
Sorting Algorithms



Topic Overview

• Issues in Sorting on Parallel Computers

• Sorting Networks

• Bubble Sort and its Variants

• Bucket and Sample Sort

• Other Sorting Algorithms
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Sorting: Overview

• One of the most commonly used and well-studied kernels.

• The fundamental operation of comparison-based sorting is
compare-exchange.

• The lower bound on any comparison-based sort of n numbers
is Θ(n log n).

• We focus here on comparison-based sorting algorithms.
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Sorting: Basics

What is a parallel sorted sequence? Where are the input and
output lists stored?

• We assume that the input and output lists are distributed.

• The sorted list is partitioned with the property that each
partitioned list is sorted and each element in processor Pi’s list
is less than that in Pj’s list if i < j.
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Sorting: Parallel Compare Exchange Operation

Step 1 Step 2 Step 3

PSfrag replacements

ai aj

Pi PiPi PjPj Pj

max{ai, aj}min{ai, aj}aj, aiai, aj

A parallel compare-exchange operation. Processes Pi and Pj

send their elements to each other. Process Pi keeps min{ai, aj},
and Pj keeps max{ai, aj}.

– Typeset by FoilTEX – 4



Sorting: Basics

What is the parallel counterpart to a sequential comparator?

• If each processor has one element, the compare exchange
operation stores the smaller element at the processor with

• If we have more than one element per processor, we call this
operation a compare split. Assume each of two processors
have n/p elements.

• After the compare-split operation, the smaller n/p elements are
at processor Pi and the larger n/p elements at Pj, where i < j.
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Sorting: Parallel Compare Split Operation
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A compare-split operation. Each process sends its block of size
n/p to the other process. Each process merges the received

block with its own block and retains only the appropriate half of
the merged block. In this example, process Pi retains the smaller

elements and process Pj retains the larger elements.
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Sorting Networks

• Networks of comparators designed specifically for sorting.

• A comparator is a device with two inputs x and y and two
outputs x′ and y′. For an increasing comparator , x′ = min{x, y}
and y′ = max{x, y}; and vice-versa.

• We denote an increasing comparator by ⊕ and a decreasing
comparator by 	.

• The speed of the network is proportional to its depth.
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Sorting Networks: Comparators

(a)

(b)
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A schematic representation of comparators: (a) an increasing
comparator, and (b) a decreasing comparator.
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Sorting Networks
Columns of comparators
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A typical sorting network. Every sorting network is made up of a
series of columns, and each column contains a number of

comparators connected in parallel.
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Sorting Networks: Bitonic Sort

• A bitonic sorting network sorts n elements in Θ(log2 n) time.

• A bitonic sequence has two tones – increasing and
decreasing, or vice versa. Any cyclic rotation of such networks
is also considered bitonic.

• 〈1, 2, 4, 7, 6, 0〉 is a bitonic sequence, because it first increases
and then decreases. 〈8, 9, 2, 1, 0, 4〉 is another bitonic sequence,
because it is a cyclic shift of 〈0, 4, 8, 9, 2, 1〉.

• The kernel of the network is the rearrangement of a bitonic
sequence into a sorted sequence.
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Sorting Networks: Bitonic Sort

• Let s = 〈a0, a1, . . . , an−1〉 be a bitonic sequence such that a0 ≤
a1 ≤ . . . ≤ an/2−1 and an/2 ≥ an/2+1 ≥ . . . ≥ an−1.

• Consider the following subsequences of s:

s1 = 〈min{a0, an/2}, min{a1, an/2+1}, . . . , min{an/2−1, an−1}〉
s2 = 〈max{a0, an/2}, max{a1, an/2+1}, . . . , max{an/2−1, an−1}〉

(1)

• Note that s1 and s2 are both bitonic and each element of s1 is
less that every element in s2.

• We can apply the procedure recursively on s1 and s2 to get the
sorted sequence.
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Sorting Networks: Bitonic Sort
Original
sequence 3 5 8 9 10 12 14 20 95 90 60 40 35 23 18 0
1st Split 3 5 8 9 10 12 14 0 95 90 60 40 35 23 18 20
2nd Split 3 5 8 0 10 12 14 9 35 23 18 20 95 90 60 40
3rd Split 3 0 8 5 10 9 14 12 18 20 35 23 60 40 95 90
4th Split 0 3 5 8 9 10 12 14 18 20 23 35 40 60 90 95

Merging a 16-element bitonic sequence through a series of log 16
bitonic splits.
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Sorting Networks: Bitonic Sort

• We can easily build a sorting network to implement this bitonic
merge algorithm.

• Such a network is called a bitonic merging network .

• The network contains log n columns. Each column contains n/2
comparators and performs one step of the bitonic merge.

• We denote a bitonic merging network with n inputs by ⊕BM[n].

• Replacing the ⊕ comparators by 	 comparators results in a
decreasing output sequence; such a network is denoted by
	BM[n].
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Sorting Networks: Bitonic Sort
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A bitonic merging network for n = 16. The input wires are
numbered 0, 1 . . . , n − 1, and the binary representation of these

numbers is shown. Each column of comparators is drawn
separately; the entire figure represents a ⊕BM[16] bitonic

merging network. The network takes a bitonic sequence and
outputs it in sorted order.
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Sorting Networks: Bitonic Sort

How do we sort an unsorted sequence using a bitonic merge?

• We must first build a single bitonic sequence from the given
sequence.

• A sequence of length 2 is a bitonic sequence.

• A bitonic sequence of length 4 can be built by sorting the first
two elements using ⊕BM[2] and next two, using 	BM[2].

• This process can be repeated to generate larger bitonic
sequences.
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Sorting Networks: Bitonic Sort
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A schematic representation of a network that converts an input
sequence into a bitonic sequence. In this example, ⊕BM[k] and
	BM[k] denote bitonic merging networks of input size k that use
⊕ and 	 comparators, respectively. The last merging network

(⊕BM[16]) sorts the input. In this example, n = 16.
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Sorting Networks: Bitonic Sort
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The comparator network that transforms an input sequence of
16 unordered numbers into a bitonic sequence.
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Sorting Networks: Bitonic Sort

• The depth of the network is Θ(log2 n).

• Each stage of the network contains n/2 comparators. A
serial implementation of the network would have complexity
Θ(n log2 n).
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Mapping Bitonic Sort to Hypercubes

• Consider the case of one item per processor. The question
becomes one of how the wires in the bitonic network should
be mapped to the hypercube interconnect.

• Note from our earlier examples that the compare-exchange
operation is performed between two wires only if their labels
differ in exactly one bit!

• This implies a direct mapping of wires to processors. All
communication is nearest neighbor!
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Mapping Bitonic Sort to Hypercubes
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Communication during the last stage of bitonic sort. Each wire is
mapped to a hypercube process; each connection represents a

compare-exchange between processes.
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Mapping Bitonic Sort to Hypercubes
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Communication characteristics of bitonic sort on a hypercube.
During each stage of the algorithm, processes communicate

along the dimensions shown.
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Mapping Bitonic Sort to Hypercubes

• During each step of the algorithm, every process performs
a compare-exchange operation (single nearest neighbor
communication of one word).

• Since each step takes Theta(1) time, the parallel time is

TP = Θ(log2 n) (2)

• This algorithm is cost optimal w.r.t. its serial counterpart, but not
w.r.t. the best sorting algorithm.
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Mapping Bitonic Sort to Meshes

• The connectivity of a mesh is lower than that of a hypercube,
so we must expect some overhead in this mapping.

• Consider the row-major shuffled mapping of wires to
processors.
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Mapping Bitonic Sort to Meshes
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Different ways of mapping the input wires of the bitonic sorting
network to a mesh of processes: (a) row-major mapping, (b)

row-major snakelike mapping, and (c) row-major shuffled
mapping.
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Mapping Bitonic Sort to Meshes

Step 1 Step 2 Step 3 Step 4

Stage 4

The last stage of the bitonic sort algorithm for n = 16 on a mesh,
using the row-major shuffled mapping. During each step, process

pairs compare-exchange their elements. Arrows indicate the
pairs of processes that perform compare-exchange operations.
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Block of Elements Per Processor

• Each process is assigned a block of n/p elements.

• The first step is a local sort of the local block.

• Each subsequent compare-exchange operation is replaced
by a compare-split operation.

• We can effectively view the bitonic network as having (1 +
log p)(log p)/2 steps.
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Block of Elements Per Processor: Hypercube

• Initially the processes sort their n/p elements (using merge sort)
in time Θ((n/p) log(n/p)) and then perform Θ(log2 p) compare-
split steps.

• The parallel run time of this formulation is

TP =

local sort
︷ ︸︸ ︷

Θ

(
n

p
log

n

p

)

+

comparisons
︷ ︸︸ ︷

Θ

(
n

p
log2 p

)

+

communication
︷ ︸︸ ︷

Θ

(
n

p
log2 p

)

.

• Comparing to an optimal sort, the algorithm can efficiently use
up to p = Θ(2

√
log n) processes.

• The isoefficiency function due to both communication and
extra work is Θ(plog p log2 p).
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Block of Elements Per Processor: Mesh

• The parallel runtime in this case is given by:

TP =

local sort
︷ ︸︸ ︷

Θ

(
n

p
log

n

p

)

+

comparisons
︷ ︸︸ ︷

Θ

(
n

p
log2 p

)

+

communication
︷ ︸︸ ︷

Θ

(
n√
p

)

• This formulation can efficiently use up to p = Θ(log2 n) processes.

• The isoefficiency function is Θ(2
√

p√p).
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Performance of Parallel Bitonic Sort

The performance of parallel formulations of bitonic sort for n
elements on p processes.

Maximum Number of Corresponding Isoefficiency
Architecture Processes for E = Θ(1) Parallel Run Time Function

Hypercube Θ(2
√

log n) Θ(n/(2
√

log n) log n) Θ(plog p log2 p)

Mesh Θ(log2 n) Θ(n/ log n) Θ(2
√

p√p)

Ring Θ(log n) Θ(n) Θ(2pp)
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Bubble Sort and its Variants

The sequential bubble sort algorithm compares and exchanges
adjacent elements in the sequence to be sorted:

1. procedure BUBBLE SORT(n)

2. begin
3. for i := n − 1 downto 1 do
4. for j := 1 to i do
5. compare-exchange(aj, aj+1);
6. end BUBBLE SORT

Sequential bubble sort algorithm.
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Bubble Sort and its Variants

• The complexity of bubble sort is Θ(n2).

• Bubble sort is difficult to parallelize since the algorithm has no
concurrency.

• A simple variant, though, uncovers the concurrency.
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Odd-Even Transposition

1. procedure ODD-EVEN(n)

2. begin
3. for i := 1 to n do
4. begin
5. if i is odd then
6. for j := 0 to n/2 − 1 do
7. compare-exchange(a2j+1, a2j+2);
8. if i is even then
9. for j := 1 to n/2 − 1 do
10. compare-exchange(a2j, a2j+1);
11. end for
12. end ODD-EVEN

Sequential odd-even transposition sort algorithm.
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Odd-Even Transposition
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Sorting n = 8 elements, using the odd-even transposition sort
algorithm. During each phase, n = 8 elements are compared.
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Odd-Even Transposition

• After n phases of odd-even exchanges, the sequence is sorted.

• Each phase of the algorithm (either odd or even) requires Θ(n)
comparisons.

• Serial complexity is Θ(n2).
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Parallel Odd-Even Transposition

• Consider the one item per processor case.

• There are n iterations, in each iteration, each processor does
one compare-exchange.

• The parallel run time of this formulation is Θ(n).

• This is cost optimal with respect to the base serial algorithm but
not the optimal one.
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Parallel Odd-Even Transposition

1. procedure ODD-EVEN PAR(n)

2. begin
3. id := process’s label
4. for i := 1 to n do
5. begin
6. if i is odd then
7. if id is odd then
8. compare-exchange min(id + 1);
9. else
10. compare-exchange max(id − 1);
11. if i is even then
12. if id is even then
13. compare-exchange min(id + 1);
14. else
15. compare-exchange max(id − 1);
16. end for
17. end ODD-EVEN PAR

Parallel formulation of odd-even transposition.
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Parallel Odd-Even Transposition

• Consider a block of n/p elements per processor.

• The first step is a local sort.

• In each subsequent step, the compare exchange operation is
replaced by the compare split operation.

• The parallel run time of the formulation is

TP =

local sort
︷ ︸︸ ︷

Θ

(
n

p
log

n

p

)

+

comparisons
︷ ︸︸ ︷

Θ(n) +

communication
︷ ︸︸ ︷

Θ(n).
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Parallel Odd-Even Transposition

• The parallel formulation is cost-optimal for p = O(log n).

• The isoefficiency function of this parallel formulation is Θ(p 2p).
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Shellsort

• Let n be the number of elements to be sorted and p be the
number of processes.

• During the first phase, processes that are far away from each
other in the array compare-split their elements.

• During the second phase, the algorithm switches to an odd-
even transposition sort.
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Parallel Shellsort

• Initially, each process sorts its block of n/p elements internally.

• Each process is now paired with its corresponding process in
the reverse order of the array. That is, process Pi, where i < p/2,
is paired with process Pp−i−1.

• A compare-split operation is performed.

• The processes are split into two groups of size p/2 each and the
process repeated in each group.
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Parallel Shellsort

0 123 4 5 6 7

0 123 4 5 6 7

0 123 4 5 6 7

An example of the first phase of parallel shellsort on an
eight-process array.
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Parallel Shellsort

• Each process performs d = log p compare-split operations.

• With O(p) bisection width, the each communication can be
performed in time Θ(n/p) for a total time of Θ((n log p)/p).

• In the second phase, l odd and even phases are performed,
each requiring time Θ(n/p).

• The parallel run time of the algorithm is:

TP =

local sort
︷ ︸︸ ︷

Θ

(
n

p
log

n

p

)

+

first phase
︷ ︸︸ ︷

Θ

(
n

p
log p

)

+

second phase
︷ ︸︸ ︷

Θ

(

l
n

p

)

. (3)
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Bucket and Sample Sort

• In Bucket sort, the range [a, b] of input numbers is divided into m
equal sized intervals, called buckets.

• Each element is placed in its appropriate bucket.

• If the numbers are uniformly divided in the range, the buckets
can be expected to have roughly identical number of
elements.

• Elements in the buckets are locally sorted.

• The run time of this algorithm is Θ(n log(n/m)).
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Parallel Bucket Sort

• Parallelizing bucket sort is relatively simple. We can select m =
p.

• In this case, each processor has a range of values it is
responsible for.

• Each processor runs through its local list and assigns each of its
elements to the appropriate processor.

• The elements are sent to the destination processors using a
single all-to-all personalized communication.

• Each processor sorts all the elements it receives.
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Parallel Bucket and Sample Sort

• The critical aspect of the above algorithm is one of assigning
ranges to processors. This is done by suitable splitter selection.

• The splitter selection method divides the n elements into m
blocks of size n/m each, and sorts each block by using
quicksort.

• From each sorted block it chooses m − 1 evenly spaced
elements.

• The m(m − 1) elements selected from all the blocks represent
the sample used to determine the buckets.

• This scheme guarantees that the number of elements ending
up in each bucket is less than 2n/m.
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Parallel Bucket and Sample Sort
Initial element 
distribution

Local sort &
sample selection

Global splitter 
selection

Final element
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An example of the execution of sample sort on an array with 24
elements on three processes.
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Parallel Bucket and Sample Sort

• The splitter selection scheme can itself be parallelized.

• Each processor generates the p − 1 local splitters in parallel.

• All processors share their splitters using a single all-to-all
broadcast operation.

• Each processor sorts the p(p−1) elements it receives and selects
p − 1 uniformly spaces splitters from them.
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Parallel Bucket and Sample Sort: Analysis

• The internal sort of n/p elements requires time Θ((n/p) log(n/p)),
and the selection of p − 1 sample elements requires time Θ(p).

• The time for an all-to-all broadcast is Θ(p2), the time to internally
sort the p(p−1) sample elements is Θ(p2 log p), and selecting p−1
evenly spaced splitters takes time Θ(p).

• Each process can insert these p − 1 splitters in its local sorted
block of size n/p by performing p − 1 binary searches in time
Θ(p log(n/p)).

• The time for reorganization of the elements is O(n/p).
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Parallel Bucket and Sample Sort: Analysis

• The total time is given by:

TP =

local sort
︷ ︸︸ ︷

Θ

(
n

p
log

n

p

)

+

sort sample
︷ ︸︸ ︷

Θ
(
p2 log p

)
+

block partition
︷ ︸︸ ︷

Θ

(

p log
n

p

)

+

communication
︷ ︸︸ ︷

Θ(n/p). (5)

• The isoefficiency of the formulation is Θ(p3 log p).
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