
MapReduce
I gave you all concept in this section please hear me ☺

Lecturer : farzad salimi jazi

MAPREDUCE BASICS

☺

MapReduce Basics

• divide and conquer
The only feasible approach to tackling large-data problems today

The basic idea is partition a large problem into smaller The basic idea is partition a large problem into smaller

subproblems

they can be tackled in parallel by different workers

Worker (threads , core , processors , machines)

• general principles behind divide-and-conquer algorithms are

broadly applicable

divide and conquer implementation

issues
• How do we break up a large problem

• How do we assign tasks to distributed workers

• How do we ensure that the workers get the data they
need?

• How do we coordinate synchronization among the • How do we coordinate synchronization among the
different workers?

• How do we share partial results from one worker that
is needed by another?

• How do we accomplish all of the above in the face of
software errors and hardware

• faults?

Face to issue

• traditional parallel or distributed programming
environments

• Shared memory programming

• Language extensions

— OpenMP for shared memory parallelism— OpenMP for shared memory parallelism

— (MPI) for cluster-level parallelism

– provide logical abstractions

– developers are burdened to keep track of how
resources are made available to workers

– Elementary support for dealing with very large
amounts of input data

But by Mapreduce ☺

• provides an abstraction that hides many

system-level details

• organizing and coordinating large amounts of

computation is only part of the challengecomputation is only part of the challenge

• bringing data and code together for

computation to occur

– Now what is the Mapreduce idea ?!!

Mapreduce idea ☺

• instead of moving large amounts of data

around, it is far more efficient, if possible, to

move the code to the data

– spreading data across the local disks of nodes in a – spreading data across the local disks of nodes in a

cluster

– running processes on nodes that hold the data

– managing is typically handled by a distributed file

system that sits underneath MapReduce

☺ this section …

We introduces the MapReduce programming model and

the underlying distributed file system step by step by :

› an overview of functional programming

› introducing the basic programming model, focusing on mappers

and reducersand reducers

› discussing the role of the execution framework in actually

running MapReduce programs (called jobs)

› introducing partitioners and combiners

› Details for distributed file system that manages the data being

processed

› Describing complete cluster architecture

FUNCTIONAL PROGRAMMING ROOTS

• MapReduce has its roots in functional

programming (Lisp and ML)

• A key feature of functional languages is the

concept of higherorder functions, or functions concept of higherorder functions, or functions

that can accept other functions as arguments

• Two common built-in higher order functions

are map and fold

Map and Fold

Trace computing the

sum of squares of a

list of integers ☺

In the other word …

• view map as a concise way to represent the

transformation of a dataset (as defined by the

function f)

• view fold as an aggregation operation, as

defined by the function g.

Map and fold parallelism

• Application of map to each item in a list can

be parallelized because they are isolated

• The fold operation, on the other hand, has

more restrictions on data localitymore restrictions on data locality

– If elements in the list can be divided into groups,

the fold aggregations can also proceed in parallel

• operations that are commutative and

associative

What is Mapreduce ?

Mapreduce Functional programming

map map

reduce fold

•MapReduce codifies a generic “recipe" for processing MapReduce codifies a generic “recipe" for processing

large datasets that consists of two stages

�Two user-specified computation

�programmer defines these two

�framework coordinates the actual processing

That is very useful don’t underestimate it

MapReduce can refer to three distinct

but related concepts

• MapReduce is a programming model

• can refer to the execution framework

• can refer to the software implementation of
the programming model and the execution the programming model and the execution
framework

– Google's proprietary implementation

– open-source Hadoop implementation in Java

– for multi-core processors , GPGPUs, CELL
architecture

MAPPERS AND REDUCERS

• Key-value pairs form the basic data structure
– primitives like integers ..

– arbitrarily complex structures like list …

• Library for help ☺
– Buffers , Thrift and Avro– Buffers , Thrift and Avro

• imposing the key-value structure on arbitrary
datasets is important

�collection of web pages (URL, content)

�a graph (node ids , adjacency lists)

�input keys are not particularly meaningful

�input keys are used to uniquely identify

mapper and a reducer

structure

map: (k1; v1) [(k2; v2)]

reduce: (k2; [v2]) [(k3; v3)]

Simplified view of MapReduce

Mappers are applied to all input key-value pairs, which generate an arbitrary

number of intermediate key-value pairs. Reducers are applied to all values

associated with the same key. Between the map and reduce phases lies a barrier

that involves a large distributed sort and group by

Word Count Example

• Input: Large number of text documents

• Task: Compute word count across all the
document

SolutionSolution
• Mapper:
– For every word in a document output (word, "1")

• Reducer:
– Sum all occurrences of words and output (word,

total_count)

Pseudo-code for the word count algorithm in

MapReduce

The mapper emits an intermediate key-value pair for each word in a

document. The reducer sums up all counts for each word.

Hadoop VS Google's

implementation

Google Hadoop

not allowed to change the key in

the reducer

there is no such restriction

the reducer

allows the programmer to specify

a secondary sort key

not allowed

other variations …

• MapReduce programs can contain no reducers

The

– parse a large text collection

– analyze a large number of images– analyze a large number of images

• converse is not possible
• simply pass input key-value pairs to the reducers

for sorting and regrouping the input

Where they use for storing …

• input to a MapReduce job comes from data stored
on the distributed file system and output is written
back to it

• Google's MapReduce

• BigTable• BigTable

– a sparse, distributed, persistent multidimensional sorted
map

• Hadoop

– Hbase is an open-source BigTable clone

– MPP relational databases

a sparse, distributed,

persistent multidimensional

sorted map

�Fundamentally Distributed

�Column Oriented

� Variable num of Columns

BigTable

� Variable num of Columns

Unlike traditional RDBMS

where each "row" is stored

contiguous on disk, BigTable,

store each column

contiguously on disk

MapReduce execution

Hadoop® MapReduce execution

THE EXECUTION FRAMEWORK

• Scheduling

– Speculative execution and backup tasks

• an identical copy of the same task is executed on a

different machine for solving some stragglersdifferent machine for solving some stragglers

• skew in the distribution of values associated with

intermediate keys (leading to reduce stragglers).

• Data/code co-location

• Synchronization

• Error and fault handling

THE EXECUTION FRAMEWORK

• Scheduling

• Data/code co-location

– key ideas behind MapReduce is to move the code,

not the datanot the data

– scheduler starts tasks on the node that holds a

particular block of data needed by the task

• Synchronization

• Error and fault handling

THE EXECUTION FRAMEWORK

• Scheduling

• Data/code co-location

• Synchronization

– accomplished by a barrier between the map and – accomplished by a barrier between the map and

reduce phases of processing

– key-value pairs must be grouped by key, which is

accomplished by shuffle and sort

• Error and fault handling

THE EXECUTION FRAMEWORK

• Scheduling

• Data/code co-location

• Synchronization

• Error and fault handling• Error and fault handling

– disk failures | system maintenance and hardware

upgrades | power failure, connectivity loss | No

software is bug free | dataset will contain

corrupted data

PARTITIONERS AND COMBINERS

• Partitioners

– responsible for dividing up the intermediate key
space and assigning intermediate key-value pairs
to reducers

• Combiners • Combiners

– are an optimization in MapReduce that allow for
local aggregation before the shuffle and sort
phase

– “mini-reducers" that take place on the output of
the mappers prior to the shuffle and sort phase

Complete view of MapReduce

Word Frequency Example

• Input: Large number of text documents

• Task: Compute word frequency across all the
document
– Frequency is calculated using the total word count

• A naive solution with basic MapReduce model
requires two MapReduces
– MR1: count number of all words in these documents

� Use combiners

– MR2: count number of each word and divide it by the
total count from MR1

Word Frequency Example

• A nice trick: To compute the total number of

words in all documents

– Every map task sends its total world count with

key “” to ALL reducer splitskey “” to ALL reducer splits

– Key "" will be the first key processed by reducer

• Sum of its values → total number of words!

Word Frequency Solution:

Mapper with Combiner

Word Frequency Solution: Reducer

THE DISTRIBUTED FILE SYSTEM

• As compute capacity grows, the link between

the compute nodes and the storage becomes

a bottleneck

– 10 gigabit Ethernet | InfiniBand– 10 gigabit Ethernet | InfiniBand

– abandon the separation of computation and

storage as distinct components

• distributed file system (DFS) that underlies

MapReduce adopts exactly second approach

THE DISTRIBUTED FILE SYSTEM

• The main idea is to divide user data into
blocks and replicate those blocks across the
local disks of nodes in the cluster

• DFS adopts a master- slave architecture• DFS adopts a master- slave architecture

– Master

• file namespace
– metadata, directory structure, le to block mapping, location

of blocks, and access permissions

– Slave

• manage the actual data blocks

Hadoop VS Google's

DFS

Slave Master DFSimplementation

GFS chunkserversGFS masterGoogle File SystemGoogle GFS chunkserversGFS masterGoogle File SystemGoogle

datanodenamenodeHDFSHadoop

architecture of HDFS

the HDFS namenode responsibilities

• Namespace management

• Coordinating file operations

• Maintaining overall health of the file system

• rebalancing the file system

Some critical point

• file system stores a relatively modest number

of large files

• Workloads are batch oriented

• deployed in an environment of cooperative • deployed in an environment of cooperative

users.

• system is built from unreliable but inexpensive

commodity components

HADOOP CLUSTER ARCHITECTURE

APPLICATION EXAMPLES

Average Income In a City

Average Income In a City

• SSTable 1: (SSN, {Personal Information})

• 123456:(John Smith;Sunnyvale, CA)

• 123457:(Jane Brown;Mountain View, CA)

• 123458:(Tom Little;Mountain View, CA)

• SSTable 2: (SSN, {year, income})• SSTable 2: (SSN, {year, income})

• 123456:(2007,$70000),(2006,$65000),(2005,$6000),...

• 123457:(2007,$72000),(2006,$70000),(2005,$6000),...

• 123458:(2007,$80000),(2006,$85000),(2005,$7500),...

• Task: Compute average income in each city in 2007

• Note: Both inputs sorted by SSN

OVERLAYING SATELLITE IMAGES

Application Examples

Other application

• Inverted Indexing for Text Retrieval

• Graph Algorithms

• EM Algorithms for Text Processing

• Closing Remarks• Closing Remarks

