Problems 16 ## Problem The UV spectrum of this compound shows only end absorption. Determine the structure of the compound. Determine the structure of a compound with the formula $C_{10}H_{12}O_2$. In addition to the infrared spectrum and 1H NMR, the problem includes tabulated data for the normal ^{13}C NMR, DEPT-135, and DEPT-90 spectral data. | Positive | No peak | |----------|--| | Negative | No peak | | Positive | No peak | | Positive | Positive | | No peak | No peak | | Positive | Positive | | No peak | No peak | | No peak | No peak | | | Negative
Positive
Positive
No peak
Positive
No peak | This compound has the molecular formula $C_9H_{11}NO_2$. Included in this problem are the infrared spectrum, 1H NMR with expansions, and ^{13}C NMR spectra data. | Normal Carbon | DEPT-135 | DEPT-90 | |---------------|----------|----------| | 14 ppm | Positive | No peak | | 61 | Negative | No peak | | 116 | Positive | Positive | | 119 | Positive | Positive | | 120 | Positive | Positive | | 129 | Positive | Positive | | 131 | No peak | No peak | | 147 | No peak | No peak | | 167 | No peak | No peak | | | | | ## Problem This compound has the molecular formula $C_5H_7NO_2$. Following are the infrared, 1H NMR, and ^{13}C NMR spectra. *3. The UV spectrum of this compound is determined in 95% ethanol: $\lambda_{\rm max}$ 290 nm (log ε =1.3). *4. The UV spectrum of this compound shows no maximum above 205 nm. When a drop of aqueous acid is added to the sample, the pattern at 3.6 ppm in the ¹H NMR spectrum simplifies to a triplet, and the pattern at 3.2 ppm simplifies to a singlet. *5. UV spectrum of this compound is determined in 95% ethanol: λ_{max} 280 nm (log ε =1.3). (c) *6. The formula for this compound is $C_6H_{12}O_2$.