj + AjBi) − 1

3
δij ~A . ~B (rank − 2 spherical tensor)

(2.5)

from two vectors of ~A, ~B. For spin, isospin, space, and momentum vectors and also their com-

binations, one can consider many cases that obey the symmetry conditions as well. General

form for the central potential is a linear combination of I, ~σ1.~σ2, ~τ1.~τ2 by multiplying each op-

erator in a suitable radial function such as V (r/a), where the range parameter a is different for

various operators. In general, these spin-isospin operators make the potential state-dependent.

The generic forms for the central and noncentral terms always read

Vcentral = Vc(r) + Vσ(r)(~σ1.~σ2) + Vτ (r)(~τ1.~τ2) + Vστ (r)(~σ1.~σ2)(~τ1.~τ2), (2.6)

Vnon−central = Vls(r)~L.~S + Vt(r)S12 + Vlsτ(r)(~L.~S)(~τ1.~τ2),+Vlsσ(r) (~L.~S)(~σ1.~σ2)

+ Vlsστ (r)(~L.~S)(~σ1.~σ2)(~τ1.~τ2) + ..... .
(2.7)

On the other hand, the matrix elements for some of the operators

I

~τ1.~τ2

}

× V
(r

a

)

×



















I

~σ1.~σ2
(~r × ~p) . (~σ1.~σ2) (spin− orbit)

S12 = 3(~σ1.r̂)(~σ2.r̂)− ~σ1.~σ2

(2.8)

are as follows:

< ~σ1.~σ2 >=

{

1 ;S = 1 (spin− tripletstate)

−3 ;S = 0 (spin− singletstate)
, (2.9)

〈ℓ′Sjm, TMT

∣

∣

∣

~L.~S
∣

∣

∣
ℓSjm, TMT 〉 =

1

2
δℓℓ′ [j(j + 1)− ℓ(ℓ+ 1)− S(S + 1)] , (2.10)
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〈ℓ, S = 1, jm |S12| ℓ′, S = 1, jm〉 =

ℓ \ ℓ′ j

j 2
,

ℓ \ ℓ′ j − 1 j + 1

j − 1 −2(j−1)
2j+1

6
√

j(j+1)

2j+1

j + 1
6
√

j(j+1)

2j+1
−2(j+2)
2j+1

.
(2.11)

The uncoupled radial Schrodinger equation (without the Coulomb force) reads

d2u

dr2
− j(j + 1)

r2
u− 〈jSjm, TMT | υ| jSjm, TMT 〉u+ k2u = 0, (2.12)

in which υ = −M
~2
V and k2 = M

~2
E, where M and E are the nucleon mass and center of

mass (c.m. from now on) energy, respectively. The potential of V is indeed from the already

mentioned forms of (2.6) and (2.7). Actually, that is composed of a form-function as V (r/a), a

linear combination of the various exchange operators and noncentral operators such as (~L.~S),

(~L.~S)2, S12 and so on.

Then, the asymptotic solutions to the equations read

r → 0 ⇒ u(r) =

{

r−ℓ

rℓ+1 ; r → ∞ ⇒ u =
1

k
Aℓ sin

(

kr − 1

2
ℓπ − 1

2
+ δℓ

)

. (2.13)

As one could find an asymptotic solution, the solution for all r’s is obtained by numerical

integration. Next, with phase shifts, one can earn a potential from Schrodinger equation.

For the coupled states (without the Coulomb force), in turn, we also have

d2u

dr2
− j(j − 1)

r2
u+ k2u+ F (r)u+H(r)w = 0,

d2w

dr2
− (j + 1)(j + 2)

r2
w + k2w +G(r)w +H(r)u = 0.

(2.14)

It is notable that the ground-state of deuteron is a special case of the last equation with

k2 = −γ2 and j = 1, where γ2 = M
~2
EB with EB for deuteron binding-energy, and u and w

stand now for the radial functions of 3S1- and
3D1- states, respectively. Because two partial-

wave channels are coupled, an incoming wave in either ℓ = j − 1 or ℓ = j + 1 channel is

scattered into either ℓ = j − 1 or ℓ = j + 1 channel. Therefore, we have two phase shifts

(proper phases) δαj , δ
β
j , and a mixing parameter of ε. In presence of the Coulomb potential, a

Coulomb phase-shift is also added and the problem becomes a little more complicated [13].

On the other hand, as the c.m. kinetic energy of two-nucleon system is larger than the necessary

amount to produce a meson, inelastic reactions becomes possible (see Figure 2). Since the

lightest meson (π) mass is about 140 MeV, we expect, when the bombarding energy is upper

than the threshold, some kinetic energy in the system transfers into the pion. By increasing the

energy, the excitations because of the nucleon internal degrees of freedom, and the probable
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production of other particles, become more and more important. The inelastic scattering

shows losing the flow from the incident channel and so, the probability amplitude is no longer

conserved. Such a condition may be described by a complex scattering potential while some

other relativistic effects come into account; therefore the Schrodinger equation for two-nucleon

system is no longer enough. When discussing various direct potential forms, we return to the

issue partly.

Figure 2: The energy dependence of the cross-section for pion production in the np scattering
through the reactions of p+ p→ d+ π+, p+ p→ p+ p+ π+ and p+ p→ p+ p+ π0; [16].

2.4.2 Scattering-Length and Effective-Range

One can simply show, by semiclassical reasoning’s, that for the low-energy scatterings, only

the S-state is important. By increasing the energy, the high-momentum states come into

play because of the short-range properties of NN interaction. If we show the range by a and

the momentum by ~p, the maximum angular-momentum, which is affected by the scattering

potential, is pa trivially. By squaring the last quantity and equating it with ℓ(ℓ + 1)~2, one

can easily get the energy in which a given ℓ comes into play. A rough estimate says that, for

ℓ = 1 state, that energy is nearly 10 MeV.

For np scattering below this energy, we have the following expression (see, for instance,

Sec. II.C of [7], or Sec. 9.a of [13]):

k cot δ = −1

a
+

1

2
rek

2 − Pr3ek
4. (2.15)

As the term in k4 becomes important (for E & 10 MeV), the P- and D-waves come into the play

and so, it is not easy to break the k4 dependence of k cot δ for the S-wave phase-shift. Therefore,

the useful energy region for the legality of (2.15) is where the first two terms answer. In the
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case where the Coulomb potential is present (pp scattering), a near effective-range expansion

reads (see, for instance, Sec. IV.C of [7], or Sec. 9.b of [13], and or see [17]):

C2k cot δ + 2kηh(η) = −1

a
+

1

2
rek

2 − Pr3ek
4, (2.16)

where

C2 =
2πη

(e2πη − 1)
, η =

Me2

(2~2k)
,

h(η) = −γ − log η + η2
∞
∑

M=1

[

M
(

M2 + η2
)]−1

, γ = 0.577.

(2.17)

By using these relations (or similar ones) and three low-energy 1S0 phase shifts, one can hold

the parameters of a (scattering-length), re (effective-range) and P (e.g. for a special potential).

2.4.3 P-Space, Relativistic Scattering and so on

For many calculations associated with NN interaction, it is suitable to express Schrodinger

equation as an integral equation in momentum-space; look, for instance, at [18, 19] for some

typical studies. The nonrelativistic scattering theory that leads to Lippmann-Schwinger (LS)

equation and T-matrix are useful in this approach. Bethe-Salpeter (BS) equation in relativistic

scattering theory, as relativistic counterpart of LS equation, studying separable potentials,

separable expansions for arbitrary potentials, inverse scattering problem (see, for instance, [20],

[21] for some particular studies with references therein), are among the topics covered in this

theory. The interested readers may also refer to [7, 13, 14] for more fundamental discussions–

As a side, we should note that many modern NN potentials (mainly meson-exchange and

chiral EFT potentials) are always written in p-space originally and then Fourier transform

into r-space. So, the p-space formalism is important and commonly used in the standard and

relativistic approaches to NN interaction.

By the way, let us discuss a little more on the need for relativistic approaches to the prob-

lem. In fact, one may adjust the LS equation by including relativistic considerations. At the

first look, one may suppose that these corrections are not so important below the first inelastic

threshold. That is because the c.m. energy of the system is an almost small fraction of the

nucleon rest mass. But, for the high momenta, it does not seem that describing the interaction

through just nonrelativistic equations is satisfactory. In other words, the short-range repul-

sion of NN interaction, known from the various models based on at least phenomenological

investigations, rapidly reduces the S-wave functions at the distances less than almost 0.5 fm.

Therefore, it brings the high-momentum components into the wave functions for all energies.

Meanwhile, one should note that to regularize the potentials at the origin, various parameter-

izations or form-factors with cutoffs are used; although in the potentials based on chiral EFT,

more standard approaches are employed.

Nevertheless, as one uses the phenomenological approach to describe NN interaction, the short-
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ages in nonrelativistic approaches are not so important. That is because the parameterizations

of the phenomenological models/potentials have enough flexibility to describe NN scattering

in terms of the mesons with various coupling constants, masses and other free parameters.

These phenomenological approaches are valid until they provide at least good quantitatively

descriptions of experimental scattering data, and then they could be good alternatives for the

complete relativistic descriptions.

On the other hand, while there is not a comprehensive theory for strong interactions, looking

for a relativistic equation is somehow notional. Indeed, one may start from adapting the LS

equation to satisfy the least needs of every relativistic equation. The basic want is that the

scattering amplitude must satisfy the relativistic unitary along the elastic cutoff. The resultant

equation is not unique ever; though, it is a relativistic version of the LS equation. For some

studies on the relativistic NN scattering, look, for instance, at [22], [23] and references therein.

3 Nucleon-Nucleon Interaction Models

There are some substantial models to build NN interaction potentials. In this section, we

specify some qualitative features and, for more technical and quantitative studies, refer the

interested readers to other relevant studies.

3.1 Almost Full Phenomenological Models

These models always use the general form of a potential allowed by the symmetries like rota-

tion, translation, isospin, and so on. In general, the phenomenological potentials often have

the following features:

a) They are somewhat in a similar spirit as EFT, as we describe below, but much older and

restricted to the space-time, spin, and isospin symmetries. b) Four important terms in the

potentials are the central (I), spin-spin (~σ1.~σ2), spin-orbit (~L.~S), and tensor (S12) interactions.

c) Each term occurs twice; one time without isospin-dependence and one time with the de-

pendence (~τ1.~τ2), which in turn measures total isospin of NN system. d) The potential terms

are responsible to describe various phenomena remarked in NN interactions. For example, the

tensor term is important for the LR part of potential and arises naturally from pion-exchange.

In these potentials, the MR and SR parts are usually determined in a fully phenomenological

way while for the LR part, an OPEP is often used. Examples for thepotentials are Hamada-

Johnston potential [24], Yale-group potential [25], Reid potentials (Reid68 [26], Reid68-Day

[27], Reid93 [28]), Urbana-group potentials (e.g., UrbanaV14 [29]), Argonne-group potentials

(e.g., ArgonneV14 [30], ArgonneV18 [31]), etc. Look at [32] for a new study of phenomeno-

logical NN potentials. In the next section, we concentrate more on some samples of these

phenomenological potentials.

The phenomenological potentials have almost many free parameters to be fitted to experimen-

tal scattering data and phase shifts. Less physics one may earn from them rather than the

physics one may earn from the other potentials with tight theoretical grounds. Nevertheless,
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their ability to describe the practical facts of NN (pn, nn, pp) interactions, their flexibility and

convenience for using in nuclear structure calculations, are notable. These properties have still

kept them in work more than the other potentials nowadays.

3.2 Boson Exchange Models

The potential acting between a pair of particles, because of a meson exchange, has the range of

the meson’s Compton-wavelength; which is in turn proportional to the meson-mass inversely.

Because the pion π is the lightest meson exchanged between nucleon pairs, it contributes the

LR part of NN interaction, beyond its Compton’s wavelength. So, the resultant potential is

called OPEP. Similarly, to describe the MR and SR parts of the interaction, one should con-

sider the exchanges of the heavier mesons than the pion as well as two, three and more pion

exchanges. However, because considering these exchanges exactly is rather difficult, most peo-

ple consider them phenomenologically while, in meson-exchange potentials, they are included

clearly. Look at [33, 34] for the first meson and multi-pion exchange NN potentials.

On the other hand, it is already known that multi-pion systems have some strongly corre-

lated resonances that behave often as a single meson. So, it is supposed that multi-pion

resonances, when exchange between two nucleons, may contribute to the MR and SR parts

of interactions. The potentials built in this way, by including single meson exchanges, are

called One-Boson-Exchange Potentials (OBEP). Besides the traditional one π(138) exchange,

various meson exchanges are considered in OBEP’s. There are the exchanges of ρ(769) meson

(as a 2π resonance), ω(783) meson (as a 3π resonance), η(549) meson (the same quantum

numbers with π but its isospin that is T = 0), ή(958) meson (the same quantum numbers with

η but heavier and a resonance of ηππ), δ(983) (as a 4π resonance), φ(1020) meson (the same

quantum numbers as ω but a resonance of K+K− system), and S∗(975) meson (as 2π,KK̄ res-

onances). In addition, one always considers the experimentally undetermined scalar-isoscalar

boson of σ(500 − 700), which is usually considered as a good parameterization of 2π system

in S-state. Still, there are two other mesons with the mass above 1 GeV that may act as

2π resonances. They are ǫ(1300) (or f0) meson (with the same quantum numbers as S∗(975)

but just as a 2π resonance) and f(1274) meson. Some other two-boson resonances may come

from the mesons of A1(1275), A2(1318) (as ρπ resonances), B(1234) (as a ωπ resonance) and

D(1283) (as ηππ, 4π resonances). But, because of the importance of the hadrons’ structure

in the energy region of 1 GeV and with respect to the energies involved in the common NN

interactions, the roles of the heavier mesons may not be so important.

In general, π-meson (and also φ-meson) exchange provides the most LR (tensor) force, whereas

ω-meson exchange provides the most SR repulsive force and SR spin-orbit force. The inter-

mediate attractive force is often explained by 2π (as ρ- and/or fictitious σ-meson) exchanges,

whereas the potential contribution by η-meson is weak and always ignorable. Therefore, these

few mesons describe the main features of NN interaction; but to describe well experimental

data and other subtle properties, depended on the case, the exchanges of the other mentioned

mesons are also included.

From the differences among various NN potentials, based on meson theory, are their meth-
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ods to deal with the 2π exchange. In one approach, its effect is simulated through one or two

scalar and isoscalar mesons. Considering the 2π environmental effects as well as employing

scattering-length and effective-range formalism for the S-state of the system are the efforts in

the line. By the way, each group uses its own methods and details to evaluate the potential.

In general, the settled ”field theoretical techniques” and the methods based on ”dispersion re-

lations” are two main ways for handling the problem. Look at [35] for a senior field-theoretical

NN model, [36] for an old review on OBEP, [37] for a comprehensive review, and [38] for

another useful typical study. See also [39, 40, 41, 42] for some other relevant studies.

In other words, by discovering the vector mesons of ρ and ω, with the massed in the

ranges of 770-780 MeV, more progresses in understanding NN interaction were archived and

led to expand OPEP’s. In OBEP’s, mostly, the unrelated contributions of the single-meson

exchanges of the pseudoscalar mesons π, η and the vector mesons ρ, ω as well as the scalar me-

son δ(983) are considered and iterated into scattering equation. There are also 2π exchanges,

which are always parameterized by the artificial σ meson with the masses in the range of

400-800 MeV. The core (SR) region of the potentials is always parameterized through phe-

nomenological parameters and the form factors related to the meson-nucleon vertices. The

form factors in turn hold on fundamental relations to QCD. Then, such OBEP’s provide good

(at least quantitative) description of scattering data. Many types of these potentials, each

with its own characterizes and features already exist. Nowadays, it is almost clear that the

meson-exchange potentials (MEP’s) are almost the standard NN potentials. Some examples

are the Partovi-Lomon model [35], and Stony Brook-group [43], Paris-group [44], Bonn-group

[45], Padua-group [46], Nijmegen-group [28] and Hamburg-group [47] potentials.

Boson-exchange methods are nowadays extended, besides NN systems, to many Baryon-Baryon

(BB) interactions such as pion-nucleon, pion-pion, Hyperon-Nucleon (YN) and Hyperon-Hyperon

(YY) interactions as well. Although these models do not refer to QCD deeply, but the baryon

and meson fields are already considered as the asymptotic states that absorb all effects from

the quark and gluon dynamics. It is also notable that not only phenomenological models but

also the advanced models of NN interactions, such as QCD-inspired and chiral EFT models,

which we describe below, use boson exchanges in some parts of studies.

To summary, we note that in the quark-antiquark pair (= meson) exchange model, there

are the following features: a) It is similar to the quark exchange but the reverse direction of

one quark. b) It gives a good description of many aspects of NN interaction. c) It is preferred

because the meson states are colorless and have almost lower masses or larger ranges. d) It

studies OPEP and generalizes it to other mesons that results in OBEP’s and more. e) Next

to full phenomenological potentials and chiral EFT potentials, BEP’s are the best physical

potentials that give perfect agreement with the data for the LR and MR parts especially.

3.3 The Models Based on QCD

In these models, the aim is to connect hadronic processes to the underlying theory of strong

interactions that is QCD. In other words, hadron-hadron interactions are described in terms

of quark and gluon degrees of freedom. Look at [48], [49], [50], [51], [52] and [53], [54] for some
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reviews and typical studies of NN interaction in QCD and quark models.

In low energies, relevant to NN interaction, QCD is nonperturbative and could not solved

exactly. Chiral Perturbation Theory (CHPT) (see, e.g., [55]), Skyrme Model (see, e.g., [56],

[57]), and Nambu-Jona-Lasinio (NJL) models (see, e.g., [58]) are examples of this approach.

The models describe the characteristic phenomena observed in nucleon-nucleon, pion-nucleon,

and pion-pion scattering well qualitatively but they fail quantitatively. Common features of

the ”QCD-inspired” models, that reduce the demand for them, are cumbersome mathematics,

large numbers of parameters and limits in applying especially to very low energies. Therefore, if

one wants a good quantitative description of experimental data, phenomenological approaches

such as boson-exchange and phenomenological models are preferred. Nevertheless, in some

models just for the short distances, the QCD approach is used whereas for the remaining parts

of interaction, the two former approaches are used with satisfactory results. We deal with the

issue more when discussing plain potentials.

In summary, there are two subsets of QCD-inspired models, with basics features and main

characteristics, as follows:

1) The gluon and quark exchange among nucleons plus the Pauli-repulsion between similar

quarks in overlapping nucleons, with the following features: a) The gluon exchanges based on

”constituent quark model”(CQM) besides one-gluon-exchange-potential (OGEP). It does not

give a good description for reasonable distances because of confining the colorless singlets. b)

The Pauli-repulsion is related to a minimum energy to excite a nucleon (that is to move a

quark into a different state) of 300 MeV. c) The quark exchanges between two nucleons and

may change nucleon charges (i.e., n→ p and at the same time p→ n). d) It gives a reasonable

and semi-quantitative description of the SR repulsive part and maybe the MR part of NN

interaction. Look at, for instance, [50, 51, 52, 53, 54] for some general studies. Among the

exact potentials of this type are the Moscow-group [59] and Oxford-group [60] potentials.

2) Chiral symmetry and CHPT can also be considered as a subset of QCD methods, with the

following features: a) That is based on chiral symmetry of QCD Lagrangian. That symmetry

means that the quarks with opposite helicity are indistinguishable and do not couple to each

other except for their masses. b) Chiral symmetry is spontaneously broken because QCD

prefers the quark-antiquark pairs with negative parity to the quark-quark pairs with positive

parity. Thus, the low-mass modes (zero-mass theoretically) of the ”quark condensation” are

called ”Goldstone bosons” (pions, kaons, etc.). This, in turn, limits the Lagrangian to the

processes involving nucleons and pseudoscalar mesons. In other words, for the energies around

ΛQCD ≈ 1GeV, there is a ”phase transition” from ’fundamental” theory to an ”effective”

theory through spontaneous breaking of the chiral symmetry of QCD Lagrangian. During

this procedure, pseudoscalar ”Goldstone” bosons are produced. As a result, in low energies

(E < ΛQCD), the proper degrees of freedom are the pseudoscalar mesons and other similar

hadrons, and not the quarks and gluons of the original theory. The standard effective theory

to describe this process is called CHPT. c) Chiral symmetry is also violated by the (small)

quark masses; so, the Goldstone bosons are not massless totally. Nevertheless, one can expand

the interaction in small parameters to make definite predictions (as in CHPT). Look, for some
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related studies, at [61, 62] and [55] and also references therein. In the following subsection, we

discuss this issue further.

Still, we should note to some other studies, on NN interaction, in language of ”lattice QCD”,

for instance in [63, 64, 65, 66] and [67].

3.4 Effective Field Theory Approach

Effective-field-theories (EFT’s) are the low-energy descendants to the high-energy parent the-

ories. Some of the features are as follows: a) In general, one notes that there are differ-

ent/separate energy scales in the nature each with its own degrees of freedom. In each energy

level, just some degrees of freedom are relevant and as the energy decreases, some others are

frozen and become irrelevant. An example of this is the chiral symmetry. b) About NN in-

teraction, as first hinted by Weinberg [68], EFT means applying all symmetries including the

chiral symmetry of QCD Lagrangian but not directly considering the underlying degrees of

freedom like pions or quarks. This gives the most general Lagrangian that contains many

parameters to be constrained with data. In other words, the Lagrangian must include all

possible terms to guarantee that the ”effective” theory is indeed the low-energy limit of the

”fundamental” high-energy theory. So, no presumptions about, for example, renormalizability

or simplifying the Lagrangian are permissible. This, in turn, means that we probably have an

infinite set of interactions. Therefore, to have a reasonable theory with well-defined results,

one must organize the perturbative expansion up to some defined orders. Look, for instance,

at [69, 70, 71, 72] and references therein, for some reviews of EFT approach to NN interaction.

In general, a systematic improvement in the ability of the model to reproduce NN data is

observed when the orders of chiral expansion increase. One of the first extended models (in

Next-to-Next-to-Leading Order: NNLO) of CHPT described np phase shifts well up to the

energies about 100 MeV; but, for the higher energies, some inconsistencies occurred in some

partial waves–See [73] for a recent study of this approach and developments. Although NNLO

and the most recent higher-order chiral NN potentials show significant progress towards the

earlier ones and are almost perfect (in fact, the new NNNLO potentials describe data well up

to 350 MeV with similar quality as the high-precession phenomenological and boson-exchange

potentials), still to apply well the resultant potentials to all nuclear structure calculations,

more quantitative and even qualitative improvements are necessary. We should, of course,

note that chiral EFT models have more standards and great theoretical bases to be known as

the most reasonable models to describe the strong nuclear interactions.

In summary, we can say that CHPT from EFT in low energies is as fundamental as QCD in

high energies. In addition, because of the perturbative nature of CHPT, it can be evaluated

order by order in chiral expansions. As long as we are looking for a substantial theory of nuclear

forces, applicable to nuclear structure calculations as well, CHPT is likely able to overcome the

discrepancies between experiment and theory. For some other typical studies on the subject

of EFT and CHPT, look, for instance, at [69, 74, 75], and [3, 55, 76] for some recent views.

Meanwhile, among the high-quality potentials of this type are those by Texas-group [77], Sao

Paulo-group [78], Munich-group [79], Idaho-Group [80], and Bochum-Julich-Group [81].
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4 Nucleon-Nucleon Interaction Potentials

4.1 Basic Potentials and General Remarks

In this subsection, we discuss on the main preliminary potentials and a brief on the methods

of making them. As already mentioned, the range of nucleon-nucleon interaction is divided

into three parts, which are the short-range (SR), the intermediate or medium-range (MR)

and the long-range (LR). For the MR and LR parts, many workers have always taken the

phenomenological and boson-exchange pictures. However, in most models, for the LR part,

one-pion-exchange (OPE) is usually included. For the SR part, phenomenological parame-

terizations are often employed. In some models, form factors are included to regularize the

potentials at the origin; whereas, in some other models, severe hard cores are included. The

first major approach to describe the MR part was to include two-pion-exchange (TPE) contri-

butions. The first samples of TPE potentials were given by Taketani-Machida-Ohnuma [33] and

Brueckner-Watson [34]. However, those TPE potentials did not provide good descriptions of

NN scattering data as one reason was the lack of a spin-orbit potential therein. Next, Gammel,

Christian and Thaler [82] discovered the need to include a spin-orbit potential when they tried

to fit the NN scattering data at that time with a velocity-dependent local phenomenological

NN potential as

V = Vc(r) + Vt(r)S12, (4.1)

for each of the four combinations of the spin and isospin. Nevertheless, they failed!

In 1957, the efforts to build further phenomenological potentials, by including the phenomeno-

logical spin-orbit potentials as well, got started. The purely phenomenological potential of

Gammel-Thaler [83] provided a good description of the scattering data at that time below

Tlab =310 MeV (note that we use throughout this note the laboratory energy unless other-

wise be told). At the same time, the semiclassical potential of Singell-Marshak [84], which

was consist of the TPE potential of Gartenhaus [85], next to the phenomenological spin-orbit

potential, provided a satisfactory description of the data below 150 MeV.

Then, Okubo-Marshak [86] showed that the most general two-nucleon potential, by considering

symmetry conditions, reads

V (~r, ~p, ~σ1, ~σ2, ~τ1, ~τ2) = Vc(r) + Vσ(r) (~σ1.~σ2) + Vτ (r) (~τ1.~τ2) + Vστ (r) (~σ1.~σ2) (~τ1.~τ2)

+Vls(r)(~τ1.~τ2) + Vlsτ(r)
(

~L.~S
)

(~τ1.~τ2)

+Vt(r)S12 + Vtτ (r)S12 (~τ1.~τ2)

+Vq(r)Q12 + Vqτ (r)Q12 (~τ1.~τ2)

+Vpp(r) (~σ1.~p) (~σ2.~p) + Vppτ(r) (~σ1.~p) (~σ2.~p) (~τ1.~τ2),

(4.2)

where ~L.~S is the usual spin-orbit operator and

Q12 =
1

2

{

(~σ1.~L)(~σ2.~L) + (~σ2.~L)(~σ1.~L)
}

(4.3)
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is the quadratic spin-orbit operator. The twelve terms in the potential are given by the twelve

radial functions Vc(r), ... . These functions can be obtained from our knowledge about the

nature of nuclear forces. Information to find out V (r)’s could be from, for example, the

exchanges of various mesons or phenomenological mechanisms in which some given radial

functions, with maybe some arbitrary free parameters to be fixed to experimental data, exist.

Once our understanding of underlying theories (such as QCD) improves further, we may be

able to get these functions from the basics. The first four terms in (4.2) stand for the complete

central potential and, in the case, L and S are the good quantum numbers. By adding other

terms, the good quantum number is J as the two-nucleon system is now invariant under the

combined space of L and S. The main reason for two terms in the spin-orbit potential of

VSpin−Orbit(r) = Vls(r)~L.~S + Vlsτ (r)(~L.~S)(~τ1.~τ2) (4.4)

is that the radial dependence of the potentials may be different for the isospin-independent and

isospin-dependent parts, for examples, because of different meson exchanges. The seventh and

eighth terms stand for the tensor forces while the ninth and tenth terms are for the quadratic

spin-orbit forces. The latter two terms enter just when momentum dependence exists in the

potential. The last, 11th and 12th, terms are always omitted because, at least for elastic

scattering, they can be written as linear combinations of the other terms. So, their role cannot

be determined from elastic scattering from which most of our information about NN interaction

comes–For a useful study about NN interaction, including the potentials and ideas, before 1960,

look also at [15].

Soon after, better potentials were constructed. Among the 1960’s meson-exchange and field-

theoretical potentials, the NN potential by Sugawara and others [87] , [88] are also mentionable.

Other important phenomenological potentials then were Hamada-Johnston [24] and Yale [25]

potentials and also various hard- and soft-core potentials by Reid [26].

Before going more into discussing some other potentials, it is useful to mention that almost

all experimental elastic phase shifts are derived from the differential cross sections of pp and

np scattering’s. For most potentials the data are often fitted in the energy range of 0-350

MeV. That is because, in the higher energies, inelastic processes (with the threshold of about

280 MeV), such as pion production and other relativistic effects, come into play and so, the

two-body Schrodinger equation is no longer enough. It should be mentioned that the modern

analysis with more improved relativistic equations (for example with BS equation) have tried

to account for all effects at once.

To know the methods of making the early potentials, we note that, for instance, the Hamada-

Johnston (HJ) [24] and Yale-group [25] determined all two-nucleon scattering data and po-

larization parameters as a function of energy for the energies of a few hundred MeV. The

Yale-group potential was initially framed to reproduce the phase shifts in various states as a

smooth function of energy. As a first step, the phase parameters (that is the phase shifts and

mixing parameters of the coupled states) were determined as functions of energies by fitting

to all experimental scattering and polarization data. The procedure was performed by several

groups mainly Yale-group [89] and Livermore-group [90] then–For a updated analysis of NN
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scattering data by the latter group look at [91]. As a second step, the potentials, with their

adjusted parameters, reproduced the phase parameters. The more standard procedure is to

present scattering amplitudes as a sum of all partial waves up to a maximum orbital angular-

momentum, which is more or less ℓmax = 5. The contributions of the higher partial waves are

always indicted by OPE contribution to the scattering amplitude. In the Yale-group potential,

OPEP was used as a fixed part while the remaining parts of the potential were fixed by fitting

the energy-dependent phase parameters up to ℓmax. It is mentionable that, for the current

up-to-date potentials, the basic analyses are drastically improved although the procedures are

more or less similar.

By the way, in most NN potentials, for the LR part, OPEP is usually used while for the MR

part the multi-pions and single mesons such as ρ, ω, σ, ... are often used. Still for the SR

repulsive part, various methods including neutral vector-meson exchanges, velocity-dependent

potentials, phenomenological parameterizations and QCD substructure techniques are used.

4.2 NN Potential’s Road

The original try to find the fundamental theory of nuclear forces was started around 1935

by Yukawa. The Yukawa [2] meson-exchange model for nuclear force and the other old pion-

exchange potentials, such as those by Taketani-Machida-Ohnuma [33], Brueckner-Watson [34],

Singell-Marshak [84], Gartenhaus [85], etc. were not so successful. That was both because

of the failing of their structures and the pion dynamics, which we now know is restricted by

chiral symmetry. By discovering heavy mesons in the early 1960’s, modeling better one-boson-

exchange-potentials (OBEP’s) was started in [92], [93] and [94] as well, and was then devel-

oped more by framing some better potentials. Therefore, the field-theoretical and quantum-

dispersion methods were involved with making the potentials such as Partovi-Lomon model

[35], Stony Brook-group [43], Paris-group [44], Nijmegen-group [95] and Bonn-group [45] po-

tentials 1. But there were still some problems with the boson-exchange potentials. Among

them was the σ-boson exchange for which experimental evidence was polemic. Nevertheless,

because that equals a 2π resonance, there were many efforts to find two-pion contributions to

the interactions. Anyhow, then, more high-precession potentials such as parameterized Paris

potential [98], the high-quality potentials of Nijm93, NijmI, NijmII [28], CD-Bonn [99] and

many other interesting potentials based on meson-exchange pictures were constructed. So, it

seemed that the nuclear force problem was solved! But, no!

With the coming of QCD and its underside quarks and gluons degrees of freedom, the stud-

ies came into new phases. Still, the problem with QCD was its nonperturbative structure

when applying to the MeV low-energy limit, where nuclear physics is valid. The QCD-inspired

quark models were the first tries in the phase [48]. Lattice QCD was/is also a way to deal with

the problem; see for instance [63]. Still, the QCD-inspired potentials were/are qualitatively

successful but no quantitatively well as are the phenomenological meson-exchange potentials.

Among these potentials, the potential set up by some members of the Paris-group in [100],

1Among the other boson-exchange potentials are those in [96] and [97], where the former is a relativistic
OBE model and the latter is constructed from the meson-exchange and nucleon structure properties.
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the Moscow-group potentials [59] and the Oxford potential [60] are mentionable. Nevertheless,

some potentials, such as the high-quality Nijmegen-group ones [28] (and even two former ones)

use a mixture of the mesons and quarks in some parts of the interaction.

Meanwhile, many phenomenological potentials composed of meson-exchanges, operators and

functions with adjusted parameters to fit experimental data, with wide applications in nuclear

computations, were constructed. Among them are the Reid [26] and UrbanaV14 [29] potentials,

and the high-precession Nijmegen-group potentials [28] and ArgonneV18 [31] potential.

By coming EFT and applying it to the low-energy QCD, first by Weinberg [68], the new

phase to set up NN potentials got started. In such models, one usually starts by writing the

most general Lagrangian including the assumed symmetries and especially chiral symmetry of

QCD. In low-energies, chiral symmetry breaks down and then the suitable degrees of freedom

are not quarks and gluons but there are pions and nucleons, while heavy mesons and nucleon

resonances are integrated out. So, it seems that we are going back to the meson theory! of

course with much more experiences.

The chiral effective Lagrangian is composed of a set of the sentences increasing in derivative

terms or nucleon fields. Indeed, one use a perturbative expansion in (Q/ΛQCD)
ν , where Q

refers to the soft scale associated with external momenta or pion mass, ΛQCD ≈ 1 GeV is the

chiral symmetry breaking scale and ν ≥ 0. By applying the Lagrangian to NN scattering,

there are the suiting Feynman diagrams whose importance becomes less as the order of the

chiral perturbation theory (χPT) expansion increases. Besides describing the nuclear two-body

problem, the model makes some good predictions for nuclear few-body forces as well. The first

potential of this type was constructed by Texas-group (Ordonez, Ray and van Kolck) [77] and

among the further developed ones are those by Idaho-group [80] and Bochum-Julich-group [81]

up to NNNLO. These new CHPT potentials are quantitatively and qualitatively best so far

candidates to describe two-nucleon as well as few-nucleon interactions.

It is also notable that there are some tries to construct NN potentials based on renormalization-

group (RG) approach to NN interaction by another Stony-Brook group [101]. As a result, they

have earned many creditable and satisfactory results that we comment more in Section 4.

Anyway, in what follows we continue studying some of the potentials which are of course more

important with established results in nuclear structure calculations, briefly.

4.3 Hamada-Johnston Potential

The Hamada-Johnston (HJ) potential [24] is a leading phenomenological NN (pp+np here)

energy-independent potential. It described well the scattering data below 350 MeV and

deuteron properties as well as the effective-range parameters. The general form of HJ po-

tential [24] reads

V = Vc(r) + Vt(r)S12 + Vls(r)~L.~S + Vll(r)L12, (4.5)

where

S12 = 3(~σ1.r̂)(~σ2.r̂)− (~σ1.~σ2), L12 = (δℓj + ~σ1.~σ2)L
2 − (~L.~S)2, (4.6)
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and


















Vc(r) = 0.08
(

1
3
mpi

)

(~τ1.~τ2) (~σ1.~σ2)Y (x) [1 + ac Y (x) + bc Y
2(x)],

Vt(r) = 0.08
(

1
3
mpi

)

(~τ1.~τ2)Z(x) [1 + at Y (x) + bt Y
2(x)],

Vls(r) = mpi Gls Y
2(x) [1 + blsY (x)],

Vll(r) = mpi Gllx
−2Z(x) [1 + all Y (x) + bll Y

2(x)],

(4.7)

in which mpi, x and M are the pion mass (139.4 MeV), the internucleon distance measured in

the units of the pion Compton’s wavelength (r0 = 1.415fm), and the nucleon mass (taken to

be 6.73µ), respectively. Note also that x = µr, µ = mpic/~ = r−1
0 with respect to Eq. (2.1),

and that

Y (x) =
e−x

x
, Z(x) =

(

1 +
3

x
+

3

x2

)

Y (x). (4.8)

We should note that the quadratic spin-orbit potential was mainly introduced to describe np

data satisfactorily. For the r large enough, Vc(r) and Vt(r) reduce to the well-known OPEP

with the pseudovector coupling constant of 0.08. The coefficients ac, bc, at and bt represent

the potential diversion from OPEP at small r’s. Gls is the strength of the short ranged spin-

orbit potential Vls(r) and is depended on the parity of state. Gll, as the strength of Vll(r),

originated from special evaluations, is determined phenomenologically. All the coefficients are

determined from the detailed fit to scattering data and are given in the original paper [24].

The hard cores are considered for all states with their radius at xc = 0.343. The HJ potential,

as originally proposed, included a strong long-range quadratic spin-orbit potential in triplet-

even states, and also a strong short-range spin-orbit potential in triplet (ℓ = j)-odd states,

where it is known that the latter does not exist. So, the potential for triplet-odd states was

modified as follows [102]: It was defined to be - 0.26744 mpi around xc < x ≤ 0.487 and by

above standard relations for x > 0.487. The values of the binding energy, electric quadratic-

moment, effective-range, D-state probability and the asymptotic D-wave to S-wave ratio of

deuteron were determined by the potential to be 2.226 MeV, 0.285 fm2, 1.77 fm, 6.97 % and

AD/AS = 0.02656, respectively.

An improvement of HJ potential was made in [103] (we call it Massachusetts-group

potential) to replace mainly the HJ hard cores (for x ≤ xc) by finite square-well cores. Outside

the square-well radius (for x > xc), the potential is the same as HJ except for a few changes in

parameters such as considering the pion mass differences, and that the ac values of the singlet-

even and triplet-odd states as well as the triplet-odd bc are changed slightly. The pion mass

splitting leads to charge-independent breaking (CIB) while CS is still preserved. Now, mpi is

replaced by the effective pion mass and xc = 0.4852, which in turn implies the larger core-

radius of 0.7 fm. Describing NN scattering data and deuteron properties with the potential

were good. Indeed, the main aim to form the latter potential was to show that the hard cores

were not necessary since all data could be described by the finite soft-core potentials.

4.4 Yale-Group Potential

The Yale-group potential [25] is a pp+np phenomenological potential similar to HJ potential

[24] that is fitted to its time phase parameters as well. There, an OPEP is included directly
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and the quadratic spin-orbit potential is considered in a somewhat different form than that of

HJ. The whole NN potential reads

V = V
(2)
OPEP + Vc(r) + Vt(r)S12 + Vls(r)~L.~S + Vql(r)

[

Q12 − (~L.~S)2
]

, (4.9)

where
[

Q12 − (~L.~S)2
]

= (~L.~S)2 + ~L.~S − ~L2, (4.10)

and

V
(2)
OPEP =

(

g2pi
12

)

mpic
2
(mpi

M

)2

(~τ1.~τ2)

[

(~σ1.~σ2) + S12

(

1 +
3

x
+

3

x2

)]

e−x

x
. (4.11)

This OPEP is used for the distances larger than nearly 3fm, with the same parameter defini-

tions as in HJ potential. For the coupling constant, g2pi/14 = 0.94 is used in singlet-even states

and 1 elsewhere. For singlet-even and triplet-odd states, the neutral-pion mass (mpi = mπ0
)

is used while for singlet-odd and triplet-even states, a mean of the charged- and neutral-pion

masses [mpi = (mπ0
+ 2mπ±) /3] is used. The hard-core radius is considered at xc = 0.35, and

except in the OPEP part, all the radial functions Vc, Vt, Vls and Vql are taken as

V =
7

∑

n=1

an
e−2x

xn
. (4.12)

The potential’s parameters are determined by fitting to data for various states and involved

potentials. It is also notable that HJ and Yale potentials are OPEP for L > 5, and that the

Yale potential sets Vls = 0 for J > 2.

4.5 Reid68 and Reid-Day Potentials

4.5.1 Reid68 Potential

Among the failures of HJ [24] and Yale [25] hard-core potentials were that they could not repro-

duce reasonable results when applying to many-body calculations. It appeared that the Reid

soft-core potentials [26] were better. The Reid potentials are static and local phenomenological

potentials similar to those of HJ and Yale. Reid determined the potential for each two-nucleon

state independent of the other states. So, one may suppose that this approach is problematic

in that, with many two-nucleon states each with its own potential, fitting the experimental

data could be probably meaningless. But, because the highest energy in the analyses was

about 350 MeV, just the two-nucleon states with J ≤ 2, which are more important in nuclear

calculations, were considered in practice.

Reid used only a central potential in the singlet- and uncoupled triplet-states while, for the

coupled triplet-states, he used

V = Vc(r) + Vt(r)S12 + Vls(r)~L.~S, (4.13)
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which has the central, tensor and usual spin-orbit components. For the LR part, he used the

OPEP of (4.11) as a tail attached to the potential, with g2pi = 14, mpi = 138.13 MeV, M =

938.903 MeV and µ = 0.7fm−1. On the other hand, to remove the x−2 and x−3 behaviors at

small distances, an SR potential was subtracted from the tensor part of the potential. For the

MR’s, the potentials were expressed as the sums of the Yukawa’s functions of e−nx/x, where n

was an integer. The SR repulsions were also some combinations of the severe hard-core and the

Yukawa soft-core potentials–It is mentionable that the criterion for a potential to be soft-core

is that the wave functions do not vanish in nonzero radiuses. For the hard-core radius, when

needed, the radiuses of xc ≤ 0.1 could be used there. One should, of course, note that because

of fitting the potentials to the energies often below 350 MeV, finding a unique formalism for

the SR part was almost difficult. Finally, it is notable that the Reid potentials did not describe

well some of the scattering data and deuteron properties at that time. It was also hinted the

need for velocity-dependence and nonlocality in NN potentials, imposed by experimental data.

4.5.2 Reid-Day Potential

In 1980, B. D. Day [27] expanded the Reid68 soft-core potentials up to the higher partial waves

to solve three-body equation in nuclear matter calculations. In fact, he used three two-nucleon

potentials in calculations. The first one (called V2) was just the central part of the Reid68

potential in 3S1 − 3D1 channel for all states. The second one (called V6(Reid)) had four forms

for the four (S, T ) states. Indeed, in the latter case, for all S = 0 states, just two central

Vc(r) potentials (Reid68
1S0 and 1P1 for T = 1 and T = 0 respectively) were used; meanwhile

for all S = 1 states, just two central Vc(r) and two tensor Vt(r) potentials (Reid68
3P2 − 3F2

and 3S1 − 3D1 for T = 1 and T = 0 respectively) were used. The third one (called Full-Reid

potential that we call Reid-Day potential) used the original Reid68 potentials for all J ≤ 2

states; meanwhile for the states with J ≥ 3, he set up the potentials based on the Reid68 ones

almost roughly. Clearly, for the states up to J = 5, the potential structures were similar to

the original Reid68 ones. For example, in the coupled sate of 3D3 − 3G3, he used

Vc(r) = −10.463 Y (x)− 103.4 Y 2(x)− 419.6 Y 4(x) + 9924.3 Y 6(x), (4.14)

Vt(r) = −10.463

[

Z(x)−
(

12

x
+

3

x2

)

Y 4(x)

]

+ 351.77 Y 4(x)− 1673.5 Y 6(x), (4.15)

Vls(r) = 650 Y 4(x)− 5506 Y 6(x), (4.16)

where x = 0.7r, and r is the internucleon distance measured in fm as usual. For all other not

clearly mentioned states, he used the V6(Reid) potentials. Therefore, that new expansion was

not based on any fundamental underlying argument on NN interaction, and was just to sake

of applying the wanted potentials in some nuclear calculations.
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4.6 Partovi-Lomon Potential

Partovi-Lomon potential [35] is among the early NN potentials based on quantum field theory

methods. The advantages of boson exchanges and multi-pion resonances especially in short

distances were considered. They also considered some TPEP’s and OPEP’s to improve the

quality of previous similar potentials. The resultant (Schrodinger-equation) potential was

originated from reducing BS equation to an LS equation. In fact, by starting from a relativistic

tow-body equation, they arrived in a nonrelativistic LS equation and presented a potential as a

solution of the integral equation. Then, they tried to build r-space potentials with momentum

operators, resulting in a potential composed of the central, spin-orbit, tensor and spin-spin

parts. Contributions of ρ, ω, η bosons were included and then, by using experimental masses

and coupling parameters, the complete potential was calculated. The potential has some

likeness to Hamada-Johnston potential [24], and appears to dissolve some of the problems

hinted in Reid68 potential [26].

4.7 Paris-Group Potentials

Paris-group potentials are based on dispersion relations and field-theoretical techniques. In

their first major potential, Paris72 [44], they included some TPE contributions for the poten-

tials by considering pion-nucleon phase shifts and pion-pion interactions. They also included π-

and ρ-meson exchanges. Indeed, for the LR and MR parts, the accurate potentials of π+2π+ρ

exchanges were used; while for the SR part of r ≤ 0.8fm, a constant soft-core potential was

used. The Paris72 potential includes the central, spin-spin, spin-orbit, tensor and quadratic

spin-orbit components for each isospin state. Fitting the potential to the pp, np scattering

data of the Livermore-group [104] of 1969, needed 12 adjustable parameters. The potential

described the data with similar qualities as the phenomenological potentials of HJ and Yale-

group with more adjustable parameters. Describing the LR and MR parts by the potentials

was more sensible. Nevertheless, describing short distances was not satisfactory besides the

problems in its applications to many-body nuclear calculations.

The next improved version of the potential came in 1979, named as ”parameterized Paris

potential” or Paris79 potential. In that version, they employed a unique expression for the

whole potential, which was a sum of the Yukawa’s functions that had simple forms in both

configuration and momentum spaces. Indeed, those 12 local Yukawa functions could provide

a semi-phenomenological description of the Paris72 potential. Meanwhile, the older contri-

butions for the LR and MR parts were used yet. The potentials for both values of isospin

(T = 1, 0) have the following nonrelativistic forms in r-space:

V (~r, p2) = V0(r, p
2)SS1 + V1(r, p

2)SS2 + Vls(r)~L.~S + Vt(r)S12 + Vq(r)Q12, (4.17)

where

SS1 =

(

1− ~σ1.~σ2
4

)

, SS2 =

(

3 + ~σ1.~σ2
4

)

. (4.18)
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Clear forms for the velocity-dependent functions of V0 and V1, and especial forms for the

Yukawa functions of Vls, Vt, Vq, as well as coupling constants and other parameters, under

special conditions, are given in the original paper [98]. The potential in p-space, by Fourier

transform of (4.17), reads

Ṽ (~pi, ~pf) = Ṽ0(~pi, ~pf)SS1 + Ṽ1(~pi, ~pf)SS2 + Ṽls(k
2)L̃S1 + Ṽt(k

2)S̃12 + Ṽq(k
2)Q̃12, (4.19)

where

L̃S1 = i~S.~n, S̃12 =
[

k2(~σ1.~σ2)− 3(~σ1.~k)(~σ2.~k)
]

, Q̃12 = (~σ1.~n)(~σ2.~n), (4.20)

with the definitions

~k = ~pf − ~pi, ~q =
1

2
(~pf + ~pi), ~n = ~pi × ~pf = ~q × ~k, ~S =

1

2
(~σ1 + ~σ2), (4.21)

and especial Fourier transformations for the velocity-dependent central and noncentral compo-

nents. Note that ~pf and ~pi are in- and outgoing two-nucleon momentum transfers, respectively.

The results for fitting its time pp and np scattering data were good up to the energies about

350 MeV except for the low energies below about 13 MeV.

In the next related work [105], in 1984, a separable representation of the Paris79 potential,

through using a special method, was presented. That representation offered a good approxi-

mation of the on-shell and off-shell properties of the potential. In 1985, another adjustment of

the separable representation for the states of 1S0 and 3P0 was performed [106] to improve the

previous problem in representations.

4.8 Stony-Brook Potential

Stony-Brook potential is also among the original NN potentials based on dispersion relations

and field theory. The group included the contributions from π, ω and ππ exchanges. They

tried to set up a local and energy-dependent regularized potential in p-space by using the field

theoretical elastic NN scattering amplitudes. Indeed, by solving Blankenbecler-Sugar (BbS)

equation, by using a proposed interaction potential, they estimated NN phase parameters.

Some phenomenological parameters were adjusted to get satisfactory results compared with

experimental data. The short-range repulsion was weaker than the phenomenological poten-

tials such as HJ and Reid68 as well as its time OBE potentials, mainly because of ω-boson

exchange. It is also mentionable that describing experimental data and deuteron properties by

the potential was not as good as the phenomenological potentials at that time. For detailed

studies on the potential and the techniques used there, look at [7] and [43].

4.9 dTRS Super-Soft-Core Potentials

The earlier super-soft-core (SCC) potential, called dTS potential in [107], described physical

observables better than the harder-core potentials. But in dTS potential, only the OPEP was

24



purely theoretical while in the next SCC potential [108], called dTRS B potential, by the same

group, more theoretical components were added. In addition, dTRS B improved fitting NN

scattering data besides giving better results for nuclear-matter and many-body calculations

rather than dTS potential.

In dTRS B, the OBEP’s, because of π, ρ, ω exchanges, were considered directly; and the

remaining contributions for the MR part due to the other probable OBE’s and TPE’s were

parameterized phenomenologically by special OBE functions that we mention below. In other

words, the OBEP functions with 32 free ranges and amplitudes were used instead. In the

SR part, below about 1 fm, the potential components were regularized, and the core region

phenomenological potentials were chosen so that the previous results for the LR and MR parts

could not be disrupted. The general form of dTRS B potential in (S, T ) space, reads

V = Vc(r) + Vt(r)S12 + Vls(r)~L.~S + Vq(r)Q12 + Vll(r)L
2, (4.22)

in which the L2 potential term is to account the difference between 1S0 and
1D2 potentials. In

the LR part, the radial dependence of every component reduces to the OPE contribution of

Vc, Vt. For the phenomenological OBEP’s, they used the radial functions of Vc(r), ... as linear

combinations of the following functions:

Yc(x) =
e−x

x
= Y (x), Yls(x) = (

1

x
+

1

x2
)Y (x),

Yq(x) =

(

1

x2
+

2

x3

)

Y (x), Yt(x) =

(

1 +
3

x
+

3

x2

)

Y (x) = Z(x),
(4.23)

and

F (r) =
(1.2r)20

[1 + (1.2r)20]20
, (4.24)

for various states in subspaces of (S, T ) independently. x is the same as that we already used

in HJ, Yale and Reid68 potentials except that we have to use mλ with λ = pi, ρ, ω here instead

of mpi there. The constant coefficients in the linear combinations are, in turn, some functions

of the involved masses and other parameters determined by fitting to experimental data and

from other sources. In the last relation, F (r) is a step-like function that is used as a cutoff

to define the core region. Meanwhile, for pp scattering, M = Mp, mpi = mπ0
; and for np

scattering, M =Mr = 2MpMn/(Mp +Mn) and mpi =
(

mπ0
+ 2mπ±

)

/3 are used.

Describing the experimental data below 350 MeV and NN bound states were good as the other

phenomenological potentials at that time. Meanwhile, although describing nuclear matter and

some many-body results by using TRS B potential, as seen further in [109], were reasonable,

more improvement were yet required. It is also mentionable that there are some likenesses

between this and Paris72 potential [44] framed first.

It is good here to mention another potential built in 1981, with a similar meson content

and operators as dTRS potentials, which we call it Melbourne potential [110]. In fact, it is

especially a np potential that includes the OBE’s of π, ρ, ω and TPE of 2π next to some phe-

nomenological features to reproduce experimental elastic scattering data and neutron proper-
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ties (mainly its binding energy) and low-energy parameters (mainly scattering-length). There,

a special form function was used for each meson contributing to a special energy range. Re-

producing the data and deuteron properties as well as the basic results from nuclear-structure

and -matter calculations were satisfactory.

4.10 Funabashi Potentials

Funabashi potentials are among meson-exchange potentials based on field-theoretical methods.

They included the OBEP of π, ρ, ω, η and the scalar mesons of δ, σ for LR and MR parts. For

the core region, they included the hard cores, Gaussian soft cores and velocity-dependent cores.

Indeed, the potentials are nonstatic OBEP’s with retardation in r-space. The nonstationary,

mainly because of recoiling, is considered by including the spin-orbit, quadratic spin-orbit

and velocity-dependent terms; whereas the retardation of the meson propagations causes the

off-energy shell effects that in turn contribute to two-nucleon processes, and are even more

important in many-body systems.

The general form of the Funabashi OBEP’s in r-space reads [111]

V = Vcore + Vc(r) + Vt(r)S12 + Vls(r)~L.~S + Vqll(r)Q̀12 + Vll(r)L
2 − 1

M

[

∇2Vp + Vp∇2
]

, (4.25)

in which

Q̀12 = Q12 −
2

3
L2~S, Vi(r) = Ui(r) +Ri(r), i = c, t, ls, qll, ll, p, (4.26)

where Ui(r) and Ri(r) stand for the usual Yukawa and Retarded potential functions, respec-

tively. These functions are in turn expressed as combinations of the functions in (4.23) where

the involved masses, coupling constants and other parameters are used in combinations as co-

efficients in various two-nucleon states and for the various included mesons. The core potential

also reads

Vcore = V c
core(r) + V ls

core(r)
~L.~S, (4.27)

where, depended on the case, three different cores are included. a) The hard core (step-like)

potential (OBEH) plus a spin-orbit core as

V c
core(r) =

{

8, r ≤ rc,

0, r > rc,
, V ls

core(r) = −V ls
(0) exp

[

−(r�rls)
2
]

. (4.28)

b) The Gaussian soft core (OBEG) plus a special spin-orbit core as

V c
core(r) = V G

(0) exp
[

−(r�rG)
2
]

, V ls
core(r) =

1

M2

1

r

∂V c
core(r)

∂r
. (4.29)
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c) The velocity-dependent core (OBEV) plus a spin-orbit core as

V c
core(r) =

p2

M
φ(r) + φ(r)

p2

M
, φ(r) = φp

0 exp
[

−(r�rp)
2
]

,

V ls
core(r) = −V ls

(0) exp
[

−(r�rls)
2
]

.
(4.30)

In addition, to remove singularities and to make OBEP’s in the core region, the Vi(r)’s in

(4.26) are multiplied by the following cutoff factor

Fi(r) = 1− exp
[

−(r�rcc)
2
]n
, n =

{

1, when i = c, t, ls,

6, when i = qll, ll,
. (4.31)

The parameters of rc, rcc, rls, rG, rp, φ
p
0, V

ls
(0), V

G
(0), .... are the constants properly chosen for the

potentials. It is also mentionable that, to have nonrelativistic potentials, the higher-order

terms than p2/M2 are avoided, where ~p = ~pi here is the nucleon momentum.

Next, in [112], the velocity-dependent tensor potentials were included to discuss better non-

static effects. So, the improved potential reads

V (2) = V − 1

M

([

∇2VptS12 + VptS12∇2
])

. (4.32)

In addition, the core potentials were modified, rather than those in the first version of [111],

to improve the phase shifts of 3P3 state by including the attractive spin-orbit cores in (4.27),

which were in turn set to zero in the first potentials. With these improvements, the properties

of neutron- and nuclear-matter were evaluated. Describing experimental scattering data and

low-energy parameters as well as deuteron properties with the latter potential was better than

the first one. More improvements to give even better results in nuclear structure calculations

were then done in [113].

Later, a development of the potentials was given in [114]. In fact, it was shown that the

radial dependence of the OBEP’s, which was smooth and finite at origin, could be represented

by a superposition of special Gaussian functions. In other words, the Yukawa functions in

Funabashi’s potentials were expanded as

Y (µr) =
e−µr

µr
=

N
∑

n=1

an exp
[

−(r�rn)
2
]

, (4.33)

where the coefficients of an were determined by fitting the data; and for N and rn, some special

finite values were chosen. As the authors have claimed, the new potentials give better fit of

NN scattering data.

4.11 Urbana-Group Potentials

UrbanaV14 (Urb81) potential [29] is a charge-independent fully phenomenological potential

including the operators of central, spin-spin, tensor, spin-orbit, centrifugal, centrifugal spin-
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spin with general dependence on isospin. Besides an LR OPE part and a representation of MR

part as TPE’s with 14 parameters, the SR part is described by two Woods-Saxon potentials

with free parameters fitted to experimental data. The whole potential reads

V =

n
∑

i=1

V iOi, (4.34)

in which the fourteen operators (n = 14 here) read

Oi=1,...,14 =1, ~σ1.~σ2, ~τ1.~τ2,
(

~σ1.~σ2
)(

~τ1.~τ2
)

, S12, S12

(

~τ1.~τ2
)

,
(

~L.~S
)

,
(

~L.~S
)(

~τ1.~τ2
)

,

L2, L2
(

~σ1.~σ2
)

, L2
(

~τ1.~τ2
)

, L2
(

~σ1.~σ2
)(

~τ1.~τ2
)

,
(

~L.~S
)2
,
(

~L.~S
)2(

~τ1.~τ2
)

,
(4.35)

and the radial potentials are

V i = V i
π(r) + V i

M(r) + V i
S(r), (4.36)

where Vπ, VI , VS stand for the pion-exchange potential, MR and SR potentials, respectively.

Further, we should note that the first eight operators of (4.35) are obtained from fitting the

phase shifts of ℓ < 4 up to the laboratory energies of 425 MeV, and deuteron properties.

The next six ”quadratic-L” operators are introduced to do many-body calculations with the

potentials and have almost weak effects. We shorten the operators as c, σ, τ , στ , t, tτ , ls, lsτ ,

ll, llσ, llτ, llστ , ls2, ls2τ , to simplify their using, from now on.

The LR OPEP of V i
π(r) is nonzero just for i = στ, tτ with

V στ
π (r) = 3.488

e−0.7r

0.7r

(

1− e−cr2
)

, (4.37)

V tτ
π (r) = 3.488

(

1 +
3

0.7r
+

3

(0.7r)2

)

e−0.7r

0.7r

(

1− e−cr2
)2

= 3.488Tπ(r), (4.38)

with a note that x = µr with µ = 0.7fm−1 is considered. The cutoff parameter of c is obtained

by fitting the experimental phase shifts, and that the 1/r and 1/r3 singularities of OPEP’s

are removed. A remarkable point is that (1 − e−cr2)2, as argued in [115], simulates ρ-meson

exchange effect. Another point is that because nucleon is not a point source, the two-nucleon

interaction should not have the singular behavior of 1/r at small distances.

The MR potential of V i
M(r) is considered as

V i
M(r) = SiT 2

π (r). (4.39)

With respect to the T 2
π (r) included, this potential is usually owned to the second-order OPEP’s.

This form of V i
M(r) is suitable to include three-nucleon (3N) interactions as argued in [116].

Besides, the strengths of Si are determined by fitting experimental phase shifts.

For the SR potential of V i
S(r), in contrast to the custom method where Yukawa functions are
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used, here a sum of two Woods-Saxon potentials is considered as

V i
S(r) = Si

1W1(r) + Si
2W2(r), (4.40)

where

W1(r) =

(

1 + exp

(

r − R1

a1

))−1

, W2(r) =

(

1 + exp

(

r −R2

a2

))−1

. (4.41)

For all i’s, except for ls and lsτ , a good fit of data is achieved with Si
2 = 0.

There are some likenesses between parameterizing the Urb81 potential with those used in

Hamada-Johnston [24], Yale-group [25], Reid68 [26] and also Bressel et al. [103] potentials.

The values of free parameters are obtained mainly by fitting the np phase shifts by Arndt et

al. [117] and its time analysis by Bugg et al. [118], with some differences and adjustments.

Describing scattering data and deuteron properties with Urb81 potential are satisfactory with

similar results as the Reid68 and Paris79 [98] potentials. For more details see [29].

4.12 Argonne-Group Potentials

4.12.1 ArgonneV14 and ArgonneV28 Potentials

The basic potential of Argonne-group, ArgonneV14 (Arg84) potential [30], has a similar struc-

ture with UrbanaV14 (Urb81) [29] potential with a few differences. The first difference is that

the used πNN coupling is larger than that used in Urb81 potential. Second, in Arg84, con-

trary to Urb81 potential, Si
2 is nonzero for i = t, tτ . Third, as a probable result of the former

constraint, that is no need to insert a second SR Woods-Saxon function for i = ls, lsτ as is in

Urb81 potential. As a result, in high-energies (low-distances), the phase shifts are fitted well

and especially the D-state of deuteron takes more contribution than that in Urb81 potential.

Further, the effects of the six quadratic-L operators are confirmed in some nuclear structure

calculations. The potential was fitted to the phase-shift analyses of Arndt and Roper in 1981

(an update of the analyses in [117]). Still, in the energy range of 25-350 MeV, the Arg84

potential provides an improvement over Urb81 potential.

It is good to mention another potential of Argonne-group, called ArgonneV28 [30], framed

simultaneously with ArgonneV14 potential. It includes the ∆(1232) degrees of freedom, which

play important roles in both TPE processes in the MR part of NN systems as well as TPE and

repulsive parts of 3N systems. The effects because of including these degrees of freedom are

shown by 14 extra operators next to the 14 operators used in Arg84 potential. From these 14

extra operators, 12 transition operators are for all πN∆ and π∆∆ couplings while 2 central

operators are for N∆ and ∆∆ channels. The extra operators are so chosen that no other

free parameters than those used in Arg84, but the coupling constants of πN∆ and π∆∆, are

required to fit the experimental scattering data. In general, ArgonneV28 potential has a more

complicated structure and gives better results especially in many-body calculations.
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4.12.2 ArgonneV18 Potential

ArgonneV18 (Arg94) NN potential [31] is an improved and updated version of Arg84 NN

potential [30]. It addition to 14 operators of Urb81 and Arg84 potentials, it includes three

charge-dependent and one charge-asymmetry operators next to a complete electromagnetic

interaction. Arg94 potential has the following general form:

V = VEM + VN = VEM + Vπ + VR, (4.42)

where Vπ is for an LR OPEP, VR is for MR and SR parts (called the Remaining part), and

VEM is for electromagnetic (EM) part.

The EM part, in turn, reads

VEM = VC1(r) + VC2(r) + VDF (r) + VV P (r) + VMM(r), (4.43)

where the terms with the indices C1, C2, DF, V P andMM stand for one-photon, two-photon,

Darwin-Foldy, vacuum-polarization and magnetic-moment interactions. In these interactions,

some short-range terms and the effects due to finite size of nucleon are also included. The

terms of VC2, VDF , VV P are used just for pp scattering while the other terms have its own forms

for each three scattering cases; and that for nn scattering, just VMM is used. The various

EM potentials are given through some combinations of the following functions, with masses,

coupling constants, coefficients and other constants determined from other sources or from

experimental data,

Fc(r) = 1−
(

1 +
11

6
x+

3

16
x2 +

1

48
x3
)

Y (0), (4.44)

Fδ(r) = b3
(

1

16
+

1

16
x+

1

48
x2
)

Y (0), (4.45)

Ft(r) = 1−
(

1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

44
x5
)

Y (0), (4.46)

Fℓs(r) = 1−
(

1 + x+
1

2
x2 +

7

48
x3 +

1

48
x4
)

Y (0), (4.47)

where x = br, b = 4.27fm−1. They are related as

Fδ = −∇2

(

Fc

r

)

, Ft =

(

Fc

r

)′′

−
(

Fc

r

)′

/r, Fδ = −∇2

(

Fc

r

)

, (4.48)

and for a point-like nucleon go to 1. In other words, these SR functions show the finite-size

of the nucleon charge distribution with a dipole form-factor. It is also mentionable that for

pp case, VC1, VC2, VV P are in terms of Fc, with the mentioned adjusted parameters; VDF is in

terms of Fδ, while VC1 is in terms of

Fnp(r) =
b2

384

(

15x+ 15x2 + 6x3 + x4
)

Y (0). (4.49)
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VMM(pp) includes Fδ, Ft, Fls together with spin-spin (~σ1.~σ2), spin-orbit (~L.~S) and tensor (S12)

operators, while VMM(np) includes the same functions and operators as in pp case besides

the CS operator of ~L. ~A with ~A = 1
2
(~σ1 − ~σ2) [119]; and VMM(nn) includes Fδ, Ft with just

spin-spin (~σ1.~σ2) and tensor (S12) operators. One should note that the radial dependencies,

various coefficients and combinations are different for all three cases. It is also notable that

the vacuum-polarization and two-photon interactions are useful to fit the low-energy scattering

data, and that Fc, F
2
c used in VV P , VC2, are the estimated ways to remove the singularities of

1/r, 1/r2, respectively.

The LR OPE part of Arg94 potential (Vπ) is charge-dependent, because of the differences

between the neutral- and charged-pion masses. It reads

Vπ(N1N2) = fN1N1
fN2N2

V
(3)
OPEP (mπ0

) + (−1)T+12f 2
c V

(3)
OPEP (mπ±

), (4.50)

where the second term on the RHS is used just for np system, i.e. with N1 = n,N2 = p and

that fpp = −fnn = fc ≡ f [120] with f 2 = 0.075, and

V
(3)
OPEP (mpi) =

(

mpi

mπ±

)2
1

3
mpic

2 [Yµ(r)~σ1.~σ2 + Tµ(r)S12] , (4.51)

in which

Yµ(r) =
e−µr

µr

(

1− e−cr2
)

, (4.52)

Tµ(r) =

(

1 +
3

µr
+

3

(µr)2

)

e−µr

µr

(

1− e−cr2
)2

, (4.53)

where Yµ(r) and Tµ(r) are the common Yukawa and tensor functions with exponential cut-

offs similar to those in Urb81 and Arg84 potentials, µ = mpic/~ as before (with mpi =

mπ0
, mπ±

in the formulas); and the scaling mass of mπ±
in (4.51) makes the coupling-constant

dimensionless–Look at the differences between (4.51) and (4.11), as well as among (4.52) and

(4.53) with (4.37) and (4.38), respectively.

Similar to Urb81 and Arg84 potentials, the remaining (MR and SR) phenomenological

parts could be written as a sum of all eighteen terms as

VR =

n=18
∑

i=1

V iOi, (4.54)

where 14 out of the 18 operators are those in (4.35) of the Urb81 potential and the 4 remaining

ones are

Oi=15,16,17,18 = T12, T12(~σ1.~σ2), T12 S12, (τz1 + τz2), T12 = 3τz1.τz2 − ~τ1.~τ2, (4.55)

that in turn we mark them with the indices i = T, σT, tT, τz, respectively.

Now, we note that in the operator form of (4.54), the whole CD potential could be separated

into a CI part and a CIB part, where the latter in turn could be separated into a CD part with
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three CD operators (i = T, σT, tT ) and a charge-asymmetry (CA) part with one operator

(i = τz). In this procedure, the radial potentials of V i could be expressed in terms of the

following potentials, with suitable weighting coefficients,

V i
ST,NN = Si

ST,NNT
2
µ(r) +

[

P i
ST,NN + µrQi

ST.NN + (µr)2Ri
ST,NN

]

W3(r), (4.56)

where now µ = 1
3
(mπ0

+2mπ±
)c/~ – It is also mentionable that the potential is basically written

in (S, T, Tz) space for various two-nucleon states [31]. The same as in Urb81 potential, T 2
µ(r)

is to simulate TPE force, and the only Woods-Saxon function is

W3(r) =

(

1 + exp

(

r −R3

a3

))−1

. (4.57)

All constant coefficients of Si
ST,NN , P

i
ST,NN , Q

i
ST,NN , R

i
ST,NN are obtained by fitting experimen-

tal data for each two-nucleon state. Further, they imposed the regularization conditions at the

origin as

V i
ST,NN(r = 0) = 0,

∂V i 6=t
ST,NN

∂r

∣

∣

∣

∣

∣

r=0

= 0, (4.58)

which reduces the number of free parameters for each V i
ST,NN by one.

It is also notable that the EM interaction (and also CD) of Arg94 potential is the same as

that used in Nijmegen partial-wave-analysis (PWA93) [121] besides including the short-range

terms and effects for the finite-size of nucleon. This potential is fitted to the Nijmegen pp

and pp scattering database [122], [121], low-energy nn scattering data, and deuteron binding-

energy. It has 40 adjustable parameters and gives a best description of the data in the energy

range of 0-350 MeV as a high-quality NN potential. The effects of CD and CA are explicitly

seen in finite nuclei systems and the results in many-body and nuclear-structure calculations

are more satisfactory than the mentioned potentials so far. Another extension of the Arg94

potential, called ArgonneV 18pq potential, is presented in [123], where various choices for the

quadratic momentum-dependence in NN potentials, to fit the phase shifts of the high partial

waves, are included. There is also a p-space proposal for Arg94 potential presented in [124].

4.13 Bonn-Group Potentials

4.13.1 Full-Bonn Potential

The Bonn-group has used the field-theoretical methods to deal with NN interaction problem. In

the first version [45], in 1987, they presented a comprehensive NN potential by including various

meson-exchanges that they thought were important below the pion-production threshold. To

do so, the mesons of π, ω, δ as OBE’s and ρ, 2π (as the direct exchange and ∆(1232)-isobar

excitation) as TPE’s as well as a special combination of πρ were considered. There were also

3π, 4π exchanges that did not have significant contributions. Indeed, the OBE contributions

provided good descriptions of high ℓ phase shifts while the TPE’s with πρ combination provided

good descriptions of low ℓ phase shifts. So, in general, the exchanges of π and ω together with ρ
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and 2π provided good descriptions of the LR and MR (high ℓ’s) parts while for good describing

the SR part (low ℓ’s), including the πρ combination next to 2π exchange was required. We

should also mention that the δ meson was needed to provide a consistent description of S-wave

phase shifts, and that including the crossed-box diagrams in the two-boson-exchanges (TBE’s)

made another fitting quality of the potential.

This Full-Bonn (Bonn87 or Bonn-A) potential is originally written in p-space and is energy-

dependent that makes its applications in nuclear calculations problematic. To resolve some

of the problems, a parameterization of the potential in terms of OBE’s in both p-space and

r-space is given, which is always called Bonn-B (or Bonn89) potential. As a first step, the

retardation terms are neglected to suppress the energy dependence by applying the OBE’s in

the framework of reducing BS equation into BbS equation, where the latter equation is similar

to nonrelativistic Schrodinger equation while it is a relativistic equation. The resultant energy-

independent p-space OBE potentials are useful to apply in nuclear structure calculations. The

details can be found in [45], [37]. The latter expansion changes somewhat the original results

because of some new adjustments. Anyhow, to do so, first the effects of 2π + πρ exchanges

are replaced by the scalar-isoscalar σ-meson exchange; and without the πρ contribution in the

new OBE expansion, the η meson is introduced to improve the 3P1 phase shifts.

The general form of the expanded potential in r-space, coming from the Fourier transform of

the agreeing p-space contributions, can be written as a sum on the six boson contributions as

V =
∑

α=π,ρ,η,ω,δ,σ

V OBE
α , (4.59)

which in turn divides into a local and a nonlocal part; or may be written as

V = Vc(r) + Vt(r)S12 + Vls(r)~L.~S − 1

M

[

∇2Vp + Vp∇2
]

, (4.60)

in (S, T ) space, where Vc(r) includes the contributions from all six mesons of π and η (pseu-

doscalar mesons), δ and σ (scalar mesons), ρ and ω (vector mesons), and is written in terms of

c, σ, τ, στ operators together with Yc(x) (x = mαr) and the nucleon and included meson masses

and couplings as well as some constants; and similarly for the other two functions Vt(r), Vls(r).

But Vt(r) includes the contributions from the four pseudoscalar and vector mesons together

with Yt(x); and Vls(r) includes the contributions from the four scalar and vector mesons to-

gether with Yls(x). Some of the scalar functions are defined in (4.23) and that here

Vp =
∑

β

C0

g2β
4π

mβ

4M
Y (mβr), (4.61)

where β = δ, σ, ρ, ω; gβ is the suiting meson coupling, and C0 = 1 for the scalar mesons and

C0 = 3 for the vector mesons. It is also mentionable that general structure of the potential

for the pseudoscalar mesons is similar to the OPEP used, for example, in the Yale-group

and Reid68 potentials (4.11), which is in turn related to the fact that the pion provides the
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main long-range part of the interaction here as well. It is also notable that the potentials

are regularized at the origin by the dipole form factors, which are coming from the Fourier

transformations of

Fα(k
2) =

(

Λ2
α −m2

α

Λ2
α +m2

α

)nα

, (4.62)

where for each vertex nα = 1 and Λα is the so-called cutoff mass. In other words, the SR part

of the interaction is parameterized through the phenomenological form factors attached to the

p-space Feynman diagrams, while the high-momentum part of the scattering amplitudes are

then regularized with the cutoffs. The cutoff masses (Λα) are adjusted to fit the data and are

given in [45] next to other potential parameters, coupling and constants.

By the way, the Bonn87 potential described very good its time experimental NN data up to

Tlab =300 MeV, low-energy parameters and deuteron properties. Meanwhile, we note that, the

weak tenor force there, because of the ρ-meson exchange and including a real πNN form-factor

as well as introducing the meson retardation, caused a smaller contribution of the deuteron

D-state; and at the same time, the larger quadruple moment and the asymptotic D/S state of

deuteron were in full agreement with experimental results—However, in a work done in 1993

[125] to compare some of the potential forms with pp scattering data, it was shown that the

adjusted r-space versions [37], i.e. Bonn-A and Bonn-B potentials, give a very poor description

of the scattering data (χ2/Ndata > 8 in the energy range of 2-350 MeV). That was not strange

of course, in that Full-Bonn potential was originally fitted to np scattering data and not to pp

scattering data.

In addition, these potentials have many other special advantages to describe well NN inter-

actions. The nucleons, isobars (nucleon resonances) and mesons are discussed on an equal

footing. Because of relativistic approach, the meson retardation (recoil effects) and the off-

shell behavior of the nuclear force were included besides that a consistent expansion to the

regions above the pion-production threshold was possible. Further, the potential could discuss

about three-body nuclear forces (at least because of an almost complete set of the diagrams

contributing to the NN interaction and expandable to the 3N case), the meson-exchange cur-

rents contributing to the electromagnetic properties of nuclei, the medium effects of the NN

interaction in many-body calculations and also CSB and CIB issues. It is also notable that

the cutoff masses, used in the meson-nucleon vertex form functions, to explain the extended

structure of hadrons, are obtained in a consistent way to be Λα =1.2-1.5 GeV, where applying

the meson-exchange picture is suppressed. For detailed studies of various aspects of Bonn-A

and Bonn-B potentials and the already mentioned issues, look at the original study of [37],

where the final version of the Full Bonn potential was presented in 1989.

To remind the main differences, we note that Bonn-A potential includes the correlated

2π and πρ contributions with an intermediate ∆-isobar, while Bonn-B potential is a so-called

OBE potential that uses a fictitious σ-meson (and also a η-meson) to simulate these two meson

exchanges. In contrast to Bonn-A potential, Bonn-B potential is energy-independent that in

turn simplifies its applications in nuclear structure and nucleon-nucleus scattering calculations.

Despite its greater simplicity, Bonn-B potential gives a good description of its time data, and
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the other results almost identical with those found in Bonn-A potential.

Still, we note that the p-space Full-Bonn potential was fitted just to np scattering data. In

1989, another development of the potential to apply it to pp scattering data was presented in

[126]; see also [127]. To do so, a Coulomb interaction (similar to VC1
in Arg94 potential [31])

was introduced in the p-space calculations. Then, after a few minor adjustments (for example,

the coupling constants of the scalar mesons changed) to face the potential with data, a good

description of pp data was found as well.

4.13.2 CD-Bonn Potential

The Bonn Charge-Dependent (CD-Bonn) NN potential [99] is an improved and updated version

of the previous Bonn-A and Bonn-B potentials [45, 37]. It is based on the OBE contributions

of π, ρ, ω mesons next to two scalar-isoscalar mesons of σ1, σ2, which the latter simulates the

roles of 2π+πω exchanges. The resultant potential is energy-independent in the framework of

nonrelativistic LS equation and produces the results of Full-Bonn potential. In addition, the

predictions of the latter potential such as CSB and CIB (for all partial waves below J ≤ 4)

are involved directly. Further, the predicted off-shell effects because of relativistic Feynman

amplitudes for the meson exchanges, which are important in microscopic nuclear structure cal-

culations, are included. It is notable that the first version of the CD-Bonn potential presented

in [128] involved more with the off-shell analyses than the CD issues.

Although CSB in the potentials is mainly due to the difference between the proton and neutron

masses (the nucleon mass splitting), in CD-Bonn potential an equivalent contribution is due

to TBE (mainly 2π and πρ exchange) diagrams. On the other hand, CIB is mainly due to the

difference between the neutral- and charged-pion masses (the pion mass splitting) from OPE

diagram, while in CD-Bonn potential an almost equivalent contribution (about 50%) is due to

TBE and πγ diagrams for ℓ > 0 (or with the predictions of Full-Bonn model due to 2π as well

as 3π and 4π exchange diagrams). To see CIB in the potential, we first note that although the

OPE amplitudes in the potential are nonlocal, but in the local/static approximation and after

a Fourier transformation, the local OPEP in r-space reads

V
(4)
OPEP (mpi) =

g2pi
12

(mpi

2M

)

2

[(

e−µr

r
− 4π

µ2
δ3(~r)

)

(~σ1.~σ2)

+

(

1 +
3

µr
+

3

(µr)3

)

e−µr

r
S12

]

,

(4.63)

where µ = mpic/~. Now, because of the pion mass splitting (as the main CIB factor), we have

V pp
OPEP = V

(4)
OPEP (mπ0

),

V np
OPEP = −V (4)

OPEP (mπ0
)± 2V

(4)
OPEP (mπ±

),
(4.64)

where in the second relation, + (−) is for T = 1 (T = 0). We see that because of the pion

mass differences, the np OPEP with T = 1 is weaker than that of pp, leading to CIB. It is also

notable that the ∆-isobar states and multi-meson exchanges in Full-Bonn (Bonn-A) potential
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caused the energy dependence which was in turn problematic in applying the potentials to

direct nuclear calculations. So, in CD-Bonn potential (also in Bonn-B potential) this problem

is avoided by using just OBE contributions.

The three potentials of pp, np, nn are not independent but they are related by CSB and

CIB. Each of them is first fitted to the related Nijmegen phase shifts; then by minimizing the

earned χ2 from the Nijmegen error matrix and finally minimizing the exact χ2, which is in

turn obtained from comparing with all related scattering data, the potential parameters are

adjusted. For the Coulomb force in pp case, a similar VC1 as in [126] is used, and the relativistic

Coulomb interaction besides nuclear phase shifts are considered as well. The base phase shifts

are a sum of the Nijmegen-group ones in [122], [121] up to 1992, used also in Arg94 potential,

besides the published data after-1992-date and before-2000-date. So, CD-Bonn potential fitted

the world 2932 pp data below Tlab =350 MeV available in 2000 with χ2/Ndata = 1.01 and the

corresponding 3058 np data with χ2/Ndata = 1.02. This reproduction of NN data is more

accurate than by any other previous NN potentials, according to its authors of course! For

more details, such as its first applications to few-and many-body nuclear calculations, CIB,

CSB and off-shell effects, see the original papers [128, 99]; and also look at [9].

4.14 Padua-Group Potential

The Padua model for NN interaction, as a mixture of meson-exchange theory and phenomeno-

logical methods, is a special and important effort. The group has tried to set up an NN

potential based on their special model for ”Nucleon”. They have used a nonlocal potential

coming from the Padua nucleon-model with similar operators as in Hamada-Johnston [24],

Yale-group [25] and dTRS Super-Soft-Core [108] Potentials.

Indeed, the various terms with the operators shortened as c, σ, τ, στ, t, tτ, ls, lsτ, ll, llτ, ls2, ls2τ

are included. The general form of the potential, in (S, T ) space, can be written as

V = Vc(r) + Vt(r)S12 + Vls(r)~L.~S + Vls2(r)(~L.~S)
2 + Vll(r)L

2, (4.65)

where the radial functions have special forms almost different from the other potentials men-

tioned so far. In fact, various contributions of the pion and other single mesons as well as

two-pion combinations are introduced through these functions. The functions are in turn in

terms of special combinations of some radial functions and operators with included meson

masses, their coupling constants, amplitudes, and other free parameters and constant coeffi-

cients. Plainly, both Vc(r) and Vt(r) include the contributions from the mesons of π, ρ, ω, η, ή,

and are written in terms of c, σ, τ, στ and c, τ operators respectively, together with some func-

tions such as Y (x), Z(x), ... (x = mπ0
r) and the nucleon and included masses as well as some

other coupling and coefficient constants. Similarly, in Vls(r), Vls2(r), Vll(r), the contributions

from the mesons of ρ, ω, s and the operators of c, τ are included. It is also notable that one

may use the operators of ~L. (~σ1 − ~σ2) and/or ~L. (~σ1 × ~σ2) instead of ~L.~S in the Padua model

as they are also consistent.

In general, the involved radial functions in the potential are more based on theoretical knowl-
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edge by aiding of the nucleon-model rather than merely fitting experimental data. Nevertheless,

reproducing deuteron parameters and fitting phase shifts are good compared with the coun-

terpart results of its time potentials such as Arg94 [30], Bonn [45] and Paris [44] potentials.

Although it is rarely used in nuclear calculations, the Padua NN potential is a serious try

to find an even more sensible NN potential. For other interesting theoretical and numerical

analyses in their method, see the original paper [46].

4.15 Nijmegen-Group Potentials

The Nijmegen-group potentials are mainly the mixtures of meson exchanges with phenomeno-

logical characterizes and are often referred to QCD degrees of freedom for the SR part. The

group built various Baryon-Baryon (BB) and Baryon-AntiBaryon (BB̄) potentials among

which are some high-quality NN and Hyperon-Nucleon (YN) potentials. First, they presented

a few potential before 1990’s and then performed the partial-wave-analysis (PWA) [121], [129]

of the experimental scattering data. The insights gained from the analyses were then employed

to set up some improved and better potentials. In their NN potentials, besides the famous OBE

parts, many new features and other meson contributions are included. The nucleon- and pion-

mass splitting are often considered and, for the potentials after PWA93, charge dependence is

used. Because of the short-range parameterization, because of the vertex form functions, the

potentials are in contact with QCD. The potentials may be divided into at least four classes;

the Hard-Core (HC), Soft-Core (SC), Extended Soft-Core (ESC), and High-Quality (HQ) po-

tentials as well as PWA’s. We address in the following subsections some of their NN potentials

briefly; look also at [130].

4.15.1 The First Potentials

The main aim was to form BB potentials below the pion-production threshold. As we know,

the OBEP’s describe almost well the LR and MR parts next to including uncorrelated 2π

or scalar meson exchanges. Further, to describe the data better, the fictitious meson of σ

(as a correlated 2π exchange) is always required. In these models, the heavier meson of ǫ is

sometimes used as well. The Schrodinger equation in r-space is solved with local potentials

and Coulomb force (depended on the case) and, in addition, the SR repulsion is considered

through HC potentials. The first potentials of the group, named as NijmA, NijmB, NijmC,

NijmD, NijmE and NijmF, were represented from 1972 to 1978.

NijmA potential [131] is composed of some OBEP’s and a TPEP. Indeed, it includes the

members of the pseudoscalar- and vector- meson nonets as well as the Brueckner-Watson TPEP.

The potential was to describe low-energy YN data though it was not so good to describe the

high NN partial waves. NijmB and NijmC potentials [132] are OBEP’s fully and reproduced

well their time NN scattering data; the group also showed that one can describe the YN

channels with this OBEP approach.

It is notable that in the pure OBEP’s, the mesons were considered in an SU(3) consistent way.

That was mainly because one then could extend the calculations from NN to YN systems as
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well. For example, in the vector-meson (pseudoscalar-meson) nonet, one should use ρ, ω, φ

(π, η, ή) and all knowledge about φ − ω (η − ή) mixing and coupling constants from SU(3).

The OBEP’s were constructed in two classes I and II, where both used the nonets of the

pseudoscalar- and vector- mesons but they were different in discussing the scalar mesons. In

the class I, just the singlet scalar meson of ǫ was included while in the class II, an octet of

the scalar mesons was included. The first model of the class I was NijmB potential with

mǫ = 720MeV and Γǫ = 400MeV that gave almost χ2/Ndata = 5.9 for its time NN scattering

data below Tlab =330 MeV of the Livermore-group [104] of 1969.

NijmD potential [133] is belong to the class I OBEP’s and is similar to NijmB potential

except for including the η − ή mixture, mǫ = 760MeV and Γǫ = 640MeV, a different ratio of

F/(F + D) for the pseudoscalar octet, the slightly different potential forms for vector- and

scalar-mesons, as well as some other coupling and parameter changes. Clearly, the NijmD NN

potential includes the nonets of the pseudoscalar mesons of π, η, ή and the vector mesons of

ρ, ω, φ, each with a singlet-octet mixing angle as well as the unitary singlet scalar-meson of ǫ.

For short distances, it uses some strong repulsive phenomenological HC potentials, which in

turn should simulate the effects of the absent heavier-meson exchanges, inelastic effects and

so on. This HC parameterization is suitable, rather than the vertex form factors, in that it

is independent of the meson dynamics and is simple to use with Schrodinger equation. The

13 parameters of the potential, which are 8 meson-nucleon couplings and 3 core radiuses, are

determined from data fitting.

The general form of NijmD potential can be written in the operator format as (4.34), where

now n = 10 and c, σ, τ, στ, t, tτ, ls, lsτ, q, qτ are the indices for the 10 involved operators.

In other words, one may say that the potential includes the central, tensor, spin-orbit and

quadratic spin-orbit terms in (S, T ) space. The potentials of Vi are gained from field theory

with some approximations such as ignoring their total energy dependence, and writing the

energy factors as E ≃M+k2/8M , where the notations are those in (4.21). This approximation

means that just the terms up to the order of k2/M2 are kept in the p-space potentials. In

addition, there are the recoil effects to the quadratic spin-orbit potentials that cause the total

energy dependence. Further, in Fourier transform to r-space, all the terms that include ~∇r are

neglected except that in L2 operator. It is also notable that the meson bandwidth was settled

with a special propagator instead of the static meson propagator of 1/(k2+m2); and after the

Fourier transform to r-space, a superposition of the Yukawa functions resulted.

Resultant potentials in r-space are in terms of the functions of Y (x), Z(x) in (4.8) and the

proper operators and coupling constants as well as the nucleon and the pion averaged masses.

Indeed, we note that the potential for the pseudoscalar mesons is similar to the Full-Bonn

potential [45], where both have a similar structure as the OPEP of (2.1) or that in the Yale-

group [25] and Reid68 [26] phenomenological potentials. Anyway, it is determined that all

mesons contribute to the central potentials (with the function of Yc(x)), the pseudoscalar and

vector mesons contribute to the tensor potentials (with the function of Yt(x)), the scalar and

vector mesons contribute to the spin-orbit potentials (with the function of Yc(x)) and to the

quadratic spin-orbit potentials (with the function of Yt(x)). Still, for the short distances of
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r . 0.5, the HC radius xc has four different values for the four channels of 1S0,
3S1 − 3D1,

ℓ = 1, and ℓ ≥ 2.

The pp+np scattering data of the energy-independent phase-shift analyses of the Livermore-

group [104] were fitted good with χ2/Ndata = 2.4 for NijmD potential, next to good describing

low-energy scattering parameters and deuteron properties. Then, the YN version of the NijmD

potential was shown in [134]. In fact, there, some ΛN and ΣN potentials were presented with

considering charge symmetry between the Λp and Λn channels. The contributions for a scalar

octet in this YN potential were neglected (just ǫ with an important role in YN scattering was

included) to prevent introducing more free parameters in the potential. It was argued that the

YN interaction there next to NijmD NN potential describe all studied BB systems well.

NijmE potential [135] is almost the same as NijmD potential except for the contributions

of the scalars in the nonet; meanwhile the results are almost same. NijmF potential [135]

completed the HC potentials to describe all experimental known BB systems. Indeed, the

need to settle the scalar-octet coupling constants for YN systems, without increasing the

number of parameters, led to a different HC potential. Further, that need led to stronger

SU(3) constraints between NN and YN analyses than before. With the changes, such as those

of the coupling constants and relations among them, they earned better results than Nijm B

potential with NijmF potential [135].

4.15.2 Nijm78 Potential

Nijm78 potential [95], published in 1978, is a mixture of OBPE’s and one-Reggon-exchange-

potentials (OREP’s). In fact, it includes the vector mesons of ρ, ω, φ; the pseudoscalar mesons

of π, η, ή, with the couplings and mixings from their suiting SU(3) relations; the scalar mesons

of δ, S∗, ǫ(760); the dominant J = 0 contributions of Pomeron (P) (or multi-gluon exchanges),

and f, f́ , A2 tensor Regge-trajectories. So, this nonlocal and SC potential is indeed based on

Regge-pole theory for low-energy NN interaction and fits high-energy data by using exponential

form factors.

In p-space, the general form of Nijm78 potential, the OBEP’s with p-dependent central

terms and Pomeron-type potentials, reads

Ṽ (~pi, ~pf) = Ṽ0(k
2, q2) + Ṽσ(k

2)~σ1.~σ2 + Ṽt(k
2)S̃

(0)
12 + Ṽls(k

2)L̃S1 + Ṽq(k
2)Q̃12, (4.66)

where the symbols are those in (4.20) except S̃
(0)
12 = (~σ1.~k)(~σ2.~k). With the last relation,

one should note that we have just nonlocality in the central potential that means all the

momentum dependence in r-space is in the central part of the potential. Meanwhile, in the

Fourier transform into r-space, the energy-factor is approximated by E ≃M+k2/8M+q2/2M

and that just the first order terms in k2/M2, q2/M2 are kept. Now, by the approximations,

one can write the potentials of Ṽi (i = c, σ, t, ls, q) for all four sets of the involved mesons. The

potentials so are some combinations of k2, q2, meson and nucleon masses, coupling constants

39



and the exponential form-factor of ∆ as

∆ =
1

~k2 +m2
mes

e−
~k2/Λ2

, ∆P =
1

M2
p

e−
~k2/4m2

p , (4.67)

where mmes, mP ,Mp,Λ are the meson, Pomeron, proton (a scale mass) masses and the cutoff

mass (964.52 MeV here), respectively.

The Fourier transforms of the potentials into r-space, for the central, tensor, spin-orbit and

quadratic spin-orbit potentials are given in the Nijm87 original paper [95]. The potentials

so are in terms of some functions of φ0
c(r), φ

1
c(r), φ

2
c(r), φ

0
t (r), φ

1
t (r), φ

0
ls(r), φ

1
ls(r), which are in

turn in terms of mmes, mP (just for the Pomeron-type potentials) and Λ. Further, the Fourier

transform of the form-factor of ∆ in (4.67) becomes

∆̃ =
mmes

4π

[

1

4
m2

mesφ
1
c(r)−

1

2

(

∇2φ0
c(r) + φ0

c(r)∇2
)

]

, (4.68)

and similar for ∆P by setting 1
2
Λ = mP , mmes = 0, φPn

j (r) = φn+1
j (r) with j = c, t, ls here–For

a study of the Fourier transformation in such cases look, for instance, at [136].

Now, we can write the r-space potential, in (S, T ) space, as

V = Vc(r) + Vt(r)S12 + Vls(r)~L.~S + Vq(r)Q12 −
1

M

[

∇2V̀p + V̀p∇2
]

, (4.69)

where Vc(r) includes the contributions from all mesons and is written in terms of c, σ, τ, στ

operators together with φ0
c(r), φ

1
c(r), φ

2
c(r) and the nucleon and included meson masses and

couplings as well as some other constants; and similarly for the other three functions of

Vt(r), Vls(r), Vq(r). But Vt(r) includes the contributions from all involved pseudoscalar and

vector mesons together with φ0
t (r), φ

1
t (r) and t, tτ operators; Vls(r) includes the contributions

from all involved scalar, vector and Pomeron-type mesons together with φ0
ls(r), φ

1
ls(r) and ls, lsτ

operators; Vq(r) includes the contributions from all involved scalar, vector and Pomeron-type

mesons together with φ0
t (r) and q, qτ operators. In is mentionable that the local part of the

Pomeron-type potentials is multiplied by the exponential factor of e−m2
pr

2 ≡ φ0
P (r). We also

note that in the nonlocal potential, to which all except the pseudoscalar mesons contribute, as

the last part in (4.69), we have

V̀p =
∑

γ

C0

g2γ
4π

mγ

4Ḿ
φ0
c(r)−

g2P
4π

√
π

m3
γ

MḾ2
φ0
P (r), (4.70)

where γ and gγ are the suiting meson indices and couplings, M, Ḿ are for the proton and/or

neutron mass (Mp is chosen often), and C0 = 1 for scalar mesons and C0 = 3 for vector mesons–

It is also notable that the methods to solve Schrodinger equation with nonlocal potentials (such

as [∇2V̀p + V̀p∇2] here) is presented in [116].

Anyway, The 13 free parameters of the potential were fitted to the Livermore-group 1969

data up to 330 MeV [104] good with χ2/Ndata = 2.09 besides good describing low-energy
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parameters such as 1S0(pp),
3S1(np) scattering lengths as well as deuteron properties. The

results were very good among the best potentials of its time–The updated and improved

version of Nijm78 potential is Nijm93 potential [28] framed in 1992, which we describe below.

The YN version of Nijm78 potential was presented in 1989 [137] and applied to BB̄ systems

as well. The form factors, from the Regge-poles, are Gaussian that guarantee the soft behavior

of the potentials near the origin. It gave a good description of YN interactions by using SU(3)

and meson-nucleon coupling constants from the NN analyses.

4.15.3 Nijmegen Partial-Wave-Analysis

The first Nijmegen-group multi-energy phase-shift analysis was published in 1990 for just pp

interaction [122]. Next in 1993, they published a combined analysis of np+pp scattering data

[121]–For a newer PWA look at [138]. Indeed, the basic aim was to provide a more complete

database and then to improve the NN phase-shift analyses. To do so, they surveyed the NN

data published from Jan 1655 to Dec 1992 in the energy range of Tlab =0-350 MeV. As a result,

from 2078 pp data and 3446 np data, those survived with an optimized (not a very-high or

a very-low) χ2 were 1787 pp and 2514 np data. Next, they parameterized a special energy-

dependent NN potential for each partial-wave up to almost J = 4. After that, the radial

Schrodinger equation was solved by the adjusted potential to get the phase shifts as functions

of the adjusted parameters and energy. Then, from the phase shifts, some predictions for

observables, and χ2 to fit the experimental scattering data, were made. So, one may call the

Nijmegen analysis as an ”optimized potential” analysis from which the phase shifts are bought

for various partial waves.

By the way, in the Nijmegen PWA’s, the potentials for each partial-wave are actually

divided into two main parts: A nuclear (N) part and an electromagnetic (EM) part; or a

long-range (LR) part, a medium-range (MR) and a short-range (SR) part. That is

V = VEM + VN = VLR + VMR + VSR, (4.71)

where the electromagnetic interaction has almost the same structure as that in Arg94 poten-

tial [31] while the nuclear part includes an LR OPEP, an MR heavy-boson-exchange (HBE)

potential and a phenomenological SR potential. The LR potential VLR is indeed a sum of

the EM and OPE potentials; the MR potential VMR is mainly from the HBE contributions of

Nijm78 potential [95]; and the SR potential VSR is described by an energy-dependent boundary

condition at r = b = 1.4fm, where the energy-dependent square wells are used.

The involved EM potential here, in general, reads

VEM = VC1(r) + VC2(r) + VV P (r) + VMM(r), (4.72)

where, as before, the indices of C1, C2, V P,MM stand for the one-photon, two-photon, vacuum-

polarization and magnetic-moment interactions. More details were given in the subsection of

(4.12.2) with two main differences here with the more improved considerations in Arg94 case,

where the effects due to the finite-size of the nucleon and a Darwin-Foldy term (VDF (r)) were
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also included and improved.

On the other hand, the LR nuclear interaction because of OPE’s and the MR nuclear interac-

tion because of HBE’s always read

VN =
M

E
VOPE + f s

medVHBE . (4.73)

Indeed, the energy-dependent factor of M/E (where M is as usual the nucleon-mass, E =
√

M2 + q2 is the c.m. energy and q2 = MTlab/2) is required to get a better fit of the data.

Also, adding the HBE’s (such as ρ, ω, η) from Nijm87 potential for r > b to the OPEP tail,

give a better fit of the data but the nuclear part is still incomplete. The f s
med factor in the last

relation, for the singlet(s) partial waves, makes further improvement with f s
med(S = 0) = 1.8

and f s
med(S = 1) = 1.0, where S stands for the total spin of NN systems here.

For VOPE, we first note that one may face with the four isovector coupling constants of fppπ0
,

fnnπ0
, fnpπ−

, fpnπ+
in NNπ vertexes. So, for three possible NN scattering’s, one can write

f 2
pp ≡ fppπ0

fppπ0
, f 2

0 ≡ −fnnπ0
fppπ0

, 2f 2
c ≡ fnpπ−

fpnπ+
, (4.74)

where one may then take f 2
pp = f 2

0 when CS and f 2
pp = f 2

0 = f 2
c when CI is assumed. Now, we

can use the same expression in (4.50) for VOPE in (4.73) with a note that again the second term

on its RHS is used just for np case and fpp = −fnn ≡ f [120] with the CI value of f 2 = 0.075;

and also we should replace V
(3)
OPEP there with V

(4)
OPEP here as

V
(4)
OPEP (mpi) =

1

3

(

mpi

mπ±

)2
e−µr

r

[

(~σ1.~σ2) +

(

1 +
3

(µr)
+

3

(µr)2

)

S12

]

, (4.75)

where µ = mpic/~ as before.

For the SR potential VSR, used for r < b or lower partial waves, in the pp PWA’s (Nijm90pp)

[122], the coordinate-independent energy-dependent square wells were used up to J = 4 (see,

Fig. 2 and 3 of [121]). Further, for the isoscalar (T = 0) np partial waves up to J = 4, and
1S0 partial-wave, the same parameterization as the pp case was used; whereas for the isovector

(T = 1) np phases shifts (except for 1S0 phase-shift), the suiting pp results by including

the pion Coulomb corrections were used. For the middle partial waves of 5 ≤ J ≤ 8, the

evaluated phase shifts of the OPE+HBE of Nijm78 potential [95] were used. And finally, the

higher partial waves were obtained from the OPE phase shifts by including the electromagnetic

effects depended on the need.

It is also notable that the energy dependence of the square-well depth is parameterized through

three parameters for each partial-wave. From the total 49 such parameters for the states of

J ≤ 4, 21 parameters are for the pp case and 18 parameters are for the np case besides the

pion-nucleon coupling constants (fπ±
, f0) and f s

med determined by fitting the data. By the

way, in the combined pp+np Nijmegen PWA’s [121], with 1787 pp data (with 1613 degrees of

freedom) and 2514 np data (with 2332 degrees of freedom) below 360 MeV, published from

nearly 1955 to 1992, the ”perfect” result of χ2/Ndata ≈ 1 from the data fitting was achieved.
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Later, in 2004, the Nijmegen-group made a new PWA of pp and np data up to 500 MeV [138].

There, the NN database was enlarged to almost 5000 pp and the same np data below that

energy. Inelastic effects could be included, and one could gain both the T = 0, 1 phase shifts

from the np data in contrast to PWA93 [121], where T = 1 phases shifts were gained from the

suiting pp ones with some corrections. In the analysis, a chiral TPE potential was added to

the LR OPEP used in PWA93, with an improvement of the data fitting–For a new PWA of

NN scattering data, by another group, look at [139].

4.15.4 Nijm93, NijmI and NijmII Potentials

The Nijmegen high-quality (HQ) potentials, which are Nijm93, NijmI, NijmII and Reid93 NN

potentials [28], all give almost the perfect value of χ2/Ndata ≈ 1. Nijm93 potential is indeed an

updated version of Nijm78 potential in that it is fitted to its time Nijmegen np+pp database

[121] (with χ2/Ndata = 1.87) and includes new OPEP’s with the pion mass splitting. Both

NijmI and NijmII potentials are also built on Nijm78 potential [95] with some differences

and improvements of course. In NijmI potential, in each partial-wave, a few parameters of

the potential are adjusted. It includes, like Nijm78 and Nijm93 potentials, the momentum-

dependent terms that result in the nonlocal structure of the potential in r-space. However,

NijmII potential is completely local that means all momentum-dependent terms in p-space are

deliberately removed. These three potentials are regularized at the origin by exponential form

factors, are fitted to the same database and have the same number of fitting parameters (15

free parameters) as in PWA93 [121]. The results of data fitting signal that NijmI and NijmII

potentials have almost the same quality, and that all three potentials reproduce a χ2 close to

the suiting value for PWA93.

The general form of the NijmI and NijmII potentials in p-space are as in (4.66) except for

some differences. The first difference is adding the new operator of L̃A = i
2
(~σ1 − ~σ2).~n = i ~A.~n

(which is the Fourier transform of the charge-symmetry operator ~L. ~A used in Arg94 potential

[31] as well) and so, the new term of Ṽla(k
2)L̃A is added to the potential. It is notable that

for identical-particle scattering, this operator does not contribute; and when CI is supposed,

Ṽla(k
2) vanishes. The second difference is that instead of S̃

(0)
12 in Nijm78, one now uses the

complete S̃12 in (4.20), which is in turn the Fourier transform of the r-space tensor operator of

S12. The third difference is that because Q̃12 in (4.20) is not an exact Fourier transform of the

quadratic spin-orbit operator Q12 in (4.3), to have equivalent r- and p-space potentials with

the same phase shifts and bound-states, Q̃12Ṽq(k
2) in (4.66) must be replaced by

Q̃12Ṽq(k
2)− Q̃′

12

∫ k2

∞

dk′2Ṽq(k
2), (4.76)

where

Q̃′
12 =

[

(~σ1.~q)(~σ2.~q)− q2(~σ1.~σ2)
]

− 1

4

[

(~σ1.~k)(~σ2.~k)− k2(~σ1.~σ2)
]

. (4.77)

One should note that including Q12 was indeed necessary there to describe the phase shifts of
1S0,

1D2 simultaneously, and its effect could be simulated by including special nonlocal poten-

43



tials. By the way, the resultant potential forms Vi of V =
∑

i V
iOi, where i = c, σ, t, ls, q, la,

are supposed to be same for all partial waves, as the differences among the potentials arise from

the vacuum expectation values of the operators in different partial waves. It is also notable

that Vi may be a function of r2, q2 and L2 in r-space (or Ṽi(~k, ~q, ~n, E) in p-space); meanwhile

a r2-dependence is always preserved and the q2-dependence is included in Vc, which in turn

signals the nonlocal structure of the potential in r-space.

The included mesons and Reggons, OBEP’s and OREP’s as well as the propagators are

the same as those in Nijm78 potential except for a few differences. Indeed, the pion- and

nucleon-mass splitting are also considered. Taking the mass difference between the neutral-

and charged-pions (and also for the ρ meson here) leads to CIB. The coupling constants for

the pseudoscalar and vector mesons are related through SU(3) with their special singlet-octet

mixing, whereas for the scalar mesons and the Regge poles, the coupling constants are con-

sidered as free parameters. Also, for each exchange, an independent cutoff mass is used and

so, with the three cutoffs of ΛPS,ΛV ,ΛS, there are a total number of 14 free parameters. It

is also notable that the broad mesons of ρ and ǫ could be described by a dispersion integral

instead of the static formula of ∆(k2) = 1/(k2 + m2
mes). In the OPE part, as in PWA93,

the pion mass splitting is considered and so, the isovector np phase parameters are smaller

than the isovector pp phase parameters, which in turn means CIB. The plain OPEP’s for pp

and np systems are the same as those in PWA93 (and also Arg94 potential in (4.12.2)) with

f 2
pp = f 2

c = f 2
0 = f 2

π = 0.075 (pointing out CI for the pion-nucleon coupling constants), and

V
(5)
OPEP (mpi) =

(

mpi

mπ±

)2
1

3
mpic

2
[

φ1
c(mpi, r)~σ1.~σ2 + 3φ0

t (mpi, r)S12

]

, (4.78)

instead of V
(4)
OPEP (mpi) in (4.78).

Describing the data, in the energy range of 0-350 MeV, with the potentials are satisfac-

tory. In fact, Nijm93 potential fits 1787 pp data with χ2/Ndata = 1.8 and 2514 np data with

χ2/Ndata = 1.9 and so, the whole data with χ2/Ndata = 1.87. This description is better than

that of parameterized Paris potential [98] and Full-Bonn potentials [45], [37]. This result sug-

gests that just with the conventional OBEP’s one could not describe the data well. On the

other hand, NijmI and NijmII Reid-like potentials describe the whole pp and np data with

χ2/Ndata = 1.03 with 41 and 47 fitting parameters, respectively. The potentials are called

Reid-like in that, in each partial-wave, just a few parameters are adjusted that is in turn

similar to the Reid method in parameterizing the potentials in each partial-wave separately.

It is good to remind that, in making these HQ potentials, the Schrodinger equation of

(∇2 + k2)Ψ = 2MrVΨ, (4.79)

is used, which is a r-space approximation of the full four-dimensional scattering equation. In

this equation, Mr is the nucleon reduced mass, and the relations between the c.m. energy (E)

and the squared c.m. momentum (k2) are as E = k2/2Mr and E =
√

k2 +M2
p +

√

k2 +M2
n −

(Mp +Mn) for the nonrelativistic and relativistic kinematics, respectively.
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On the other hand, following the discussion in the previous subsections, we know that

to regularize the potential at the origin, the form-factor of F (k2) is always used. For the

Nijmegen potentials, and to complete the discussion, we quote the following useful Fourier

transform (with the λ index for the corresponding meson)

∫

d3k

(2π)3
ei
~k.~r

k2 +m2
λ

(k2)nF (k2) ≡ mλ

4π
(−m2

λ)
nφn

c (r)

=
mλ

4π
(−∇2)nφ0

c(r),

(4.80)

according to which, for the well-known form functions, we can write

F (~k2) = 1 ⇒ φ0
c(r) =

e−mλr

mλr
, (4.81)

which is the usual Yukawa potential without the form function (the point-like nucleon);

F (k2) =
(

Λ2 −m2
λ

)

/
(

Λ2 + k2
)

⇒ φ0
c(r) =

[

e−mλr − e−Λr
]

/mλr, (4.82)

as the Monopole form-factor normalized such that at the pole, F (−m2
λ) = 1; and

F (k2) =
(

Λ2 −m2
λ

)2
/
(

Λ2 + k2
)2
,

⇒φ0
c(r) =

[

e−mλr − e−Λr

(

1 +
Λ2 −m2

λ

2Λ2
Λr

)]

/mλr,
(4.83)

as the Dipole form-factor; and

F (k2) = e−k2/Λ2

,

⇒φ0
c(r) = em

2/Λ2

[

e−mλrerfc

(

mλ

Λ
− Λr

2

)

− emλrerfc

(

mλ

Λ
− Λr

2

)]

/2mλr,
(4.84)

as the Exponential form-factor with

erfc(y) =
2√
π

∫ ∞

y

dte−t2 , (4.85)

as the complementary-error-function.

It should be also mentioned that, without the form factors, one should use

φ1
c(r) = φ0

c(r)− 4πδ3(mλ~r) (4.86)

instead of φ0
c(r) in the presence of the form factors. Besides, with the help of (4.80), one can

get the tensor and spin-orbit potentials in terms of the central function of φ0
c(r) as

φ0
t (r) =

1

3m2
λ

r
d

dr

(

1

r

d

dr

)

φ0
c(r), (4.87)
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φ0
ls(r) = − 1

m2
λ

1

r

d

dr
φ0
c(r). (4.88)

Therefore, one can see that with the dipole form-factor (in Reid93) and the exponential form-

factor (in Nijm93, NijmI, NijmII) to regularize the potentials, the tensor function is vanished

at the origin as well.

It is also good to mention the Fourier transform of the momentum-dependent terms (linear in

q2 in Nijm78, Nijm93, NijmI) in the p-space potentials, which lead to the nonlocal structure

in r-pace as

∫

d3k

(2π)3
ei
~k.~r

k2 +m2
λ

(

q2 +
1

4
k2
)

F (k2) = −mλ

8π

[

∇2φ0
c(r) + φ0

c(r)∇2
]

, (4.89)

(to see how to handle such nonlocal terms, look at [116]) whereas the absence of the q2 terms

in NijmII (and also Reid93) potential in p-space leads to a radial local potential in r-space.

4.15.5 Reid93 Potential

The so-called regularized-Reid (Reid93) potential [28] is fitted to the updated Nijmegen database,

while the quality of the original Reid68 [26] np data were poor. Besides, there was a 1/r sin-

gularity for all partial waves, which are now removed by including the dipole form factors

(with the cutoff of Λ = 8mpi); and so the tensor potentials vanish at the origin. For the OPE

part, as in the other Nijmegen high-quality potentials, the neutral-and charged-pion mass dif-

ferences are considered (with f 2
π = 0.075 again) and so Reid93 potential is charge-dependent.

Meanwhile, in (4.78), φ1
c(r) is used just for S-wave while, for other partial waves, φ0

c(r) is used

instead of φ1
c(r).

Besides the OPEP tail, the potential in each partial-wave is parameterized separately by choos-

ing suitable combinations of the central, tensor and spin-orbit terms with arbitrary masses and

cutoff parameters. In Reid93 potential, with the coefficients of m̄ =
(

mπ0
+ 2mπ±

)

/3, Λ = 8m̄,

all potentials are written as linear combinations of the following functions

Ȳ (p) = pm̄φ0
c(pm̄, r), Z̄(p) = pm̄φ0

t (pm̄, r), W̄ (p) = pm̄φ0
ls(pm̄, r), (4.90)

with 50 coefficients of Ajp, and Bjp, which are used for isovector potentials, and isoscalar and

np 1S0 potentials, respectively. These coefficients are fixed by fitting to the relevant pp+np

scattering data. Here, p is an integer and j labels various partial waves, and that φ0
t and φ0

ls

are some special radial functions [28].

One should note that, as in Reid68 potential, in the non-OPE part, for the singlet- and

uncoupled triplet-states, the central potentials are used; and for the coupled triplet-states, the

potentials having the central, tensor and spin-orbit terms as (4.13) are used. For instance, for
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the uncoupled states of (T = 1, S = 0, L = J), they used

Vpp(
1S0) = A12Y (2) + A13Y (3) + A14Y (4) + A15Y (5) + A16Y (6),

Vnp(
1S0) = B13Y (3) +B14Y (4) +B15Y (5) +B16Y (6),

V (1D2) = A24Y (4) + A25Y (5) + A26Y (6),

V (1G4) = A33Y (3), V (1J1) = Vpp(
1S0), J ≥ 6,

(4.91)

where the different pp and np 1S0 potentials are because of the CIB considered in the potentials.

We should also mention that, for the coupled states, the potentials have clear forms up to

J = 4; and for the higher partial waves (J ≥ 5), a similar expansion as done by Day [27]

(look at subsection (4.5.2) is performed. Clearly, for the triplet isovector (isoscalar) partial

waves of J ≥ 5, the central and tensor potentials are those of the corresponding S = 1, T = 1

(S = 1, T = 0) J < 5 partial waves while the spin-orbit potential is set to zero.

By the way, with 50 fitting parameters, Reid93 potential reproduces the result of χ2/Ndata =

1.03 such as the other Nijmegen HQ Potentials. It is also remarkable that the predicted values

of the quantities, such as deuteron parameters and low-energy scattering parameters, by Reid93

potential (and also the other HQ potentials of Nijm93, NijmI, NijmII) has a good agreement

with the experimental values [28]. Nowadays, these HQ potentials are extensively used in

nuclear structure calculations with many satisfactory results.

4.15.6 Extended Soft-Core Potentials

The already mentioned Nijmegen potentials based on OBE and ORE approaches described

well the data but with many phenomenological arguments included. The extended-soft-core

(ESC) potentials include extra exchanges and are more on the theoretical grounds. That is

because by adding a few more free parameters, while preserving the previous advantages, the

new potentials reproduce the data well. In the first ESC model [140], next to the whole previ-

ous exchanges of Nijm78 potential [95], they included some two-meson-exchange (TME) (and

also 2π-exchange) and meson-pair-exchange (MPE) contributions. That model described the

Nijmegen PWA93 (pp+np database) in the energy range of 25-320 MeV with χ2/Ndata = 1.16,

which was the first promising result in the case.

The next completed version was presented in 1995 [141]. In fact, besides the previous OBE’s

and ORE’s of Nijm78 potential [95], TPE’s, TME’s and MPE’s were included as well. In

general, TME contributions are from π ⊗ ρ, π ⊗ ω, π ⊗ η, π ⊗ ǫ, π ⊗ P, ..., where the parallel

and crossed-box Brueckner-Watson diagrams with Gaussian form factors are computed. The

MPE contributions are due to one-pair and two-pair (ππ, πρ, πω, πη, πǫ, ...), where a Gaussian

form-factor (as e−k2/2Λ2

) is attached to each vertex. The interaction Lagrangian’s are for the ef-

fective relativistic theories, with LS equation. The ESC potentials were compared with Nijm93

potential [28] in that at least both include 14 free parameters. Next, the ESC potentials gave

better results with more theoretical grounds besides using the chiral symmetry of the involved

Lagrangian’s.

The chiral-invariant ESC model for NN interaction with 12 free parameters reproduced the
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data in the energy range of 0-350 MeV with χ2/Ndata = 1.75 [142]. It is notable that the TME

contributions improved the ESC potential quality with respect to the previous OBEP’s. In

addition, one notes that the meson-pair vertexes in the triangle and double TME diagrams

(supposed to simulate the heavy mesons and resonance degrees of freedom) are analyzed in

principle by chiral-symmetry and so, these contributions do not introduce any new parameter.

The YN and YY versions of the ESC potentials were then reported in [143] first, where next

to discussing the usual boson-exchanges, the interactions were discussed in the framework of

QCD, flavor SU(3), and chiral SU(3)⊗SU(3) for the low-energy region as well. Then, in 2000,

besides reviewing the Nijmegen SC potentials, a new ESC model (called ESC00) was presented

to describe NN, YN and YY systems in an unified manner by using SU(3)f symmetry [144].

In the energy range of 0-350 MeV, it described YN and NN systems with χ2/Ndata = 1.15.

After that, they modeled the comprehensive p-space versions of the ESC NN potentials in

[145]. With 20 free parameters (of the masses and coupling constants) there, they reproduced

the NN scattering data in the energy range of 0-350 MeV again with χ2/Ndata = 1.15. Some

new improvements were because of including the axial-vector mesons and a zero in the scalar

meson form factors–It is also mentionable that the SC meson-baryon interactions were dis-

cussed in [146] as well. From 2005 onwards, some new generations of the ESC BB potentials

(called ESC04) have been presented, where the contributions from OPE’s, ORE’s, MPE’s and

two-pseudoscalar-meson-exchange (PS-PS exchange) are also included. There are the NN in-

teraction in [147], the YN interaction in [148], and the BB states with the total strangeness of

S = −2 in [149]. For some recent reviews of the Nijmegen ESC potentials, see [150], [151].

4.15.7 Nijmegen Optical Potentials

NN potentials are often considered to be real below the pion production threshold in about

Tlab =290 MeV. One way to include inelasticity’s at the high energies, above the thresholds, is

to consider optical potentials. On the other hand, we saw that in the Nijmegen PWA93 for the

short distance potential (VSR), below r < b (with b = 1.4fm; look at subsection of (4.15.3)),

the energy-dependent square wells were used. Now, one may write [152]

VS = VRel − iVImg, (4.92)

where the real SR potential VRel, which is different for each partial-wave, always reads

VRel =

N
∑

n=0

an(k
2)n, (4.93)

and the imaginary SR potential VI is taken as

VImg = (k2 − k2th)V.θ(E −Eth). (4.94)

It was established from the Nijmegen PWA’s [121, 129] that the fully real potentials work

up to about 500 MeV quite well. Nevertheless, the optical potentials of the Nijmegen-group

48



could be constructed by adding, to the real HQ potentials, the same imaginary part used in

the Nijmegen PWA’s of the np data below 500 MeV, according to the above prescription of

course. But, the resultant optical potentials did not give good results for all partial waves in

that energy range. Clearly, if one considers all np date below 1 GeV, some differences among

the results from the preliminary PWA’s and the above constructed optical potentials arise in

some partial waves. For instance, as it is clear from Figure 3, for all np data below 1 GeV,

the phase shift of 1S0 is well described by both PWA and the optical NijmI potential; whereas

for the phase shift of 1D2, the large differences are recognizable clearly. Still, by refitting, the

modified NijmI optical potential, NijmI (mod), is obtained that gives a good fitting of the 1D2

phase shift up to 1 GeV. Therefore, it seems that it is not so difficult to model the optical

potentials to fit the np data up to Tlab =1 GeV.

Figure 3: The phase shifts 1S0(left), and 1D2(right) for the NijmI optical potential and a
modified version of that (quoted from [130]).

4.16 Hamburg-Group Potentials

Hamburg potentials are also among meson-exchange models related to QCD substructures.

Since, in Bonn-B potential [37], the scattering amplitudes were obtained from the meson-

baryon Lagrangian in a clear and comprehensive way, that model was used as a base to

build one-solitary-boson-exchange potential (OSBEP) by this Hamburg-group. In fact, the

Hamburg-group potential somehow refines the common boson exchange picture by seeking for

a procedure that reduces markedly the number of free parameters of the conventional boson

exchange potentials; whereas the parameters are in turn needed for the quality fittings of the

potentials to scattering data. Because of its special mechanism, there is not any cutoff param-

eter as the only adjustable parameters are the pion self-coupling constant and meson-nucleon

coupling constants. The first version [47] was presented in 1996, to fit just elastic np scattering

data up to J ≤ 3, and was further developed in [153] to include both np+pp data with more
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improvements.

In fact, the features of both QCD-inspired models and common phenomenological boson-

exchange potentials are included in OSBEP. We know that below the pion production thresh-

old, chiral symmetry is supposed to be broken. Now, a meson Lagrangian, by including all

OBE contributions, with a similar structure as the linear sigma-model, is considered. Be-

cause the symmetry conditions are not imposed on the masses and coupling constants, but

the latter are used as free parameters in the Lagrangian, the chiral symmetry is so broken.

Therefore, the spontaneous chiral symmetry breaking leads to nonlinear terms in the meson

part of the Lagrangian. The resultant decoupled nonlinear meson equations are then analyzed,

and semiclassical solutions are quantized leading to defining ”solitary mesons” from which the

propagators come out. Indeed, the nonlinear features of the QCD-inspired models are consid-

ered as the nonlinear boson equations result. Because of the nonlinear property of the boson,

the form factors are not as those in the Bonn-B potentials; and they are replaced by properly

normalized solitary meson fields. As another result, an experimental scaling law arises that

relates all the meson parameters and so, reduces the number of fitting parameters. The model

also gives a good quantitative description of experimental data and deuteron properties though

the quality is not as high as the other mentioned HQ potentials [153].

Meanwhile, in [39], NN interaction is discussed from quantum-inversion approach versus meson-

exchange picture and especially from OSBEP. In general, we know that by inserting a potential

with its special operators into LS equation, one can earn phase shifts and other observables.

In full generality, this method involves quark and gluon substructures, and then both on-shell

and off-shell data are described well. However, the inversion potentials are in general local

and energy-dependent in r-space, whereas BEP’s lead to nonlocal potentials in p-space mainly.

It is established there that the results from quantum-inversion and boson-exchange potentials

are almost same. A main difference is the larger D-state probability for the local potentials,

which is in turn related to the different tensor part of the potentials.

The next improvement in studying OSBEP’s was to extend them for pion-nucleon interactions

as well, as in [154], where the OSBEP model was recast into a unique form for NN and πN

interactions. To do so, the ∆-isobar was included besides the chiral-symmetry preserving pseu-

dovector meson-baryon coupling (PS πNN) instead of the previous pseudoscalar (PS) coupling

for πNN. Describing NN and πN interactions simultaneously was good as the previous results

for just NN interaction.

In 2003, von Geramb et al. proposed another NN potential based on Dirac equations

(two coupled Dirac equations with constraints from dynamics) combined with meson-exchange

picture (including the π, η, ρ, ω, σ exchanges) [155]. The resultant potentials, to use in partial-

wave Schrodinger-like equations, inspired by meson exchanges, fitted the Arndt et al. pp+np

phase shifts of Tlab =0-3 GeV [156] as well as deuteron properties. The analyses showed

a universal core potential coming from relativistic meson-exchange dynamics, and that the

high-energy effects such as those of QCD and inelasticity were included. Besides the Dirac

meson-exchange potentials, they framed some local and nonlocal optical potentials, which still

gave good agreement between theoretical and experimental data.
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4.17 Moscow-Group Potentials

Moscow-type (M-type) potentials are mainly a hybrid of the quark-model and meson-exchange

picture. In general, in short distances, the quark and gluon degrees of freedom are used;

whereas for the LR and MR regions, OBEP’s+TPEP’s are often used. The first major version

was presented in 1997 [59] and latter improved in [157]. The main features of these potentials

are the emphasis on the deep substructures from QCD. One main difference of the M-type

potentials from the other NN potentials is that the common SR local repulsive core from

the ω (and also ρ) meson is strongly reduced, and is indeed replaced by that of a suitable

orthogonality condition plus a deep attractive potential. The orthogonality condition may be

interpreted as projecting the compound six-quark states (ϕ0), with the maximal permutational

symmetry, into asymptotic NN channels. As a result, one now has a node around ∼ 0.6fm

that plays the role of the repulsive core and provides NN phase shifts. Meanwhile, the potential

also has strong attraction in intermediate parts commonly assigned to the pseudoscalar-meson

exchanges of π, η and the scalar-meson exchange of σ. Still, for the SR repulsion of the ω

meson, a repulsive core with a Gaussian form-factor with a positive finite coupling constant is

included. In other words, in the short distances (r . 1fm), the nonlocal and energy-dependent

terms, which are in turn coming from the retardation effects and six-quark bags (6q-bags), are

replaced by a separable potential.

By the way, the main M-type potential in [59], with two major parts, reads

V = V
(0)
loc. + Vsep., (4.95)

where the local potential (Vloc.) is ℓ-independent and includes an OPEP and an attractive well,

and is depended on the spin and parity of NN system. The separable potential (Vsep.) is a state-

dependent (depended on the ℓ, J of NN system) repulsive core with a Gaussian form-factor.

They are

Vloc. = Vc(r) + Vt(r)S12 = V0e
−ηr2 + V

(6)
OPEP (mpi) + λ|ϕ >< ϕ|, (4.96)

in which

V
(6)
OPEP (mpi) = −f

2
πNN

4π

µ3

4M2
[ftrYc(x)~σ1.~σ2 + (ftr)

nYt(x)S12] , (4.97)

and

ϕ = Nrℓ+1e
− 1

2

(

r
r0

)2

,

∫

ϕ2 dr = 1, ftr =
(

1− e−αr
)

, (4.98)

where x = µr as usual with µ for the average pion-mass, n as the power of the cutoff factor

of ftr is different for the different versions of the potential, r0 is the radius of the repulsive

core (different slightly for the different states), α is the cutoff radius of the OPEP, and λ is

different for different ℓ, J ’s. Because of the freedom to choose the parameters of η, α, V0, one

can set η = α2; and then the width of η and the depth of V0 are fitted to scattering data, which

are the scattering length and the effective range of the 1S0 wave here. It is mentionable that

the repulsive core is absent for ℓ ≤ 4 (Tlab < 400 MeV) because of the second term in (4.97)

or the presence of Yt(x). Anyway, this M-type potential describes well deuteron properties

51



and NN scattering data up to 500 MeV with 6 free parameters, which are in turn physically

meaningful. Also, the off-shell behavior of the potential can be checked in NN bremsstrahlung.

It should also be mentioned that, contrary to the other quark-meson hybrid models that use

the mixtures of both and so lead to energy-dependent nonlocal potentials, here the quark and

meson exchanges are orthogonal besides giving a microscopic description of NN interaction.

In the complete version presented then, the Gaussian form function was replaced by an

exponential form function to describe better the phase shifts especially 3S1 − 3D1 phase-shift.

The potential so is written as

V = V
(M)
loc. + V

(7)
OPEP + Vsep., (4.99)

in which

V
(M)
loc. = V0e

−βr + V0e
−βr~L.~S, (4.100)

and

V
(7)
OPEP (µ) = −f

2
πNN

4π

µ

3
(~τ1.~τ2)

[

Y (2)
c (x)(~σ1.~σ2) + Y

(2)
t (x)Ŝ12

]

, (4.101)

where this OPEP is written with a soft dipole form-factor, and now the tensor potential

becomes zero at the origin as it must be; Ŝ12 = S12/3 and µ = (mπ0
+ 2mπ±

)/3; and now, the

same as in Arg94 potential [31] and Nijmegen HQ potentials [28], f 2
πNN/4π = 0.075; α = Λ/µ,

and

Y (2)
c (x) = Yc(x)− αYc(αx)−

(

α2 − 1
) α2

2
x Yc(αx),

Y
(2)
t (x) = Yt(x)− α3Yt(αx),

(4.102)

with the notations in (4.23). Here just V0, α, β are free parameters in the local part of the

potential, which are in turn different for each spin and parity combination. In addition, the

parameters of λ and r0 are independent for D- and F-waves; whereas for S- and P-waves, λ

goes to infinity and r0 values are depended on the depth of the attractive local potential. In

general, with 32 parameters (a similar number to the so far mentioned HQ potentials) and the

πNN coupling constant, describing deuteron properties and partial waves in the energy range

of 0-400 MeV was very good (except for few higher ℓ’s).

Next, they developed a new mechanism to describe NN interaction in MR and SR parts

[158]. In fact, instead of the oldest Yukawa formalism for SR interaction, a 6q-bag model,

dressed because of the π, ρ, σ mesons, was used there. That in turn produced an MR attraction

that replaced the conventional σ-meson exchange. On the other hand, the ρ meson, produced

in the intermediate six-quark state, caused a nonlocal spin-orbit interaction in the SR part. As

a result, the MR attraction and a part of the SR repulsion were described excellently, whereas

the SR repulsion was mainly because of the orthogonality of NN- and 6q-channels.

In other words, in the common OBE models, there are still many problems. For instance, the

cutoff parameters ΛmλNN are often larger than the experimental values got by fitting the data;

the phenomenological Yukawa functions have also at least the base theoretical problems; and
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discussing the σ meson, as a 2π resonance in S-state, is also controversial. Further, describing

3N and 4N systems with the settled OBEP’s is not addressed satisfactory yet. Therefore, the

new M-type potentials try to address some of the existing problems.

Here, with the dressed 6q-bag, the σ- (and even ρ-) meson exchange between nucleons is

considered because of the transitions between the p-shells of the excited quarks. In other

words, each p-shell quark emits a pion and during the transition from the p-shell to s-shell,

the pions are absorbed by the di-quark pairs in the intermediate 6q bag-like states (suppose

as qq → σ + qq). Further, the σ meson, as a scalar-isoscalar excitation of the QCD vacuum,

is considered as a quasiparticle inside the hadrons (especially in a multi-quark bag) and not

as a real particle in the free space. Therefore, the scalar-isoscalar σ meson exists just in a

high-density medium and not in the vacuum (contrary to the ρ, ω mesons).

One can show the main features of the model by a simple phenomenological potential as

V = Vorth. + VNqN + V
(7)
OPEP , (4.103)

where

Vorth = λ00|ϕ0 >< ϕ0|, (λ0 → ∞), (4.104)

as the orthogonality potential, provides the orthogonality condition between the intermediate

6q-bag and the especial NN channel for S- and P-waves. VNqN is the separable potential

attributable to the virtual transition of NN → (6q + 2π) +NN as

VNqN =
E2

0

E2 − E2
0

λ|ϕ >< ϕ|, (4.105)

for the single channels and

VNqN =
E2

0

E2 − E2
0

(

λ11|ϕ1 >< ϕ1| λ12|ϕ1 >< ϕ2|
λ21|ϕ2 >< ϕ1| λ22|ϕ2 >< ϕ2|

)

, (4.106)

for the coupled channels. E0 ≈ 600− 100 MeV is a sum of the 6q-bag energy and the σ-meson

mass inside the 6q-bag, and is same for all partial waves with definite parities. The expression

for ϕi is that in (4.98) with ϕi, ℓi here instead of ϕ, ℓ there. The potential parameters of

λjk(= λkj), r0, E0, the phase shifts and the mixing parameters ε1 are determined by fitting

the data with the cutoff parameter of Λ = Λdipole = 0.50− 0.75 MeV. The resultant potential

describes the partial waves of ℓ < 2, which is in turn equivalent to describing the phase shifts

in the energy range of 0-600 MeV and S-waves for an energy about 1200 MeV. Further, the

weak contributions because of the vector mesons in the baryon spectra and the strong spin-

orbit splitting are explainable by this constituent-quark model. Still, the model leads to some

especial 3N and 4N forces because of 2π and ρ exchanges.

In 2005, the group described elastic and inelastic NN scattering’s in the energy range of 1-2

GeV by a special EFT [159]. The previous approach, to describe MR and SR interactions

in [158], which made use of six-quark bags and the intermediate mesons of π, σ, ρ, ω, were

employed there and improved as well.
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The predictions of these M-type potentials for 3N systems were also analyzed in detail with

good results. Large deviations from the conventional NN potentials were established for the

momentum-distribution in the high-momentum region. In particular, the coulomb displace-

ment energy for the nuclei of 3He−3H displayed a promising agreement with experiment when

the binding energy of 3H was extrapolated to the experimental value [59], [157]. Further, in

[158], by using a new MR NN interaction model, based on the QCD bag model, an effective

energy-dependent NN interaction was constructed. The new potential described experimental

data up to 1 GeV and deuteron parameters well. Generalizations of the model to three-nucleon

force (3NF) and other related issues were also discussed [159]. Other mechanisms for the MR

and SR parts of NN interaction are addressed by the group members in the references of [159].

It is remarkable that the M-type potentials, and also the following two potentials/models, do

not have necessarily similar structures as the other standard ones and are almost special.

4.18 Budapest(IS)-Group Potential

Doleschall et al. set up a set of NN interactions in r-space to get the correct binding en-

ergy of triton [160]. The potentials are nonrelativistic and almost phenomenological, nonlocal

and energy-independent. Nucleons are discussed as point-like objects and effects from their

structure is supposed to come from effective NN potentials. In some specific short regions,

the potentials are considered to be nonlocal, and in the outside regions as some local Yukawa

tails. The first aim was to find a nonlocal potential form to describe triton (3H as a 3N bound

system) binding energy as well as describe experimental phase shifts and deuteron properties.

Later, they used those nonlocal NN potentials to describe some other 3N bound states [161]. In

fact, they modeled an NN potential respecting the well-known local behaviors in long ranges,

whereas it showed a nonlocality at the shorter ranges. The resultant potential provided a

satisfactory fit to NN scattering data while including CI and CS. The nonlocality in the NN

potential guaranteed that no 3N forces were required to describe 3N bound-states.

4.19 MIK-Group Potential

The J-matrix inverse scattering approach to make NN potentials was started by Zaitsev et al.

in [162], [20], and was developed by Shirokov et al. in [163]. Indeed, the nonlocal interactions

gained in this approach are in the forms of some matrices in oscillator basis in each NN

partial-wave separately. In other words, in the approach NN interaction is as a set of potential

matrices for various partial waves. However, a main aim to make the potentials was to earn

some satisfactory results in nuclear calculations of 3N systems and other light nuclei.

In the first serious try [163], based on [162], [20], they held the inverse scattering tridiagonal

potentials (ISTP), which are tridiagonal (quasi-tridiagonal) in the uncoupled (coupled) partial

waves. The dimension of the potential matrix was determined by the maximum value of N =

2n + ℓ (note that the common nonrelativistic Schrodinger equation is used in the approach),

and was refereed as a N~ω potential. We should note that the resultant interactions are

somehow effective and are not related to the usual meson-exchange theories though the main
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features and results of NN interaction are common. It is also notable that, to describe a wider

energy range, the size of the potential matrix, or the oscillator basis parameter ~ω, must be

increased. The potential [163] was used in nuclear calculations of 3H, 3He with giving good

results also in describing NN scattering data.

In [164], similar to that in [163], another class of the J-matrix inverse scattering potentials

(JISP), called JISP6, was constructed. The resultant potentials described well NN scattering

data as well as the bound- and resonance-states of the light nuclei up to A = 6. A remarkable

feature of the potentials was that by using the off-shell degrees of freedom, there was not

any need to include 3N potentials to describe well the light nuclei. The results to evaluate

binding energies of the nuclei 3H, 3He, 4He, 6He, 6Li were as well as the results of the other

HQ potentials such as NijmI, NijmII [28], Arg94 [31], and CD-Bonn [99] potentials. In [164],

the base parameter was ~ω = 40 MeV, and that the potential described the Nijmegen PWA93

data [121] with χ2/Ndata = 1.03; look also in [21].

Next, they set up a JISP16 version and then further developed it as a ISP162010 version [165].

The latter potentials were used to evaluate binding energies and spectra of the light nuclei in

No-Core-Shell-Model (NCSM) calculations. In a recent study [166], the progress in developing

the JISP NN interactions and other related issues are discussed as well.

4.20 Imaginary Potentials

As we know, above the pion production threshold, the inelasticity’s and other high-energy

effects become important, and then one way to incorporate them is to consider optical or imag-

inary potentials suitable also to earn high quality descriptions of scattering data in medium

and high energies. Among a few imaginary NN potentials, we discussed briefly the Nijmegen

ones in subsection of (4.15.7). In [167], some NN potentials such as Paris, Nijmegen and Ar-

gonne potentials, and those traced by quantum inversion, which describe NN interaction for

the energies below 300 MeV, are extended to NN optical potentials in r-space. The up-to-date

phase-shift analyses, from 300 MeV to 3 GeV, are used to settle the extensions. The imagi-

nary parts of optical potentials account for the flux losing into direct or resonant production

processes. The optical potential approach is interesting as it allows one to imagine fusion and

resulting fission of nucleus when T-lab energies are above 2 GeV.

Discussions about optical potential from quantum inverse-scattering and scattering data as

well as modeling an optical potential are also given in [168]. There is also a relativistic optical

NN potential, based on some idea of M-type potentials, in [169].

4.21 QCD-Inspired Potentials

The QCD-inspired models always use the fundamental quark and gluon degrees of freedom

instead of mesons. Indeed, because the SR part of NN interaction is more related to quarks

and gluons, so the QCD-inspired potentials are used more to describe this part. Often one

uses the hybrids of quarks and mesons to describe the interaction. There, the SR interaction

is always attributable to gluon exchanges and the MR and LR parts come from scalar- and
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pseudoscalar- meson exchanges. One, of course, usually uses OPEP’s for the LR part, while the

MR part is handled by phenomenological or TPEP’s, as we described some potentials briefly.

Nevertheless, one should note that by applying the spontaneous chiral symmetry breaking to

QCD Lagrangian, one may be able to set up an NN interaction fully based on QCD. Then,

the common picture of the nucleon is a quark core surrounded by a pion cloud. So, in large

distances, one may use an effective meson-nucleon theory to describe nucleon interactions. In

the case, the form factors with free parameters in short distances are often used. For a typical

review up to 1988 see [48], and [49] for a study on NN QCD models up to 1998, and [51] for a

historical and technical review on QCD-inspired models up to 2002. Discussing various aspects

of the QCD-inspired NN potentials needs another opportunity and is not in the level and aim

of the current note. Nevertheless, we try to address some progresses and more plain potentials.

In fact, a pioneer study of the SR repulsion of NN interaction in the framework of quark

model was done in [170]. In the first studies, the quark and gluon dynamics (especially one-

gluon-exchanges (OGE’s) were included), to give quantitative description of SR part, were

employed. Then, especially in 1980’s, the hybrid quark models were constructed (among the

first samples are in [171]), where for the LR and MR parts they always used the potentials from

other phenomenological and boson-exchange models; look also at [172]. Describing scattering

data and deuteron properties with the earlier quark potential models was not so satisfactory.

In [173], nonrelativistic quark-cluster models were used to describe BB, NN and YN interac-

tions especially in the MR’s and SR’s with some good descriptions. After that, the hybrid

models (including quark, gluon and meson (especially pion) exchanges) were developed and

more improved. Among the earlier hybrid models, that is an NN potential [100] made from

Paris potential [44] for long- and intermediate-distances with the quark-cluster model (QCM)

for short distances. There, the effects of the quark degrees of freedom on NN observables

were surveyed. But, describing its time pp data was not good except if one used some other

adjustable potentials in the LR and MR parts.

In 1990’s, chiral constituent quark models (CCQM) were framed, which were always consid-

ered as a result of the spontaneous symmetry breaking of QCD Lagrangian. There, OPE’s,

OSE’s (S for sigma) and OGE’s were included besides a phenomenological confining potential.

The resultant potentials described NN scattering data and deuteron properties better than

any other QCD-inspired potential at that time. They are many of the CCQM potentials that

we mention just some studies. In [50], the SR NN interaction is described by a CCQM model

as well, where the constituent quarks interact through pseudoscalar meson exchanges. There,

projecting the six-quark wave-function into NN channel produces an SR node for S-waves, like

M-type potentials [157]. So, the short distances are described microscopically, whereas the

medium and large distances are described through the Yukawa pion and sigma meson between

the quarks belong to the nucleons. The CCQM models are further addressed in [51], where

it is discussed that they describe well the LR attractive and SR repulsive features in addition

that they are universal in describing all baryons on equal footings–Look also at [52].

Among other QCD-inspired NN potentials, the hybrid quark-meson models in [174] and [175]

are notable, where the former was to apply to finite nuclei calculations and is based on a rel-
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ativistic quark model. The latter [175], which we call it Japan-group potential, is a unified

model to describe NN and YN interaction and, with few parameters, gives a good fit of its

time scattering data. That is another potential model for NN, ΛN and ΣN interactions in [53],

which we call it China-group potential, which is completely based on QCD ingredients with-

out any use of meson exchanges. The China-group potential is based on a quark delocalization

color screening model (QDCSM) and describes the SR and MR interactions simultaneously

besides a claim that it describes well NB (NN, NΛ, NΣ) scattering data.

It is also good to mention an extension of the chiral SU(3) quark model (CSQM) to describe BB

interactions. Indeed, in CSQM, a nonet of pseudoscalar and a nonet of scalar meson exchanges

are used to describe the LR and MR parts of interactions, while the SR part is described by

OGEP’s and also quark-exchange effects. The model gives a good description for NN and

YN systems. In [54], to study whether OGE’s or vector-meson exchanges could describe the

SR part of the interaction, the CSQM was extended to include vector-meson exchanges as

well. In the resultant extended chiral SU(3) quark model (ECSQM), the strength of OGE

was largely reduced and the SR repulsion was owned to a combined effect of pseudoscalar and

scalar mesons, and was better described with a good fitting of scattering data.

The effects of the quark model calculations in the SR part on phenomenological and meson-

exchange calculations in the MR and LR parts are studied further in [176]. It is settled that

the QCD quark models cannot describe the higher partial waves though they could describe

the lower partial waves well. Therefore, the hybrid models are indeed essential to describe well

scattering data. Then, one should employ LR and MR potentials from the other high-quality

meson-exchange or phenomenological potentials next to quark-model potentials to describe the

SR part. The potentials so describe experimental NN data and bound states fairly but they

are not still as good as the fully phenomenological and meson-exchange HQ potentials.

It should be mentioned that, for the QCD-inspired models, some criteria are more im-

portant. Choosing a proper quark model, selecting suitable six-quark ground states, and the

methods to evaluate phase shifts are important. It is also notable that the M-type NN poten-

tials [59] are other clear QCD-inspired potentials, and also the Oxford potential [60] that we

discuss below briefly.

4.22 The Oxford Potential

The Oxford potential is among QCD-inspired potentials. The group has applied nonrelativis-

tic constituent-quark models to low-energy NN interaction. They have shown [60] that the

potential reproduces well NN scattering data and deuteron properties as the high-precession

potentials such as CD-Bonn [99], Nijmegen I [28], ArgonneV18 [31] and NNNLO [80] poten-

tials. Indeed, in the Oxford potential, a combination of one-pion-exchange (OPE), one-sigma-

exchange (OSE) and one-gluon-exchange (OGE), next to using the charge dependence from

CD-Bonn potential, and some other subtleties are involved.
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4.23 The First CHPT NN Potentials

Although some of the mentioned phenomenological and boson-exchange potentials are related

to QCD especially in the SR part, the relation is not systematic and consistent. The works

by Weinberg [68] and considering a Lagrangian, which includes the chiral symmetry of QCD,

written in terms of pions and nucleons and their covariant derivatives, was a starting point to

build new generations of NN interactions. In the case, the mesons and higher degrees of freedom

could be integrated out as their effects might be considered as some undetermined coefficients

and higher order terms. From the resultant effective Lagrangian, the potential so is expanded

systematically in the powers of (Q/ΛQCD), whereQ is a typical involved momentum. Therefore,

the resultant potential is consistent with QCD symmetries and is a logical and systematic way

to describe NN interaction and relate it to QCD. Detailed studies in the case need more space

and time and are not aim of this concise study. Nevertheless, for more preliminary details and

references, look at the subsections of (3.3), (3.4), (4.2).

First, Ordonez, Ray and van Kolck (Texas-group) [77], in 1993, proposed an exact two-

nucleon potential based on an effective chiral Lagrangian. For intermediate states, they consid-

ered at least one pion (π(140)) and one isobar (∆(1232)), and that the resultant NN potential

was a sum of the involved irreducible diagrams. NN scattering amplitudes were then evaluated

by inserting the potential into LS or modified Schrodinger equation. The lowest order of that

perturbative expansion was because of tree graphs which resulted in an LR part OPEP. Still,

other diagrams up to the third order of chiral expansion, up to one-loop diagrams, reproduced

the other known features of NN interaction such as SR repulsion, MR attraction, spin-orbit

force, and many others. The potentials were written in p-space first, and in terms of some

operators in (4.20) and more dependencies of the functions on k2, q2. The dependence on k2

was common, whereas the q2 dependence was not usual. In addition, the energy dependence

in the static OPEP, which was in turn more improved than the previous ones, was because of

the recoil effect of pion emission from nucleon. The MR part was because of TPEP with many

parameters, while the form factors were used to regularize the potential at the origin. Indeed,

for the Fourier transform into r-space, the Gaussian form factors with the cutoffs Λ as ek
2�Λ2

,

as in Nijmegen potentials [28], were used.

The general form of the potential in r-space can be written as (4.34) with n = 20, where the

functions V i here are in term of the radial coordinate r and its first and second derivative as

well as energy as

Vi = V
(0)
i (r, E) + V

(1)
i (r, E)

∂

∂r
+ V

(2)
i (r, E)

∂2

∂r2
, (4.107)

and 14 out of the 20 operators are those in (4.35) of the Urb81 potential and the 6 remaining

ones are

Oi=15,...,20 = S12

(

~L.~S
)

, S12

(

~L.~S
)(

~τ1.~τ2
)

, S12L
2, S12L

2
(

~τ1.~τ2
)

, S12

(

~L.~S
)2
, S12

(

~L.~S
)2(

~τ1.~τ2
)

,

(4.108)

abbreviated as tls, tlsτ, tll, tllτ, tls2, tls2τ . The first eight operators exist in almost all poten-

tials with only the radial functions of Vi without derivatives, while the eight functions here are
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depended on the first and second derivatives of r. For the next six operators, V
(1)
i = V

(2)
i = 0;

and the remaining six operators are among special characterizes here. All extra terms come

from the q2 dependence and recoil effects included in the potential.

Next, by having the potential, one may solve the Schrodinger equation numerically. The eval-

uated phase shifts and deuteron properties are depended on the undetermined parameters of

the Lagrangian. These parameters are fitted to the Nijmegen PWA93 database [28] and errors

from Arndt et al. [177], whereas the cutoff parameter is fixed to Λ = 3.90fm−1, which is in

turn equal to the ρ-meson mass. In general, with 26 parameters, the potential is fitted to the

pp+np data up to Tlab =100 MeV for J ≤ 2. The phase shifts for J > 2 are determined from

OPEP in low-energies, and are not used in the fitting process. The result is a qualitative fitting

of deuteron properties and a quantitative fitting of the phase shifts. This means that this new

NN potential type can describe well the basic properties from a more fundamental and tight

theoretical ground. By including higher orders of the chiral perturbative expansion, one may

cover the higher energy ranges as well.

In summary, an advantage of these NN potentials is the systematic expansion of interaction

in terms of chiral power counting. Indeed, the Texas-group has earned an NN potential in a

certain order of the chiral perturbation expansion in both p- and r-space [77]. The group has

only used the chiral Lagrangian of QCD in low energies and the resultant potential is free

of meson theories. The agreements with deuteron properties and experimental data below

100 MeV are satisfactory. The model has some likenesses with the Paris-group (because of

the pion dynamics on the LR part), Bonn-group (likenesses in low energies) and Nijmegen-

group potentials (relations to QCD) in some parts of interaction; but, here EFT is used in

general. In is mentionable that describing experimental data, by this first CHPT potential,

were not good as the phenomenological potentials. It is also notable that the SR nuclear forces

from χEFT were then surveyed by van Kolck in [178], and also in [70] as a related general

review. Meanwhile, look at [179] to study few-nucleon forces with this type potential, where

interactions arise in chiral perturbative expansion naturally.

4.24 Sao Paulo-Group CHPT Potentials

Robilotta and da Rocha, have tried to estimate tow-pion-exchange contribution to NN inter-

action based on chiral symmetry with resolving the problem met in the previous TPEP’s and

including just pions and nucleons [78]. In fact, by making use of the similar methods as those in

Partovi-Lomon potential [35], and by employing a chiral model, they framed some 2π-exchange

potentials. The model produced the central, spin-spin, spin-orbit and tensor components of

the potential with and without isospin dependence. From their view, NN potential reads

V = Vcore + VS + VPS + VOPEP , (4.109)

where Vcore stands for the SR core potential, VS stands for the contribution from the box

and crossed box diagrams, VPS stands for the contribution from chiral triangle and bubble

interactions, and VOPEP , as usual, is for OPEP tail. A problem with the first approach was
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that it could not reproduce experimental data well for the related intermediate region. One

might improve the results by including further degrees of freedom such as ∆ resonances as

was done in [40], and the results were compared with those from parameterized Paris potential

[98], Arg94 potential [30], dTRS potential [108] and Bonn87 potential [45].

Then, a relativistic chiral expansion up to O(k4) for the TPEP’s in p-space and further,

its contents and features in r-space, was given in [180] by Higa and the former members of

this called Sao Paulo-group. One should note that k < 1 GeV here is for the pion four-

momentum and nucleon three-momentum, and is a typical scale for chiral perturbation theory.

The resultant potential in r-space reads

V = V + + V −(~τ1.~τ2), (4.110)

where

V ± = V ±
c (r) + V ±

σ (r)(~σ1.~σ2) + V ±
t (r)S12 + V ±

ls (r)
~L.~S + V ±

q (r)Q12. (4.111)

These r-space potential functions are in terms of some numerical coefficients (related to pion-

and nucleon masses and involved coupling constants) that multiply some dimensionless func-

tions, where the latter are in turn come from the Fourier transforms of the Feynman loop

integrals. It is notable that this parameterization is valid to describe NN interaction in the

range of about 0.8fm ≤ r ≤ 10fm. It is also notable that the TPE contribution for 3N force

in the same order O(k4) is presented as well in [181]; and a review on the subject is given in

[61]. The differences between the formalism here, to discuss chiral TPEP contributions to NN

interactions, and heavy-baryon (HB) formalism in the next subsections, are discussed in [182].

Indeed, in HB formalism of chiral perturbative expansion, relativistic Lagrangian is expanded

in 1/M powers, which is in turn a kind of nonrelativistic expansion; for more details look also

at [183].

4.25 Munich-Group CHPT Potentials

The Munich-group, by using a similar CHPT Lagrangian as [77], and employing a covariant

perturbation theory and dimensional regularization, estimated the chiral two-pion-exchange

NN potential as well as the usual one-pion-exchange part [79]. The calculations were up to

the third order in low external momenta and one-loop order (or NLO). As a result, the phases

shifts with ℓ ≥ 2 and the mixing angles with J ≥ 2 were determined as free parameters,

and could be used as input in the next NN phase-shift analyses. By increasing the orbital

angular-momentum, a close and better agreement with the usual OPEP became obvious. In

other words, the study was to describe NN interaction in terms of OPE’s and TPE’s for

the LR and MR parts in a model independent manner. The potential was composed of the

central, spin-spin, tensor, spin-orbit and quadratic spin-orbit terms with and without isospin

dependence such as those in Sao Paulo-group potentials–Note that the involved pion-nucleon

Lagrangian here, similar to those in the latter group, have the dimension 2 and are based
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on dimensionally regularized Feynman diagrams; and because the potentials are evaluated

perturbatively, the bound-states are not described well! Resultant expressions for the potentials

in r-space, coming from irreducible chiral 2π exchanges, are of the van-der-Waals type with

the asymptotic exponential behavior e−2mpir�rn valid at least for the range about 1fm < r <

2fm. There is not any pion-nucleon form function in that for ℓ ≥ 2, J ≥ 2, the problematic

singularities in the Fourier transforms are not so important. Agreement with the phase shifts

up to D-wave up to Tlab = 150 MeV are good, and for the higher waves agreements become

better and better up to the pion-production threshold in almost 280 MeV. For the lower partial

waves, the SR effects become important and so, just TPE is not enough to reproduce the phase

shifts. It is also notable that relevant potentials are compared with Paris79 [98] and Full-Bonn

(Bonn87) [45] potentials.

Soon later, they also used two-pion exchange diagrams with virtual ∆(1232)-isobar degrees

of freedom and correlated 2π exchange as well as the ρ, ω vector-meson exchanges in [184].

As a result, they reproduced the experimental data up to 350 MeV for ℓ ≥ 3 and up to 80

MeV for D-waves, without any adjustable parameter. So, this is chiral symmetry that has

opened a nice window to NN interaction. It is mentionable that, to describe the lower partial

waves, nonperturbative methods and other SR parameterizations are still needed–It is good

to mention that the importance of the chiral TPEP’s was more confirmed in [185] (by some

members of the Nijmegen-group and others), when they saw that the chiral TPE loops were

important in the LR part of pp interaction as they improved the results of just OPEP’s. In

other words, the group noted that by including both OPE and χTPE contributions, they

could find a good fit of data up to 350 MeV for r ≥ 1.4fm. The range below the mentioned

one was then parameterized by 23 boundary condition parameters in the energy-dependent

partial-wave-analysis.

Further efforts, by Kaiser, have taken to include chiral uncorrelated three-pion exchanges,

higher-loop and relativistic corrections to NN interactions [186]. Indeed, it was shown that

the uncorrelated 3π exchanges have negligible effects on NN interactions in r ≥ 0.8fm. The

local potentials produced by 2π-exchange diagrams in two-loop order of the heavy-baryon

chiral perturbation theory, besides including the second order ππN vertexes, and the first

relativistic 1/M corrections in one-loop 2π-exchange diagrams, were discussed as well. The

latter were the components for the chiral NN potential in the next-to-next-to-next-to-leading-

order (NNNLO). It should be mentioned that these two-loop diagrams lead to contributions

about O(k4) in chiral expansion and so N3LO. By including 1/M2 corrections to 2π-exchange

diagrams and their effects on various parts of interaction and various states, the chiral NN

potential in this N3LO order is complete. We should remember that the potential structures

and operators here are almost the same as those of the Sao Paulo-group; and that in the third

reference of [186], an explicit analytical expression for the potential in r-space from the p-space

one is presented. Next, he studied the spin-orbit coupling produced from 2π exchange in 3N

interaction by including the virtual ∆-isobar in [187].

It is notable that in [188], by another group, there are also a complete set of 2π-exchange

diagrams in the same fourth-order (N3LO) in chiral perturbative expansion. One could see
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that the fourth-order contribution is less than the third-order one; and this in turn signals the

converging of chiral expansion. By employing the analytical expressions in [186], they applied

the methods to NN scattering to calculate scattering amplitudes; and then they compared

predictions with experimental phase shifts and those from the usual meson-exchange theories.

To make a more sensible comparison, they included OPE and iterated OPE contributions as

well, and next showed the phase shifts for ℓ ≥ 3 below the energy of 300 MeV. The agreement

between Full-Bonn potential and this N3LO potential was good.

By the way, many other studies are done by the group members. For instance, in [189],

chiral four-nucleon interactions in this framework are studied. A microscopic optical potential

from two- and three-body chiral nuclear forces is constructed in [190]. Some members of the

group, next to others, have modeled YN potentials in NLO of chiral effective field theory in

[191]. In the latter, contributions from the one and two pseudoscalar-meson diagrams as well

as four-baryon contact terms are included. The SU(3) flavor symmetry was used to set up

potentials while its breaking by the physical masses of the pseudoscalar mesons (π,K, η) was

considered as well. Excellent results, compared with the counterpart HQ phenomenological

potentials, were gained. That is also a relativistic chiral SU(3)-invariant Lagrangian up to

O(q2) order to describe BB interaction in [192].

4.26 Idaho-Group CHPT Potentials

Along with various efforts after the first CHPT potential by Texas-group in [77], a better NN

potential based on chiral EFT appeared by Entem and Machleidt [80] in 2001. In the potential

both meson and quark degrees of freedom are included, while [77] is a meson-free potential.

Indeed, that is an NN potential, based on HB formalism of chiral perturbative expansion

that includes one-pion and two-pion exchanges up to the third order of chiral expansion.

The short-range force in the fourth order of expansion is involved because of good fitting of

the D-wave phase shifts. There, a two-pion exchange potential in the fourth-order of chiral

expansion is also presented. The potential has almost the same quality as the HQ Nijmegen

potentials [28], CD-Bonn [99] and Arg94 [31] potentials. The phase shifts below Tlab =300

MeV, deuteron properties and low-energy np scattering parameters as well as Triton binding-

energy are described well with this potential [80].

Later, the authors modeled, in fact, the first accurate NN potential in N3LO (fourth-order)

of chiral perturbative expansion [193]. The new potential, in reproducing its time pp and np

data below 290 MeV, is comparable with the best high-precession phenomenological potentials.

After mentioning main features of the previous HQ phenomenological and meson-exchange

potentials, it is also argued in [194] that EFT approach to nuclear forces is better than all earlier

efforts in that it produces a wished precession, gives satisfactory results in nuclear calculations

as well as dealing with few-nucleon interactions on an equal footing as NN interaction. There

are also some reviews and many other related issues and progress presented in [72] and [55].
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4.27 Bochum-Julich-Group CHPT Potentials

Bochum-Julich-group potentials are also based on chiral EFT, similar to the other CHPT

potentials mentioned above, except that they extracted the Lagrangian’s by using a ”unitary

transformation” method. In fact, they have studied many NN (also 3N and few-nucleon) forces

besides various related aspects in LO, NLO, NNLO and NNNLO of CHPT by taking the most

general chiral Hamiltonian with pions and nucleon fields as we describe below concisely.

But before that, we note that in the standard method, such as that of Texas-group [77],

the most general Lagrangian including all symmetries such as chiral symmetry of QCD was

first written with an infinite number of terms including nucleon and pion fields and their

derivatives. The breaking of chiral symmetry was clear in smallness of the pion mass, and

then the external momenta of the pion and nucleon should not exceed the scale of Q. As a

result, the expansion parameter was Q/ΛQCD and nucleons were treated nonrelativistically,

where ΛQCD ≈ 1 GeV that is almost the ρ-meson mass. The other degrees of freedom, such as

heavy mesons and other baryons which were then less important, were integrated out (except

maybe ∆ isobars) as their information was so included in the Lagrangian’s parameters. In

the process, a finite set of tree and loop diagrams were included. But a problem was that

due to the presence of low energy bound states, perturbative theory failed actually; or in

other words, infrared divergences with the few included nucleons disturbed the power counting

of chiral expansion. A way to solve the problem was to use the old-fashioned time-ordered

perturbation theory by Weinberg [68], where the expansion parameter was Q/M , instead of

the covariant method. Still, in the latter method, the effective potential was not Hermitian as

it was depended on the incoming-nucleon energies, and that the nucleon wave functions were

not orthogonal there. So the unitary transformations here resolve the problems, where the

expansion parameter is now the small momenta of external particles. It is also notable that

resultant potentials are energy-independent, which makes the applications to few-body and

nuclear-structure calculations simpler.

4.27.1 LO, NLO and NNLO Potentials

In general, these potentials include contributions from one- and two-pion exchanges to simulate

LR and MR interactions besides contact terms to simulate SR interactions. The resultant

interactions, from LO, NLO and NNLO of CHPT by considering the most general chiral

Hamiltonian in terms of pions and nucleon fields, are given in [74]. The LO interaction includes

two four-nucleon contact terms and an OPE potential as

V
(0)
cont. = Cs + Ct(~σ1.~σ2), (4.112)

and

V
(0)
1PEP = −

(

gA
2fπ

)2

(~τ1.~τ2)
(~σ1.~k)(~σ2.~k)

k2 +m2
pi

, (4.113)

where the low-energy constants (LECs) of Cs, Ct, C1, D1, ... are to be determined by fitting

some data, gA is the axial-vector coupling, fπ is the pion decay-constant, and other symbols
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are the same as used before. In NLO, the potential is a renormalized sum of one- and tow-pion

exchanges and contact interactions. This means that next to above contributions, it includes

a TPEP contribution (V
(2)
TPEP ) and seven four-nucleon contact terms where the latter reads

V
(2)
cont. = C1k

2 + C2q
2 + (C3k

2 + C4q
2)(~σ1.~σ2) + C5L̃S1 + C6S̃

(0)
12 + C7

˜̀
S
(0)
12 , (4.114)

where
˜̀
S
(0)
12 = (~σ1.~q)(~σ2.~q), the nine LECs are determined by fitting to the np S and P and

3S1 − 3D1 phase shifts, and the mixing parameter ε1 for the laboratory energies below 100

MeV. TPEP in this NLO includes k, k2, q2 dependence as well as the operators I, S̃12, isospin

dependence and some constants [74]. On the other hand, in NNLO, another TPEP (V
(3)
TPEP ) is

also included, which in turn includes some special combinations of k, k2, q2 with the operators

I, S̃12, L̃S1 without and with isospin dependence and some constants. It is mentionable that if

one includes the contribution from ∆(1232)-isobar, the resultant NNLO-∆ potential is almost

same as NNLO one especially for low momenta.

We should also note that the pion-exchange NN potentials could be written generally, in p-

space, as

Ṽ = Ṽ + + Ṽ −(~τ1.~τ2), (4.115)

where

Ṽ ± = Ṽ ±
c + Ṽ ±

σ (~σ1.~σ2) + Ṽ ±
ls L̃S1 + Ṽ ±

q Q̃12 + Ṽ ±
σkS̃

(0)
12 + Ṽ ±

σq
˜̀
S
(0)
12 , (4.116)

and to adjust more with the record in (4.19), we set SS0 = (~σ1.~σ2); and that the functions of

Ṽ ±
c , ... are in terms of ~pi, ~pf , z with z = cos(~pi, ~pf), included masses and coupling constants.

To regularize or have right behavior for the potentials in large momenta (short distances), the

sharp and exponential form factors are used as

F (k2)sharp = θ
(

Λ2 − k2
)

, F (k2)exp. = e−k2n/Λ2n

, (4.117)

where the sharp cutoff is proper here with Λ = 500 MeV for NLO and Λ = 875 MeV for

NNLO; and that in exponential form factors, n = 2, 3, ... with often n = 2 here, where the

latter is used especially to evaluate some deuteron properties with good results. In addition,

phase shifts and mixing parameters for high energies and angular momentums are described

well for the energies below 300 MeV, with a note that the partial waves higher than P are

free of adjustable parameters. Also, various properties of nuclei with A > 2 and especially

the binding energies of 3H and 4He are evaluated by these NLO and NNLO potentials with

an almost same quality as the standard high-precision phenomenological and boson-exchange

potentials [74], [195].

4.27.2 NNNLO Potentials and More

Next development of the model was to NNNLO of chiral expansion [81]. The new potential

includes one-, two- and three-pion exchanges as well as the contact terms with zero, two and

four derivatives. Relativistic corrections and isospin-breaking mechanisms are also included.
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In fact, next to the previous contact terms of (4.114) and (4.114), the new included contact

terms are

V
(4)
cont. =D1k

4 +D2q
4 +D3k

2q2 +D4n
2 + (D5k

4 +D6q
4 +D7k

2q2 +D8n
2)(~σ1.~σ2)

+(D9k
2 +D10q

2)L̃S1 + (D11k
2 +D12q

2)S̃
(0)
12 + (D13k

2 +D14q
2)
˜̀
S
(0)
12 +D15Q̃12,

(4.118)

where one could also include another 24 terms which contain the isospin factor of (~τ1.~τ2). Now,

all 26 four-nucleon LECs are determined by fitting the pp+np Nijmegen-group database [121]

(the relevant S, P, D phase shifts and mixing parameters) and nn scattering-length.

On the other hand, for pion-exchange parts, a new three-pion exchange contribution (V
(4)
3PEP )

is considered though its effect is negligible (note that the n-pion-exchange diagrams become

important around Q2n−2). These pion-exchange contributions can again be written as (4.115)

with (4.116), where for instance the lowest order of the scalar function of Ṽ −
σk is indeed (4.113)

without (~τ1.~τ2) factor. We remember that LS equations and a relativistic form for kinetic

energy are employed to iterate the potential here. Reducing to a nonrelativistic form is more

useful in real calculations. The exponential form-factor of (4.117) with n = 3 is used to regu-

larize LS equations with the cutoffs of Λ = 450− 600 MeV.

The isospin-breaking of strong interactions because of different masses of up and down quarks,

and from electromagnetic interactions because of different charges of up and down quarks are

also included. Indeed, the potentials for different NN systems and isospins are different such

that, for instance, V1PEP (pp) 6= V1PEP (np, T = 1) 6= V1PEP (np, T = 0) and so on. This is

finite-range isospin-breaking, while the long-range isospin-breaking is because of different elec-

tromagnetic interactions such that VEM(pp) 6= VEM(np) 6= VEM 6= (nn). In other words, the

quark mass splitting causes isospin-breaking in short distances, whereas the contact electro-

magnetic terms cause isospin-breaking in long distances–Look also at the discussion on Arg94

potential, Nijmegen HQ potentials and CD-Bonn potential in subsections of (4.12.2), (4.15.4)

and (4.13.2), respectively.

In summary, the group has set up some NN potentials by using the unitary transformation

method applied to the most general chiral invariant Hamiltonian in terms of pion and nu-

cleon fields from LO up to N3LO. In the latter, CIB and CSB in leading order, the pion mass

differences in OPEP’s, kinematic effects because of the nucleon mass splitting, and electromag-

netic corrections such as those in Nijmegen PWA’s, and many other subtleties are included.

Deuteron properties and the low phase shifts of S, P, D are described excellently, whereas

the high partial waves of F, G, H,... are parameter free and are well described depended on

the doubts in the cutoffs. In general, several improvements with respect to the lower order

expansions and also to the previous CHPT potentials are notable.

Among many other studies by the group members, improvements to the Weinberg approach

to arrive at the effective potential and the renormalization problem there, a new approach

based on an effective Lagrangian with exact Lorentz invariance and by using time-ordered

perturbation theory, without using HB expansion, were presented and analyzed in [196]. In-

deed, they improved the heavy chiral perturbation theory for NN interaction and analyzed

the OPEP iterations. As a result, it was shown that the used renormalization, for one-and
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two-loop diagrams of OPEP iterations, removes all nucleon-mass dependencies that disturb

the power counting–It is good here to mention a pioneer work to resolve inconsistencies in the

Weinberg’s chiral expansion. Indeed, in [69], Kaplan et al. used a dimensional regularization

scheme with a novel subtraction (renormalization-group techniques) to get a consistent chiral

expansion and dissolve the failure of the Weinberg’s power counting scheme. They applied the

method in the order O(Q0) to 1S0 and 3S1 − 3D1 NN scattering channels, and then compared

the results with Nijmegen PWA93 [121] with satisfactory agreements. For some other old, and

of course related, typical studies in the phase look at [197], [198].

By the way, for a recent review on NN, 3N and few-nucleon interactions especially in the

framework of χEFT, advantages and disadvantages of this approach to nuclear forces, look at

[76] by Epelbaum and references therein. To end the discussion in the phase, we cite [73] as

the last constructed optimized potential at NNLO by other people.

5 Some Other Models and Potentials

In general, almost all potentials are belong to one of the four main models. These are, the

almost full phenomenological model; the model based on field-theoretical methods, inverse-

scattering, quantum-dispersion relations and boson-exchange pictures; the model based on

QCD and constituent quark methods (the QCD-inspired model); the model based on CHPT

and EFT and their various extensions.

We have tried to include and study almost all models and potentials to describe two-nucleon

interactions with an emphasis on some in more details as samples of well-known and high-

precession NN potentials. Technical studies of some potentials need more space and time next

to many physical and mathematical backgrounds that is not the aim of this concise pedagogical

review. Nevertheless, there are still some other special NN interaction models and potentials,

and related topics, to be addressed. We mention some in what follows.

Among the standard and more theoretical potentials is theVirginia-group potential [96],

which is a special relativistic OBEP based on field-theoretical and dispersion-relation tech-

niques. In fact, they have framed a few potentials by taking various meson exchanges. The

Bochum-group potential [97] is another fundamental NN potential based on field-theoretical

and dispersion-relation methods that also uses various meson exchanges in long distances and

QCD effects; meanwhile the direct NN interactions coming from the intrinsic structure of nu-

cleon are considered in short distances. By including some two- and three-pion correlations,

they have claimed to hold good description of NN scattering data. The Seattle-group stud-

ies on NN interaction are also notable. Indeed, they have studied low-energy NN interactions

based on EFT, by using some simple models for interactions, up to NNLO in chiral expansion,

next to some other related topics during their study period in 1990’s [199].

There are the potentials based on Mean Field Theory (MFT), which are of particular

interest in many-body calculations in nuclear physics especially–Look, for instance, at [200]

and [201] for the first NN interaction made of relativistic mean field theory.

Renormalization Group (RG) approaches to NN interaction are other serious efforts.

66



In an RG flow viewpoint, a model-independent low-momentum interaction is obtained by

integrating out high-momentum components (cutting out problematic high-momentum modes)

of various potential models [101]. Indeed, the model independence of resulting potentials

shows that the physics of the nucleons interacting at low momenta does not depend on the

details of the high-momentum dynamics assumed in conventional potential models. Further

developments such as incorporating the method into the Fermi liquid theory are also made [202],

[203]. In [204], detailed results for the model-independent low-momentum NN potential Vlow k

are shown. There, they have applied the approach to some commonly used high-precession

NN potentials, and then compared resultant potentials in various ways such as comparing

matrix elements of the potentials and various resulting phase shifts in p-space. In Figure 4

and Figure 5 are two such sample comparisons of some high-precession NN potentials together

and with two simple RG models, respectively. For a newer ”similarity renormalization group”

Figure 4: Diagonal matrix elements of some high-quality NN potentials (VNN) versus relative-
momentum (k) for 1S0 and 3S1 partial-wave, in momentum-space [204].

approach, see [205] and [206], and for a recent review and study of the subject look at [207].

Lattice QCD approach to NN interaction is another important way; look, for instance, at

[63, 64] and [65]. Among some typical studies, see [208], where a spin-dependent potential in

lattice QCD is presented; [209], and [210], where nonlocality of NN potentials, and deuteron

and some other two-body bound states in lattice QCD are discussed–Look also at [67], where

QCD sum rules are used for NN interactions. Altogether, this phase of study is still improving

with giving better quantitative results as the previous good qualitative ones.

Tubingen-group has applied projection techniques on some former NN potentials among

the boson-exchange, phenomenological, RG flow and EFT ones to map them over the operator

basis of relativistic field theory [211]. Indeed, they have presented a model-independent study

of NN interaction from its Dirac structure. That is a special way to compare various potentials,

where a nice agreement is found as well.
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Figure 5: Diagonal matrix elements of Vlow k (Vbare in figure) for two simple RG potentials are
compared with Vlow k derived from some high-quality NN potentials [204].

They have also built a new energy-independent nonlocal potential above inelastic thresholds in

quantum field theories that satisfies a suitable Schrodinger equation at low energies [212]. The

potential is indeed composed of a set of Nambu-Bethe-Salpeter wave functions. By applying

the same method, one could set up three-nucleon potentials as well.

By the way, there may be other models and potentials not covered in this note and so, it

would be pleasure to hear more about other NN potentials. Meanwhile, there are still many

studies on various aspects of NN interaction which need addressing. For examples, nonlocal

and local terms and their impact on NN interactions and their roles in some NN potentials are

studied, for instance, in [213]; and nonlocality of NN potentials in lattice QCD is discussed,

for instance, in [209]. For a study of CIB and CSB of NN interaction, look at [214] and for

parity violation in NN interaction, see, for instance, [215].

We should also mention that Three- and few-nucleon interactions are also interesting

to which less efforts than two-nucleon interactions are allocated. For there-nucleon force, look

at a recent review of [216]; and for a view to few-nucleon forces, look at [76, 217].

6 Outlook

Nowadays the theory of strong nuclear force is well experienced both quantitatively and qual-

itatively. The best qualitative results are obtained by using phenomenological and boson-

exchange potentials based on quantum field theory and dispersion relation techniques, and

even new potentials based on chiral perturbation theory. Indeed, more qualitative results are

of the QCD-inspired models and the models based on chiral EFT.

NN interaction is now under control for the energies below almost Tlab =500 MeV well. Because

of the high-precession experimental NN data, describing the long- and intermediate-range parts

of the interaction based on various meson exchanges are quantitatively good and the hybrid
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models of quark and gluon exchanges for the short-ranges seem to be more suitable.

Although we have now many high-precision NN potentials applying to nuclear-structure cal-

culations with satisfactory results, still some questions are remained to be answered. I think

the main problem is that we don’t have still a unique comprehensive model for including all

well-known features of NN interaction. Obviously, chiral EFT methods and models are better

in describing nuclear forces in general. They have a standard formalism applicable to few-

nucleon systems with including many fundamental physics and mathematics of the problem.

But, there are still some problems and limits; look at [4], [5]. Among the issues with EFT

potentials, which one may ask, are the proper renormalization of the chiral nuclear potentials

and sub-leading chiral few-nucleon forces; few- and multi-nucleon potentials in higher orders

of chiral expansion. Meanwhile, lattice QCD models for nuclear forces are still improving and,

in some recent studies, a lattice version of chiral EFT is also applied to nuclear forces [76].

On the other hand, after the well-conjectured string/gauge, AdS/CFT, duality and there-

after Holographic QCD studies, it seems that the NN interaction issue is faced with another

revolution. So, we should be wait for more sophisticated models for two- and many-body

nuclear interactions in this language–Look, for instances, at [218] and [219].

Altogether, it seems that the nuclear force issue is still improving. I think that we may

someday have a unified scheme for NN interaction and link various known NN models and

potentials. Nevertheless, it will also be interesting to compare various NN potentials via some

suitable ways and try to understand more nucleon-nucleon interaction subtleties.
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