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PREFACE

APPROACH

Two occurrences in the second part of the 20th century have radically changed the
nature of the field of dynamics. The first is the increased need to model and analyze
complex, multibodied and often elastic-bodied structures, such as satellites, robot
manipulators, and vehicles. The second is the proliferation of the digital computer,
which has led to the development of numerical techniques to derive the describing
equations of a system, integrate the equations of motion, and obtain the response.
This new computational capability has encouraged scientists and engineers to model
and numerically analyze complex dynamical systems which in the past either could
not be analyzed, or were analyzed using gross simplifications.

The prospect of using computational techniques to model a dynamical system
has also led dynamicists to reconsider existing methods of obtaining equations of
motion. When evaluated in terms of systematic application, ease of implementation
by computers, and computational effort, some of the traditional approaches lose part
of their appeal. For example, to obtain Lagrange’s equations, one is traditionally
taught first to generate a scalar function called the Lagrangian and then to perform
a series of differentiations. This approach is computationally inefficient. Moreover,
certain terms in the differentiation of the kinetic energy cancel each other, resulting
in wasted manipulations.

As a result of the reevaluation of the methods used in dynamics, new approaches
have been proposed and certain older approaches that were not commonly used in the
past have been brought back into the limelight. What has followed in the literature
is a series of papers and books containing claims by proponents of certain methods,
each extolling the virtues of one approach over the other without a fair and balanced
analysis. This, at least in the opinion of this author, has not led to a healthy envi-
ronment and. fruitful exchange of ideas. It is now possible for basic graduate level
courses in dynamics to be taught at different schools with entirely different subject
material.

These developments of recent years have inspired me to compile my lecture
notes into a textbook. Realizing that much of the research done lately in the field of
dynamics has been reported very subjectively, I have tried to present in this book
a fair and balanced description of dynamics problems and formulations, from the
classical methods to the newer techniques used in today’s multibody environments.
I have emphasized the need to know both the classical methods as well as the newer
techniques and have shown that these approaches are really complementary. Having
the knowledge and experience to look at a problem in a number of ways not only
facilitates the solution but also provides a better perspective. For example, the book
discusses Euler parameters, which lead to fewer singularities in the solution and
which lend themselves to more efficient computer implementation.

xiil
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PREFACE

The focus of this book is primarily the kinematics and derivation of the describ-
ing equations of dynamics. We also consider the qualitative analysis of the response.
We discuss a special case of quantitative analysis, namely the response of motion
linearized about equilibrium.

We discuss means to analyze the kinematics and to describe the equations of mo-
tion. We study force and moment balances, as well as analytical methods. In most
dynamics problems, the resulting equations of motion are nonlinear and lengthy, so
that closed-form solutions are generally not available. We discuss analytical solu-
tions, motion integrals and basic stability concepts. We make use of integrals of the
motion, which are derived quantities that give qualitative information about the sys-
tem without having to solve for the exact solution.

For linearized systems, we discuss the closed-form response. We outline con-
cepts from vibration theory and eigenvector expansions. This also is done for contin-
uous systems, in the last chapter of the book. We discuss the importance of numerical
solutions.

CONTENTS

The book is organized into eleven chapters and three appendixes. The first eight
chapters are intended for an introductory level graduate or advanced undergraduate
course. The later chapters of the book can be used as part of a second, more ad-
vanced graduate level course. The book follows a classical approach, in which one
first deals with particle mechanics and then extends the concepts into rigid bodies.
The Lagrange’s equations are initially discussed for a system of particles and plane
motion of rigid bodies.

We follow in this book this school of thought for a number of reasons. First,
graduate students come from a variety of backgrounds. Many times, students have
not considered dynamics since the sophomore dynamics, or the freshman physics
course. Also, this organization presents a more natural flow of the concepts used
in dynamics. Nevertheless, the book is suitable also for instructors who prefer to
teach three-dimensional rigid body dynamics before introducing analytical methods.
Following is a description of the chapters:

In Chapter 1 we study fundamental concepts of dynamics and see their appli-
cations to particle mechanics problems. We discuss Newton’s laws and energy and
momentum principles. We look at integrals of motion and basic ideas from stability
theory. The chapter outlines the response of linearized systems, which forms an in-
troduction to vibration theory. This chapter should be covered in detail if the course
is an undergraduate one. Less time should be spent on it for a graduate course or if
the students taking the course are familiar with the basic ideas.

Chapter 2 discusses relative motion. Coordinate frames, rotation sequences, an-
gular velocities, and angular accelerations are introduced. The significance of taking
time derivatives in different coordinate systems is emphasized. We derive the rela-
tive motion equations and consider motion with respect to the rotating earth.

Chapter 3 is a chapter on systems of particles and plane kinetics of rigid bodies.
It is primarily included for pedagogical considerations. I recommend its use for an
undergraduate course; for a graduate level course, it should serve as independent



CONTENTS

reading. A number of sections in this chapter are devoted to an introduction to ce-
lestial mechanics problems, namely the two-body problem. The sections on plane
kinetics of rigid bodies basically review the sophomore level material. This review
is included here mainly because the approaches in the next chapter are described in
terms of particles and plane motion of rigid bodies.

The subject of classical analytical mechanics is discussed in Chapters 4 and
5. Chapter 4 introduces the basic concepts, covering generalized coordinates,
constraints, and degrees of freedom. We derive the principle of virtual work,
D’ Alembert’s principle, and Hamilton’s principle and then we develop Lagrange’s
equations. Analytical mechanics makes use of the calculus of variations, a subject
covered separately in Appendix B. While Chapters 4 and 5 are written so that one
does not absolutely need to learn the calculus of variations as a separate subject, it
has been the experience of this author that some initial exposure of students to the
calculus of variations is very helpful.

Chapter 5 revisits the concept of equilibrium and outlines the distinction be-
tween natural and nonnatural systems. We derive the linearized equations about
equilibrium. The response of linearized systems is analyzed, which in essence is
vibration theory for multidegree of freedom systems. Generalized momenta and mo-
tion integrals are considered.

In Chapter 6, we discuss the internal properties of a rigid body. In a departure
from traditional approaches, we discuss moments of inertia independent of the ki-
netic energy and angular momentum.

Chapter 7 is devoted to a detailed analysis of the kinematics of a rigid body,
where we learn of methods of quantifying the angular velocity vector. We present a
discussion of Euler angles and Euler parameters. We then discuss constraints acting
on the motion and quantify these constraints and the resulting kinematic relations.

Chapter 8 explores basic ideas associated with the kinetics of rigid bodies.
We first begin with the application of force and moment balances. We express the
equations of motion in terms of both the Euler angles and angular velocities. We
discuss the relative merits of deriving the equations of motion in terms of gener-
alized coordinates as well as in terms of angular velocity components. We ana-
lyze impulse-momentum and work-energy principles. We discuss the physical in-
terpretation of Lagrange’s equations and integrals of the motion associated with the
Lagrangian.

Chapter 9 introduces more advanced concepts in the analysis of rigid body mo-
tion. We analyze the modified Euler’s equations and then consider the moment equa-
tions about an arbitrary point. We discuss quasi-velocities, also known as generalized
speeds, and their applications. We demonstrate that such coordinates are desirable
when dealing with nonholonomic systems. We demonstrate the equivalence of the
Gibbs-Appell and Kane’s equations and discuss momentum balances in terms of the
generalized speeds.

Many of the analytical methods described in this chapter could have been intro-
duced in Chapters 4 or 5. However, the power of these methods, which are equally
applicable to both particles and rigid bodies, is better appreciated when we consider
applications to complex rigid body problems.

Chapter 10 covers the qualitative analysis of rigid body motion, and in particular
gyroscopic effects. The chapter initially goes into a qualitative study of torque-free
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motion and the differences in the response between axisymmetric and arbitrary bod-
ies. We then discuss interesting classical applications of gyroscopic motion, such as
a spinning top, a rolling disk, and gyroscopes.

Chapter 11 investigates the subject of dynamics of lightly flexible bodies. Re-
cent problems in dynamics have demonstrated the importance of including the elas-
ticity of a body in the describing equations. The emphasis is the analysis of bodies
that undergo combined rigid and elastic motion, typical examples being robot ma-
nipulators and spacecraft with appendages. We derive the classical boundary value
problem and examine a shortcoming in the traditional formulation. The combined
large-angle rigid and elastic motions are modeled in terms of the superposition of a
primary motion, as the motion of a moving reference frame, and a secondary motion,
the motion of the body as observed from the moving reference frame.

Appendix A is a historical survey of dynamics and a synopsis of the work of the
many people who contributed to this field.

Appendix B presents an introduction to the calculus of variations. It is recom-
mended that at least part of this appendix be studied before Chapter 4. However,
Chapter 4 is written such that a brief introduction to virtual displacements should be
sufficient to understand basic concepts from analytical mechanics.

Appendix C gives the mass moments of inertia of common shapes.

PEDAGOGICAL TOOLS

The book contains several examples and homework problems. It has been my ex-
perience that students understand a subject best when they see many examples. I
encourage anyone teaching dynamics, either at the undergraduate or the graduate
level, to use as many examples as possible.

Another pedagogical tool emphasized in the book is computational techniques.
While we do not go into details of numerical integration, we discuss the numerical
integration of equations of motion. Many of the examples and homework problems
in the book can be assigned as computer projects. I encourage every student to keep
pace with new advances in scientific software, such as symbolic manipulators, be-
cause, as discussed earlier, the availability of computational tools has changed the
nature of dynamics.

SUPPLEMENT

The book is supplemented by an Instructor’s Solutions Manual which includes de-
tailed solutions to all of the problems in the book.
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BASIC PRINCIPLES

1.1 INTRODUCTION

This chapter discusses basic principles and concepts used in the field of dynamics. It
describes these principles and concepts within the context of particles. First, we look
at the systems of units commonly used in dynamics. Then, we analyze the kinemat-
ics of a particle and outline the coordinate systems used to describe the motion. We
distinguish between coordinate systems that deal with components of the motion in
fixed directions and coordinate systems based on the properties of the path followed
by the particle. The kinematic analysis is followed by the kinetics of a particle, and
Newton’s laws are given. We move on to analyze the concept of force and discuss the
integration of the equations of motion. The distinction is drawn between the quali-
tative and quantitative analysis of the motion. Integration of the equations of motion
lead to energy and momentum expressions and in some cases to other integrals of
the motion, which are useful in analyzing the nature of the motion. There is an intro-
duction to the concepts of equilibrium and stability, and the closed-form integration
of linearized equations of motion. This subject forms the basis of vibration analysis.

This chapter is a collection of the fundamental principles that one uses in obtain-
ing the equations of motion and in analyzing these equations of motion. The devel-
opments in subsequent chapters in this book are built on these principles. The reader
is encouraged to understand all the concepts discussed in this chapter thoroughly
before continuing with the rest of the text.

1.2 SYSTEMS OF UNITS

While anyone can develop a set of units to describe the evolution of a dynamical
system, in classical mechanics two basic sets are widely used: Systéme International
1
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(SI), or metric, and U.S. Customary. The primary difference between these systems
is that the SI system is universal and absolute, and the U.S. system is local (or gravi-
tational), that is, valid on earth. Today, most countries in the world have adopted the
SI system as their standard.

To describe the evolution of a body, three fundamental quantities are needed.
In all commonly used systems there is agreement on two: length and time, whose
dimensions are denoted by L and T, respectively. The U.S. and SI systems differ on
the nature of the third quantity. The SI system uses mass (M), defined as the amount
of matter (absolute) contained in a body. By contrast, the U.S. system uses force (F).
The justification for this system is that the weight of a body, as the force with which
the body is pulled toward the center of mass of the coordinate system (in our case,
earth), is easier to visualize. Weight is a relative quantity. It changes depending on
the amount of gravitational attraction.

Corresponding to each fundamental quantity there is a base unit' that describes
standardized amounts of a fundamental quantity. Evolution of the base units has:
been in many cases based on convenience (e.g., foot), but in some cases a rational
explanation is not available. The base units are usually abbreviated by symbols. The
fundamental quantities and corresponding base units in the U.S. and SI systems are
as follows (the dimensions and symbols are denoted in the parentheses):

SI Units U.S. Customary Units
Mass (M): kilogram (kg) Force (F): pound (1b)
Length (L): meter (m) Length (L): foot (ft)
Time (T): second (s) Time (T): second (sec or s)

In the SI system, force is a derived quantity. The base unit of force (F =
ML/T?) is denoted by a newton (N), where 1 N = 1 kg *m/s%. In the U.S. system,
mass is a derived quantity, and the unit of mass (M = FT?/L) is denoted by a slug,
with 1 slug = 1 lbssec?/ft. When using the SI system many people commonly, and
at the same time erroneously, refer to mass as a unit of weight. This is due to the
perpetuation of the original definition of kilogram as a unit of weight. The kilogram
was formally redefined as a unit of mass in the year 1859.

The selection of base units in a given system of units is not absolute. In many
cases one switches to a different system of units to describe the motion. For example,
the speed of an automobile is usually described in kilometers per hour (or miles per
hour), and the speed of a ship is described by knots (1 knot = 1 nautical mile/hr,
where 1 nautical mile = 1.852 km).

To describe rotational displacements one may use degrees (°) or radians (rad).
Going around a full circle takes 360 degrees or 27 radians and is referred to as a
revolution. A radian is a dimensionless unit. The angle of 1 radian = 57.2958° is
depicted in Fig. 1.1.

| *Some refer to the fundamental quantities as base units and to the base units as dimensions.
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Figure 1.1 One radian

An interesting source of debate has been the need to reexamine and to recal-
ibrate the standards used in defining the base units. Many precision calculations
require formal definitions for several quantities. For example, one meter was origi-
nally defined as one 10-millionth of the distance from one of the earth’s poles to the
equator. The current formal definition of a meter is the distance that light travels in
one 299,792,458th of a second. One inch is defined as being exactly equal to 2.54
cm. The current formal definition of a second is the time it takes for 9,192,631,770
vibrations to occur in cesium atoms excited by microwave. A second was originally
defined as 1/60 of a minute, which is 1/60 of an hour, which is 1/24 of a day. A
kilogram is defined as the mass of water contained in a volume of one liter and at a
temperature of 4° Celsius. A block with a mass of 1 kg is maintained in a vault in
Paris as the standard kilogram. At the time of writing of this text, there was ongoing
debate on revising the formal definition of the kilogram.

To relate the mass of an object to its weight, we make use of the gravitational
constant. The gravitational constant is denoted by g and it has the units of accelera-
tion. The general form for this constant will be given in Section 1.4. On earth at sea
level the value of g is approximated as g = 9.81 m/s2 or g = 32.2 ft/sec?. On earth
an object of mass 1 kg weighs 9.81 N, and an object of weight 1 Ib has a mass of
1/32.2 slugs. It is interesting that the weight of a medium-sized apple is about one
newton.

We have so far treated the three fundamental quantities as independent of each
other. This is a correct assumption as long as relativistic effects are ignored (when
the speeds involved are much less than the speed of light). As the speeds involved
approach the speed of light, mass, length, and time become interrelated. This is the
foundation of relativistic mechanics and it will not be pursued in this text.

It is always important to check that the dimensions of the quantities being ma-
nipulated match. Equations of motion and equilibrium equations must have all of
their terms with the same dimension. Checking dimensional homogeneity is a good
way of spotting errors.

Analogous to the preceding discussion regarding standards, one must also be
careful in the accuracy of the solution and rounding off numbers when solving a
problem. Many engineering problems require an accuracy of about one part in a
thousand or better. Accordingly, in most problems in this text we will retain four



CHAPTER 1 ¢ Basic PRINCIPLES

and sometimes five significant digits in the solution (e.g., 0.7655, 8.975, 12.34 or
0.76549, 8.9762, 12.345). Following this line of thought, we note that the standard
assumptions for the gravitational constant given above are not extremely accurate.
In celestial mechanics problems, which we will discuss in Chapter 3, one needs to
go to much higher levels of accuracy.

Suppose a new coordinate system is developed such that the density of water and the accel-
eration of gravity are both of unit magnitude. If the pound is taken as the unit of force, how
do the units of length and time in the new system compare with the U.S. Customary system?

Denote the base units in the old system by Ib, ft, and sec and the units in the new system by
Ib, ft*, and s*. We are given that

Acceleration of gravity g = 32.2 ft/sec’ = 1 ft*/(s")? [a]
Density of water y = Specific wt/gravity = (62.8 1b/£3)/(32.2 ft/sec?)
= 1/ B )5t
— 1.950 Ib sec?/ft* = 11b (s")*/(ft*)* [b]

These two relations are two equations that can be solved for the two unknowns ft* and s*.
From the first relation, 1 ft* = 32.2 ft (s*)%/sec?. Substituting this into the second relation,
we obtain

1.950 1b sec?/ft* = 11b (s*)*/[32.2 ft (s*)*/sec?)* 03]

which can be solved to give 1 sec/s* = 11.31. Substitution of this result into the first relation
yields 1 fv/ft* = 3.973.

1.3 REVIEW OF VECTOR ANALYSIS

In this section we review the sets of coordinates and associated unit vectors com-
monly used in dynamics. As with systems of units, one can develop a specific set
of vectors to describe the orientation of a body. The study of dynamics uses two ba-
sic types of coordinates: rectilinear and curvilinear. Rectilinear coordinates describe
the components of the motion in fixed directions. Curvilinear coordinate systems
incorporate the properties of the path that the particle follows.

In a coordinate system, one defines a set of three principal directions. The co-
ordinate axes and associated unit vectors are directed along the principal directions.
When a set of unit vectors e, €;, €3 obeys the cross product rule e; X €; = &;;.€;
where g;;; = 1ifi, j,kareinorder(i = 1,j = 2,k = 3,0ori = 2, j = 3,k=1,
ori =3,j=1k=2),8j = —1ifi, j, karenotinorder (i =1, j = 3,k =2,
ori =2, j=1Lk=30ri=3,j=2k=1),and gj; = 0 if any two indices
are repeated, the set is referred to as a mutually orthogonal triad. The coordinate
system that uses these unit vectors is called a right-handed coordinate system.
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1.3.1 RECTILINEAR (CARTESIAN) COORDINATES

In this coordinate system, the origin and the principal directions remain fixed. These
directions are usually referred to as x, y, and z axes or X, Y, and Z axes, with as-
sociated unit vectors i, j, and k or I, J, and K, respectively. These unit vectors are
time invariant. Because the unit vectors are independent of the path followed, this
coordinate system is called extrinsic.

Consider Fig. 1.2, where a particle P is moving along a curve. The displacement
vector r(¢) that describes the location of point P is

r@t) = xi+yj+zk [1.3.1]

The distance r from the origin O to point P then becomes

r=Jr@@)er(t) = Jx2+ y2 + 22 [1.3.2]

Denoting the position of the particle at time ¢ + At by r(z + At), the velocity of the
particle is defined by

_de(ty . . 1+ A -rx()
=g TR0 Ty Dl
Introduction of Eq. [1.3.1] into Eq. [1.3.3] yields
v(t) = xi+yj+ K = vii +v,j + vk [1.3.4]

Because the unit vectors are time invariant, their derivatives vanish. In a similar
fashion, one can obtain expressions for the acceleration

a(t) = () = Xxi+yj+ 7k = a;i + ayj + ak [1.3.5]

This set of coordinates is useful when the components of the motion can be
analyzed separately from each other. Projectile motion problems provide a classical
example.

’
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Let us investigate a few interesting cases for motion in one direction, also known
as rectilinear motion. Taking the displacement variable as x, we can express the ac-
celeration in the most general case as a = a(x, %, ). If the acceleration is constant,
a = c, then we can obtain the velocity and displacement by direct integration as
v(t) = vg + ct, x(t) = xo + vot + ct?/2, with xq and vy denoting the initial displace-
ment and initial velocity. Direct integration can again be used if the acceleration is
only a function of time, a = f(z). If the acceleration is a function of the displace-
ment only, a = f(x), one uses the transformation a = dv/dt = f(x). Multiplying
both sides by dx, we obtain

@
dt

where each side is a function of x or v only. It follows that each side can be integrated
separately from the other. If the acceleration is a function of velocity alone,a = f(v),
we write a = dv/dt = f(v). Carrying the dt term to the right side and the f(v) term
to the left, we obtain

f(x)dx = —dx = vdv [1.3.6]

A _
f@

where we have again separated the variables so that each side of the above equation
can be integrated independently of the other.

The case when a = f(x, x) is left as a homework exercise. Any other combina-
tion lends itself to more complicated probiems. The situation gets worse when there
is two- or three-dimensional motion, and the acceleration in one direction is related
to motion in more than one direction, such as a, = f(x, y). One has to then go into
coordinate systems that take advantage of the properties of the path followed by the
particle, as we will see next.

dt [1.3.7]

I A projectile is thrown from an inclined surface with an initial velocity vy and an angle of
6 = 30° from the incline, as shown in Fig. 1.3. The plane of the incline makes an angle of
¢ = 15° with the horizontal. Find the time elapsed before the particle falls to the ground and
the distance traveled along the incline.

Yo
@ =30°

X

¢=15°

Incline

Figure 1.3
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Solution

The equations of motion in the horizontal and vertical directions are independent of each other
and have the form

ma, =0 ma, = —mg [al
which can be integrated directly to yield the velocity and displacement relations
v,(t) = vy = constant x(t) = vyt
1
v(t) = vy0 — gt o) = viot — 5g¢° b]
where v, and v, are the components of the initial velocity. From Fig. 1.3, the initial velocities
are
Uxo = Upcos(f — @) = vycos15° U0 = Upsin(@ — ) = vy sin 15° el

Denote the time it takes for the projectile to touch the ground by #; and the coordinates
of that point by x; = x(tf) and z; = z(ts). From Fig. 1.4 (not drawn to scale) we can relate
zr and x¢ by

—zf = xftang [d]
Substituting the values for x; and z; from Eq. [b], we obtain
—(veoty — 0.5g17) = vyotstang [e]
which leads to the following equation for #;:
0.5gt‘f2 — (U0 + vxotang)ty = 0 [f1
Solving for ¢, for the final time, we obtain

U0 + Uxotan ¢
fp==—_""7T

1
28
- o o o : o
_ vo sin 15° + vgcos 15°tan 15 _ 4uysin 15 _ 1'035@ [o]
lg g g
2
Z
Ug
~ s - x
0 S
¢
% %
Xf \‘

Figure 1.4
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The final distance traveled is calculated by substituting the value for ¢, into Egs. [b] and
[d], and we have

4v}sin 15°cos 15° v}

x(tf) = Uxoly = *—g-— = E [h]

2

2
uty) = —xstand = —%Otan15° = —0.2680%0 [l

1.3.2 CURVILINEAR COORDINATES

Properties of the path followed by a particle turn out to be extremely useful quantities
for understanding the nature of the motion. This observation has led to the develop-
ment of curvilinear coordinate systems. There are several such coordinate systems
that one can develop. We will begin with a coordinate system that is entirely based
on the properties of the path. We will then study two commonly used coordinate
systems that make use of the properties of the path as well as the position of the par-
ticle. Curvilinear coordinate systems are referred to as intrinsic, as these coordinate
systems depend on the path followed by the particle.

Normal-Tangential Coordinates This coordinate system is attached to the
particle whose motion is considered (see Fig. 1.5). The distance traversed along the
path is designated by s, measured from a reference position. This coordinate system
is primarily used to describe the nature of the path followed by the particle.? The
variables used are referred to as path variables.

While it may appear to be more desirable from a mathematical perspective to
just look at the distance between the initial and final positions, considering the path

Ar
r(s)

r(s + As)

2In this regard, the normaktangential coordinates do not constitute a coordinate system that can describe displace-
ment, velocity, or acceleration. Rather, they are a means of obtaining information about the path followed by the
particle. The other curvilinear coordinates that we will study in this section can, in essence, be derived from the
path variables.
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followed and the total distance traversed along the path is very important. Someone
traveling from one location to another, say by driving, usually selects a route that
minimizes the distance traveled along the road (the path).

We define two principal directions to describe the motion. The first is along the
tangent to the curve and along the direction of the motion. This direction is called
the tangential direction. We denote the unit vector associated with this direction as
¢,. Consider Fig. 1.5 and the position of the particle after it has traveled distances of
s and s + As. The associated position vectors, measured from a fixed location, are
denoted as r(s) and r(s + As), respectively. Define by Ar the difference between r(s)
and r(s + As), thus

Ar = r(s + As) — r(s) [1.3.8]

From Fig. 1.5, as As becomes small Ar and As have the same length and become
parallel to each other. Further, Ar becomes aligned with the tangential direction. We
hence define the unit vector in the tangential direction as

Ar dr
= lim — = — 1.3.9
& 420 As ds [ 1

The unit vector e, changes direction as the particle moves. We can obtain the
velocity of the particle by differentiating the displacement vector with respect to
time. Using the chain rule for differentiation,

v(t) = — = — — [1.3.10]

Now using the definition of e, from Eq. [1.3.9] and noting that the speed v is the rate
of change of the distance traveled along the path, v = ds/dt, we obtain

v(t) = ve, [1.3.11]

The second principal direction is defined as being normal to the curve and di-
rected toward the center of curvature of the path, as shown in Fig. 1.6. This direction
is defined as the normal direction. The associated unit vector is denoted by e,. The
center of curvature of a path associated with a certain point on the path lies along
a line perpendicular to the path at that point. An infinitesimal arc in the vicinity of
that point can be viewed as a circular path, with the center of curvature as the center
of the circle. The radius of the circle is called the radius of curvature. Because the
normal to the curve is perpendicular to the tangential direction, the two unit vectors
are orthogonal, that is, e;+e, = 0.

Differentiation of Eq. [1.3.11] with respect to time gives the acceleration of the
particle a(z) as

a(®) = v(r) = ve; + ve, [1.3.12]

To obtain the derivative of e, we displace the particle by an infinitesimal distance
ds, and refer to the unit vectors associated with the new location by e,(s + ds), as
shown in Fig. 1.6. The center of curvature associated with all points on the arc is the
same. The arc length can be expressed as ds = pd¢; d¢ is the infinitesimal angle
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e,(s)

Center of
curvature n
Figure 1.6 Figure 1.7

traversed as the particle moves by a distance ds. Defining the vector connecting €,(s)
and e,(s + ds) by de;, we can write de, = e,(s + ds) — e,(s). From Fig. 1.7, the angle
between e,(s + ds) and e,(s) is very small, so that

Ide,| = sin dle,(s)| = dble,| = d;s [1.3.13]
or
@ = '1' [1.3.14]
ds P

The radius of curvature is a measure of how much the curve bends. For motion along
a straight line, the curve does not bend and the radius of curvature has the value
of infinity. For plane motion, using the coordinates x and y such that the curve is
described by y = y(x), the expression for the radius of curvature can be shown to
be

1 [d%yld x?|

P B (1 + (dyldx)?)3? [1.3.15]

The absolute value sign in this equation is necessary because we defined the radius
of curvature as a positive quantity. Considering the sign convention that we adopted
above, we have

de e
=t - [1.3.16]
ds p
Using the chain rule, we obtain the time derivative of e; as
de, ds e
= — — =y [1.3.17]

“= s ar P
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Introduction of this relation into Eq. [1.3.12] yields

2
a(t) = V() = ve, + U;e,, [1.3.18]

The first term on the right in this equation is the component of the acceleration
due to a change in speed, referred to as tangential acceleration (a,). The second term
is the contribution due to a change in direction, referred to as the normal acceleration
or centripetal acceleration (a,). The acceleration expression can be written as

a(t) = ase, + ape, [1.3.19]
with
02
a =70 a, = — [1.3.204a,b]
p

It is a common misconception to treat an object moving along a curved path
with constant speed as having no acceleration. Note that the normal component of
the acceleration is always directed toward the center of curvature.

The normal and tangential directions define the plane of the motion for that par-
ticular instant. This instantaneous plane of motion is called the osculating plane
(after the Italian word osculari, which means to kiss). The orientation of the oscu-
lating plane changes as the particle moves. This is referred to as the twisting of the
osculating plane. The unit vector e, referred to as the unit vector in the binormal
direction and defined as e, = e; X e, is perpendicular to the osculating plane. Con-
sider, for the sake of illustration, plane motion as shown in Fig. 1.8. The direction
of e, and hence the osculating plane alternates as the curvature of the path switches
from convex to concave.

The unit vector in the binormal direction is used to obtain the derivative of the
unit vector in the normal direction. While e;, is not needed to describe the velocity or
acceleration, it is used to describe the evolution of the plane of motion. The twisting
of the osculating plane is a path parameter.

e, (into page) e,

* €, (out of page)
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To analyze the movement of the plane of motion, we investigate the derivatives
of e, and e, with respect to s. To this end, we take the derivative of e, using the
definition of the cross product as

de, de, de
— = X — + — X -3.21
ds e ds +ds €n [1.3.21)

Using Eq. [1.3.16], de,/ds = e,/p, so that the second term in the right side of
the above equation vanishes. From the first term on the right side we conclude that
the rate of change of e, along the path has no tangential component. To show that
dey/ds has no component in the binormal direction either, we differentiate the dot
product e, * e, = 1, with the obvious result

d _ deb _
a(eb ey) = 2ep s 0 [1.3.22]

It follows that de,/ds can only have a component in the normal direction. This
can be explained physically the same way we explained Eqs. [1.3.13] through
[1.3.16]. We define a quantity denoted by 7, which is called the torsion of the curve,
as

dﬁ = - le,, [1.3.23]
ds T

The torsion of the curve is a measure of how much the plane of motion twists, or
how the osculating plane changes direction. For plane motion, while the curve may
change from convex to concave, the binormal direction does not change and hence
T is equal to infinity.

We next obtain the derivative of e, with respect to s. From the above discussion
we know that de,/ds cannot have a component in the normal direction. We proceed
to write this as

de,
ds

in which ¢ and ¢; are coefficients to be determined. We make use of the property
that the unit vectors are orthogonal to each other and write

e,*e, =0 e,*e, =0 [1.3.25]

Differentiation of these equations with respect to s and using Eqgs. [1.3.16] and
[1.3.23] yields

= c1€; + C2€p [1.3.24]

de, de, 1 . de,

o + * . = — =
e ds " s T te ds 0
de, de, 1 de, _
" ds e ds ~p T ds 0 [1.3.26]

Taking the dot product of Eq. [1.3.24] with e, and e, and comparing with Egs.
[1.3.26], we obtain
cp = —

cy = [1.3.27]

Q-

1
p
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We are now in a position to write the rate of change of the unit vectors in the
normal-tangential coordinate system as

der _ le,, den _ —le, + 1eb de, _ —1e,, [1.3.28a,b,c]
ds p ds p T ds T

Eqgs. [1.3.28a,b,c] are known as Frenet’s formulas. They enable us to describe how
the curve and the associated unit vectors change.

Note that up to now, we derived the unit vectors and their derivatives as a func-
tion of s, the distance traversed along the path. But we did not find an expression for
s itself. To accomplish this, we need to express position in terms of a path variable.
Denoting this variable by «, we can write the position vector as

r = r(a) = x(a)i + y(a)j + z(a)k [1.3.29]
Using the definition of e, in Eq. [1.3.29], we obtain

_ _ _(dx, dy. dz
& = ds dads (dal+ doz‘I * dak) ds [1.3.30]

We then take the dot product of e, with itself:

da V[ (dx } dy 2 dz \
ece =1= (75) l(a) +(£) +(d_¢;) [1.3.31]

which can be solved to yield

_[{dx 2 dy 2 (dz
s = 42T o (&) + (4 1302

Integrating this expression, we obtain

« [(dx\¥ (d y ¥ dz \}
s = — | +[=] +|+— | da 1.3.33
Jao\/<da) (da da [ !
where ay is the initial value of the path parameter. When the path parameter is time,
we get the familiar expression of displacement being the integral of the velocity over
time.
We next express the radius of curvature, torsion, and the unit vectors in terms of

the path variables. We first write the unit vector in the tangential direction and the
derivative of the position vector as

€ = — = — — = — r =s'e [1.3.344a,b]

Primes denote differentiation with respect to the path variable «. Differentiation of
Eq. [1.3.34b] with respect to the path parameter a, and using Eq. [1.3.16], yields
" rdet dS " (S,)z

r = S”e; + s % E =s5e + Te,, [1.3.35]

13



14

CHAPTER 1 ® Basic PRINCIPLES

As one would expect, if the path variable is selected as time, Egs. [1.3.34b]
and [1.3.35] yield the expressions for velocity and acceleration. To express the unit
vector in the normal direction in terms of the path variables, we multiply Eq. [1.3.35]
by s’ and subtract from it Eq. [1.3.34b] multiplied by s", with the result

e, = ,)3(r” s’ —r's") [1.3.36]

(s
It is customary to express e, in terms of the first derivative of s. Noting from Egs.
[1.3.34b] and [1.3.35] that r” *r’ = s’s” and substituting this relationship in the
above equation, we obtain

e, = %(P”(S')" —r'(r’-r)) [1.3.37]

(s
To find the unit vector in the binormal direction, we use the definition e, =
e; X e, and substitute the values for ¢, and e, from Eqgs. [1.3.34a] and [1.3.36], with

the result
!

e = "s' = r's") = ,)3(r xr'") [1.3.38]

_S—' r)3 (l' (

Finding the radius of curvature and the torsion requires manipulation of the
above equations. The radius of curvature is found by making use of Eq. [1.3.37] and
the property that the norm of e, is 1. To find the torsion 7 we invoke Eq. [1.3.28c]
and calry out the algebra. The results are
1 1 2 H H
- = — L st == =L@ x ") [1.3.39a,b]
) T ( )

The derivations are left as an exercise. Note that to find p one needs the second
derivative of r with respect to the path variable, whereas to find the torsion 7 the
third derivative of r is required. This can be explained by the following observation:
Let time be the path variable. Given the velocity and acceleration of a particle at a
point in time, one can determine what the plane of the motion is and the radius of
curvature, but not how the plane of motion is twisting.

Finally, in terms of the derivatives with respect to s, we can write

dr _ dr 1
i € a7 = ;e,, [1.3.40]
We now compare the two coordinate systems that we have seen so far. With rec-
tilinear coordinates, one describes velocity and acceleration as the rate of change of
absolute distance from an origin. With normal-tangential coordinates, one describes
velocity and acceleration using properties of the path that the particle follows. The
distance from an origin does not come into the picture. The two descriptions can be
used together to give a better understanding of the nature of the motion.

Example
1.3

A particle moves on a path on the xy plane defined by the curve y = 3x?, where x varies
with the relation x = sin . Find the radius of curvature of the path and the unit vectors in
the normal and tangential directions when o = /6.
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Solution
The position vector can be written as

r = sinai + 3sin’ aj [al

so that the unit vector in the tangential direction is

1 . . .
e = — = — — = —[cosai + 6sina cos o] [b]
ds da s’ s

where s' = ds/da. Noting that the magnitude of e, is 1, we write

s = Jeos? a + 36sin’ & cos? a el

To find the radius of curvature we use Eq. [1.3.39a], which requires expressions for r’

and r"”. These derivatives are
. dr
"~ da?

’ r . 3 .
r = — = cosai + 6sina cosaj r

= —sinai + 6(cos’a — sina)j [d]
da

Evaluating these expressions at @« = 77/6, we obtain
N AN ,77_\/3. . wfm\_ i .
s(E)—\H.S r(—é)— 7(14—3_]) r (6)— §+3J [e]
which, when substituted into Eq. [1.3.39a] yields
L 43\/(1"’°r”)s’2 —(r'er")? = 0.1897 f
p )
When a = 7/6, the unit vector in the tangential direction has the value
o = L (B 33\ L
o 1s\2 0 2 J10

To find the unit vector in the normal direction we need to use Eq. [1.3.37], which yields

(i + 3j) = 0.3162i + 0.9487j Ig}

e, = (s’,))4 @'('? - r'@” er')) = —0.9487i + 0.3162j [h}

Note that we determined all the path parameters using their given formulas. We could

have solved this problem by assuming that the parameter « is time and by using the expres-
sions for the normal and tangential accelerations.

The motion of a particle is described in Cartesian coordinates as
x(ty =22 +4t  y(@t) =018 +cost  z(f) = 3t [a]
Find the radius of curvature and the torsion of the path at time ¢ = 0.

Solution

From Eq. [1.3.20b], the radius of curvature is related to the speed of the particle and its normal
acceleration as

p=— Ib]

I Example
1.4
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and the components of the acceleration in the normal-tangential and Cartesian coordinates
are related by

@ =d+a =d+d+ad Ic]
We can obtain the components of the velocity and acceleration by differentiating Eq. [a]:

i) =4+4 @) =032—-sint () =3

[d]
i@ =4 ¥(t) = 0.6t — cost () =0
The square of the speed of the particle at ¢ = 0 is
v*(0) = [X%(0) + y*(0) + 2%(0)] = [4° +0+3%] = 25 [e]

The tangential acceleration can be found by differentiating the expression for the speed

1 =(2i% + 23§ + 222) fl

1
2 /2 + 24z

a=i= 3 /B0 70+ 20 =

Att = 0, we have
44)+0(-1)+30) 16

“O = —Zrwram -5 sl
Substituting the numerical values into Eq. [c], we obtain
2 \2 2 2
v +a,2=a§+a§+a§:>(§)+(l—6)=42+12+0 [h]
p p 5
which can be solved for p to yield
2
p= |22 15 _g4; m

17 — (16/5)? 13

Next, we find the radius of curvature using Eq. [1.3.39a]. Noting that the path variable
is time, at t = 0 we have

i0) =4i+3k ©0)=4i—j $0) = JEZO) + PO +220) =5 il

Substituting these values into Eq. [1.3.39a] we obtain

% - L merowe -2

125 125 k]

which gives the same result as the one obtained in Eq. [i].
To find the torsion of the curve we make use of Eq. [1.3.39b]. We note that the third
derivative of the position vector is required. From Eq. [d] we obtain

r’” = ¥(t) = (0.6 + sint)j )}

so that at t = 0, r¥(¢) = 0.6j. Introducing this and the expressions for r’ and r” into Eq.
[1.3.39b] we obtain

9.615?
——

A

{(4i — j) = [(4i + 3K) X 0.6j]} = 0.04260 [m]
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so that the torsion of the curve at 7 = 0 is 7 = 1/0.04260. = 23.47. Comparing with the
value of the radius of curvature, we see that the curve is bending more than it is twisting at
this instant.

The above analysis could also be carried out using a vector approach from the begin-
ning. We can write the velocity as v = 4i + 3k, from which we obtain the unit vector in the
tangential direction as

v  4i+3k

et=__

Iv] 5

[n]

The component of the acceleration in the tangential and normal directions can then be
computed as

a, = ase a, = la—(ave)e] = Va2 — a? [o]

For the problem at hand, a = 4i — j, so that substituting it into the above equation yields
the results that we obtained earlier. This latter approach is in many cases more efficient in
obtaining the path parameters.

17

Cylindrical Coordinates This set of coordinates is particularly useful if the
particle is moving along a curved path, the position of the particle is of interest, and
one component of the motion can be separated from the other two.

Fig. 1.9 describes this coordinate system. The inertial coordinate system xyz is
chosen such that the component of the motion that can be separated from the other
two is defined as the z direction. We take the path of the particle and project it onto
the xy plane. The parameters describing the motion are:

1. The height z.

2. The absolute distance from the origin of the coordinate system to the projection
of the path of the particle on the xy plane, denoted by R or r.

Original
path
9>, s y
v e
o R 1k 4
:9 Projection

onto xy plane

(4]
~

~

Figure 1.9
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3. On the xy plane, the amount of counterclockwise rotation from a starting line
(usually selected as the x axis) to reach the line joining the origin and projection
of the particle on the xy plane. Denoted by 6 and measured in radians.

The selection of the origin of the coordinate system is very important when using
cylindrical coordinates, as R and 6 change by changing the location of the origin. The
first principal direction is fixed, and it is the z direction, with associated unit vector
k. To describe the component of the motion in the xy plane, we define two perpen-
dicular directions. The radial direction is defined as outward from the origin of the
coordinate system to the projection of the particle on the xy plane. The associated
unit vector is referred to as e,. The transverse direction is perpendicular to the ra-
dial direction and it is denoted by 6, with unit vector ey. Essentially, the radial and
transverse directions are obtained by rotating the x and y axes counterclockwise by
0 about the z axis. The unit vectors e,, ey, and k form a mutually orthogonal triad,
with e, X eg = k. For plane motion, these coordinates are referred to as polar coor-
dinates. The unit vectors can be expressed in terms of the unit vectors in Cartesian
coordinates as

e, = cos @i + sin 0] ep = — sin6i + cos 6j [1.3.41]
The position of a particle is expressed in cylindrical coordinates as
r(t) = Re, + zk = Rcosfi+ Rsinfj + zk = xi + yj + zk [1.3.42]
To obtain the velocity we differentiate this equation, to get
V(1) = i(t) = Re, + Ré, + 7k [1.3.43]

which requires the derivative of the unit vector in the radial direction. To calculate
this derivative, consider the particle at a point P’, as shown in Fig. 1.10. The coordi-
nate system has rotated by an angle of Af. Denoting the unit vectors associated with
the new position as e.(6 + Af) and eg(6 + AB), we relate them to €,(9) and ey(6) by

e (0 + AG) = e, (0)cos A9 + ey(0)sin Af

eg(0 + AB) = —e, (0)sin Af + e4(8) cos A [1.3.44]

eg(6+ 40) e, (0+A6)
P
y e,(0)
e, (0)
P
AO
6
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Using a small angles assumption of sin A@ = A8, cos A@ = 1, and taking the limit
as A approaches zero, we obtain

. [e(60 +AB) — e (8)] _ de,

am, A6 T de
. |eg(8 + AB) — ey(6)] _ deg _
4% A0 T T f1--451

Using the chain rule of differentiation and Eq. [1.3.44], we obtain

_de, do . depdf _
Oeg eg—ﬁa—

€ = 40 dr —0Oe, [1.3.46]

which, when substituted in the expression for the velocity, yield
v(t) = Re, + Rfey + k [1.3.47]

The first term on the right side of this expression corresponds to a change in the radial
direction and the second term to a change in angle. The third term is the component
of the velocity in the z direction.

In a similar fashion we can find the expression for acceleration. Differentiation
of Eq. [1.3.47] yields

a() = i(t) = Re, + Re, + Re, + Rfeg + Rbep + 7k [1.3.48]

Substituting in the values for the derivatives of the unit vectors and combining terms,
we obtain

a(t) = (R — R6%e, + (RO + 2RO)ey + 7k [1.3.49]

We can attribute a physical meaning to the acceleration terms. The first term,
R, describes the rate of the change of the component of the velocity in the radial
direction. The second term, R82, is the centripetal acceleration. It is always in the
negative radial direction as R is a positive quantity. The term R describes the accel-
eration due to the change in the angle 6. The last term, 2R6, is known as the Coriolis
acceleration, named after the French military engineer Gustave Coriolis, who first
explained the significance and existence of this component of the acceleration. It
results from two effects: The first effect is due to the differentiation of the e, term
in Re,, and it is associated with a change in direction. The second effect is due to
the differentiation of R in the expression Réey, and it is associated with a change in
magnitude.

A car travels with constant speed v on a spiraling path along a mountain. The shape of the
mountain is approximated as a paraboloid with base radius a and height &, as shown in Fig.
1.11. It takes the car exactly six full turns around the mountain to reach the top. Find the
velocity of the car as a function of its radial distance R from the center of the mountain.
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Solution
The height reached by the car is related to the radial distance by the relation

h
h—z= —2R2 [a]
a

The height is also related to the angle traversed by

_h 8

Z'-EE Ib]

One can express the height and the angle traversed as a function of the radial distance R as

o h, . 127 R

Differentiating Eqgs. [c] and introducing into the expression for velocity, we obtain

= —21'2-RR 6 = —24n525 [d]
a a
and
. . . 2R ;
v = Re, + ROey + zZk = Re, — 2471%% - 2h€TRk = ve, [e]

We are given that the speed is constant, so that we take the magnitude of the velocity as

. 2
v=,/vov=R‘/l+5761r2—R—4 +a® n
at at
Defining the variable G as
R4 R?
= 2t 2
G \/1+5761ra4+4ha4 Igl

we can write R = v/G. Equation [f] gives the relation for the rate of change of the radial
distance as a function of the radial distance itself.

In a similar fashion, we can come up with an expression for the magnitude of the accel-
eration.
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Spherical Coordinates When neither one of the components of the motion is
separable from the other and a path-related coordinate system is needed, spherical
coordinates are suitable. The configuration of this coordinate system is shown in Fig.
1.12. The parameters describing the path are the absolute distance from the origin of
the coordinate system to the particle, denoted by R, and two angles 6 and ¢, referred
to as the polar and azimuthal angles, respectively. Note that the parameter R used
here is different from the parameter R used in cylindrical coordinates.

The principal directions are referred to as the radial, polar, and azimuthal. The
radial direction is defined as outward from the origin to the particle. The correspond-
ing unit vector is denoted by eg. The other directions depend on the polar angle 0
and the azimuthal angle ¢. The azimuthal angle is the angle between r and the z
axis, and the polar angle 6 is the angle between the x axis and the projection of r
on the xy plane. Note the similarity between the polar angle # and the transverse
angle when using cylindrical coordinates. It follows that the polar direction, with the
unit vector ey, is tangent to the circle obtained by traversing the component of r(z)
in the xy plane. The unit vector associated with the azimuthal direction is denoted
by ey, and it is tangent to the circle on the x'z plane, which is obtained by rotating
the xz plane about the z axis by an angle of 8. The three unit vectors are mutually
orthogonal, with the relation

er X €y = € [1.3.50]
We express the coordinates of a particle as
x = Rsin¢cosf y = Rsingsin z = Rcos¢p [1.3.51]
and the displacement vector has the form
r = Reg [1.3.52]
To obtain the velocity, we differentiate the above equation,

v(t)=t=ReR+RéR=ReR+R‘9ﬁﬁ+R@5d¢

36 dt o dr [1.3.53]

21
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indicating that the derivatives of ez must be found with respect to both angles. To
accomplish this, we will obtain the derivatives of e using their expressions in Carte-
sian coordinates. From Eqs. [1.3.51] and [1.3.52], we can write

er = sin¢cosfi + sin ¢ sin8j + cos pk [1.3.54]

Differentiation of this equation with respect to 8 and ¢ yields

‘%" — — sin¢sin 0 + sinpcos 6] = sin d(— sin 61 + cos 6j) [1.3.55]
% = cos ¢ cos 0i + cos ¢ sinfj — sin pk = cos ¢p(cos #i + sin 0j) — sin Pk

From Fig. 1.12, we can express the unit vectors in the polar and azimuthal di-
rections as

ey = —sinfi + cos 6] ey = cosP(cosfi + sinfj) —singk [1.3.56]

Note that when the azimuthal angle ¢ = 90°, spherical and cylindrical coordi-
nates coincide. Indeed, we have

er(p = 90°) = e, eg(dd = 90°) = ¢ es(dp = 90°) = —~k [1.3.57]
Introducing Egs. [1.3.56] into [1.3.55] we obtain

Jeg ) Jdegr
—— = sinqge — = 1.3.58
30 e ap ¢ E ]
The above relations can be used to obtain the time derivative of eg as
de -, :
EIS = Osin ey + Pey [1.3.59]

As aresult, one expresses the velocity as
v(t) = Reg + R 'sin dey + Rd)e,,, [1.3.60]

To obtain the acceleration, we need to generate the time derivatives of the unit
vectors in the polar and azimuthal directions. Using a procedure similar to the above,
we obtain

%i—o = —0sin¢ek—écos¢e¢
de¢ . .
e —der + 0 cos ey [1.3.61]

Using this equation and manipulating the algebra, the expression for the accel-
eration has the form

a() = () = (R — R6? sin? ¢ — R(i)2)eR + (RO sing + 2Ré sin¢ + 2Réq§ cos ey
+ (R + 2R — RO*sin pcos ey [1.3.62]
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In Eq. [1.3.62], the terms having the squares of the first derivatives correspond to
the centripetal accelerations, and the mixed first derivative terms correspond to the
Coriolis accelerations. The second derivatives indicate accelerations in the radial
direction and in the polar and azimuthal angles.

The length of the spherical pendulum shown in Fig. 1.13 varies by the relation L = 2 +

sin 77t m. The pendulum spins with the constant rate of 6 = 2 rad/s. We are given that the
angle S is related to the length of the pendulum and 6 by

L*9sin’* B = 8 m*/s [al
Assuming that 8 is always in the range —7/2 = B =< 7/2, find the velocity of the tip
of the pendulum at t = 0.1 s.

Solution

We attach a set of spherical coordinates to the pendulum. Note that according to our definition
of the polar and azimuthal angles, ¢ and B are related by B = 7 — ¢. We observe that
sinB = sin¢. Fig. 1.14 shows the coordinate system in side view using the z and radial
axes.

Considering the range of 8, we can obtain the expression for sin 8 from Eq. [a] as

8 2

SinB =T = 2¥smm (k]
To find B, we differentiate this equation, with the result
. 27 cos wt . 1 —21r cos mt
cos BB = (2 + sin wr)? p= /1 - sin? g (2 + sinmt)? fe]

The expression for the velocity is given by Eq. [1.3.60]. We identify the individual values
as

R=1L=mcosmt &=-B Id}

Figure 1.13 Figure 1.14
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Att = 0.1 s, we have

R =2 +5in(0.17) = 2.309 m R = mcos(0.17) = 2.988 m sin¢g = sin B[e]

. 2 . 1 2 cos(0.17m)
=" _ =0 = = 2.243
Sind = rsmm 08662 ¢ = —— B (2 + sin(0.1m)) 2.243 rad/s
which, when substituted in Eq. [1.3.60], yields
V() = Reg + ROsin ey + Rey = 2.988ex + 4.000ep + 5.1794 m/s If

Equation [a] is an angular momentum conservation relation. This relationship arises be-
cause the speed of the pendulum can be written as

v = J R? + R2(0%sin” ¢ + ¢2) Isl

The speed v is independent of 8. Many systems in dynamics have this property.

Mixed Descriptions As discussed earlier, in certain cases it may not be suffi-
cient to use a single set of coordinates to solve a problem; one may also need to take
advantage of another coordinate system. The different coordinate systems provide
different types of information about the motion, and the added information arising
from the use of more than one coordinate system facilitates our understanding of the
nature of that motion. Usually, one exploits the relationships between the two coor-
dinate systems by first writing the unit vectors of the coordinate systems in terms of
the motion variables. Then, one considers the relationship between the unit vectors
in the different coordinate systems.

One question that arises is whether one can use any set of parameters to de-
fine a coordinate system. The answer to this question is positive, provided that three
parameters py, pz, p3 can be found such that there exists a unique transformation
between the components of the motion in rectilinear coordinates x, y, and z (or any
other proper coordinate system) and p;, p,, and ps. For example, for cylindrical co-
ordinates, py = R, p» = 6, and p3 = z. The transformations from x, y, and z to R,
0, and z are given in Eq. [1.3.42). Considering these equations and Fig. 1.9, we can
relate R, 0, and z to x, y, and z as

R = /x%2+y? 0= tan_l(%) 7=12 [1.3.63]

where the range of interest in the inverse tangent is (—/2, 7/2). A proper selection
of the coordinate frame is crucial to the understanding of the problem and to the
solution.

There are several other parabolic and hyperbolic coordinate systems that facil-
itate derivation of the governing equations, as well as the solution, for a specific
problem. Examples can be found not only from motion analysis but from other prob-
lems such as heat transfer. To develop a coordinate system with orthogonality prop-
erties among its components, additional requirements need to be introduced. These
requirements are described in the text by Ginsberg listed in the reference section at
the end of the chapter.
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The reader is always encouraged to explore the possibility of using more than
one coordinate system when tackling a dynamics problem. One note of caution is
in order, though. When selecting coordinate systems and the variables associated
with them, be careful to avoid the ambiguities that can result from an improper se-
lection of the variables. A good way to avoid this problem is to make sure that the
transformation from one set of variables to another is indeed unique.

InFig. 1.15, the pin attached to the circle of 6-inch radius is sliding in the slot with the constant
speed of v = 2 in/sec. Find the values of  and @ at the instant when ¢ = 90°.

Solution

We will make use of polar as well as normal-tangential coordinates. The geometry of the
system is shown in Fig 1.16. The expressions for R and § are

R=J62+92 =1082in 0= tan—l(g) = 33.69° [al

The relationship between the two sets of unit vectors can be written as
e, = cosfe, — sinfey e, = —cosfe, — sinfeg [b]l

where sin@ = 0.5547, cos# = 0.8321. Writing the expression for velocity in the two coor-
dinate systems,

v = ve, = Re, + Réeg [c]
so that to find R and @ we take the inner product of v with e, and ey, thus
vee, = R = ve,*e, = vcosf = 2(0.8321) = 1.664 in/sec

veey = RO = ve,~eg = —vsinf = —2(0.5547) = —1.109 in/sec [d]

with the conclusion

. . . 1.109 1.109
R = 1.664 in/sec 0= TR T TThom s —0.1025 rad/sec [e]

911 :

I Example
1.7
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To find the acceleration, we make use of the fact that the speed is constant, so that the
acceleration has the form

2 . .. . .
a= %e,, = (R — R6%e, + (R + 2RH)es )]
with the radius of curvature being p = 6 in. Taking the inner product of a and e, we obtain

.e . . 2
are, = RO + 2RO = ";(— cos 6) O]

Solving for § we obtain

_ (v*cosf +p+ 2R6) _(4+0.8321 + 6 —2+1.664+0.1025)
R B 10.82 h

—0.01974 rad/sec?
[h]

é:

1.4 NEWTONIAN PARTICLE MECHANICS

Newtonian mechanics is based upon the three laws of Newton, and the counterpart
of Newton’s second law for rotational motion. It is valid for reference systems at rest
or moving with uniform velocity with respect to each other. Such reference systems
are known as inertial. The best approximation to an inertial reference frame is to
consider the distant stars fixed. A less accurate approximation is to consider the sun
fixed. In the vicinity of the earth, if the velocities involved are much less than the
escape velocity,? or if the distances traversed are much smaller than the radius of the
earth, and if the duration of the motion is not long, the earth is used as an inertial
reference frame.

Isaac Newton developed his three laws while he was working on the motion of
rigid bodies. While the laws govern the motion of the center of mass of a body, they
do not account for the rotational motion. The rotational equations relate the moments
applied to a body to the change in angular momentum; these were developed by Euler
around 1750. (Newton published his three laws in his Principia in 1687, but he had
developed them about 20 years before, while he was at Cambridge University.) Here,
we will consider Newton’s equations within the context of particles. To this end, we
first describe what we mean by a particle.

A particle is defined as a body with no physical dimensions, implying that the
entire mass of the particle is concentrated at one point. This, of course, is an ideal-
ization and it is a valid assumption only when the physical dimensions of the body
are small compared to its weight. Neglecting the physical dimensions implies that
the rotational motion of the body is ignored.

Consider a particle of mass m and let F(z) denote the sum of all forces acting
on the particle. Define the linear momentum of the particle by p(t) = mv(r). The

3The escape velocity of a spacecraft is the speed that the spacecraft must attain in order to escape from the
gravitational attraction of the celestial body it is orbiting and to assume a parabolic orbit.
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Figure 1.17

physical explanation of linear momentum is the tendency of the body to continue to
translate. The mass of the body is its resistance to translation. Newton’s laws can be
stated as follows.

First law: If no forces act on a particle, the particle retains its linear momen-
tum. If the particle is at rest it remains at rest, and if it is moving, it moves with
constant linear momentum. A particle of constant mass moves along a straight line
with constant velocity. In other words, F = 0 — v(f) = constant.

Second law: The rate of change of the linear momentum of a particle is equal
to the sum of all forces acting on it.

dp(t) _ d(mv() _
dt dt

F [1.4.1]}

For a particle whose mass remains constant, the above relation reduces to
ma(t) = F [1.4.2]

Newton’s first law is a special case of his second law. Fig. 1.17 illustrates this
law. We will treat variable mass systems in Chapter 3.

Third law: When two particles exert forces upon each other, these forces are
equal in magnitude and opposite in direction, and they lie along the line joining the
two particles.

Denoting by F;; the force exerted on particle i by particle j, we arrive at the
conclusion that F;; = —F ;. Consider, for example, Fig. 1.18, a dog pulling a cart.
The free-body diagrams of the dog and cart are given in Fig. 1.19. The friction
between the dog’s legs and the ground provides the forward thrust. The dog and
cart exert forces on each other that are equal in magnitude and opposite in direc-
tion.

W),

‘mg

Cart —

o ® O
[P ™

Dog
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A very important application of Newton’s third law is in celestial mechanics.
The forces that two bodies exert on each other, as shown in Fig. 1.20, are governed
by Newton’s law of gravitation as

[1.4.3]

in which G is the universal constant of gravitation, and r is the distance between
the particles. The value of G is G = 6.673(107 ') m*/kg+s? in SI units, and G =
3.439(107%) ft*/1b » sec* in U.S. Customary units. Because G is such a small quantity,
for any two small bodies the gravitational attraction is extremely small. The gravi-
tational force becomes significant when at least one of the bodies involved is very
large, such as in an analysis of motion in the vicinity of a celestial body. Equation
[1.4.3] can be expressed in vector form as

[1.4.4]

where r is the position vector between the centers of mass of the two bodies. For
motion near the earth, using the values of mass of the earth as m, = 5.976(10%*) kg
and mean radius as r, = 6,378 km, we assume that the distance of the body from the
surface of the earth is negligible compared to the radius. Defining the gravitational
constantas g = Gm,/r2, we obtain the force of gravity as F = m,g, where the mean
value for the gravitational constant is

_ 6.673(10711) X 5.976(10%%)
B [6.378(105)]2

Using the above equation to calculate the gravitational constant g is not accu-
rate. Equation [1.4.5] is based on treating the earth as a particle (or as a rigid uniform
sphere), and it ignores centrifugal effects due to the rotation of the earth. Further-
more, gravitational effects due to the sun and moon also affect the value of g. The
radius of the earth is not constant,* and its density is not uniform, resulting in dif-
ferent values of g at different points on the earth. For dynamics problems that do
not require a substantial amount of precision, average values of g = 9.81 (or 9.807)
m/s? or g = 32.2 (or 32.17) ft/sec? are used at sea level.

= 9.803 m/s? [1.4.5]

4The actual shape of the earth is an oblate spheroid. The earth looks more like an apple, with the radius larger
around the equator, smaller at the poles, and with the poles slightly pressed in.
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A more accurate approximation is the 1980 International Gravity Formula. It
assumes that the earth is a rigid ellipsoid and takes into consideration the rotation of
the earth. The approximation for g is given as a function of the latitude as

g = 9.780327[1 + 0.005279sin® A + 0.000023 sin* A] m/s>  [1.4.6]

where A = 90 — ¢ is the latitude angle, with ¢ being the azimuthal angle defined
when we considered spherical coordinates in Fig. 1.12. Even this approximation is
not exactly accurate, because it fails to take into consideration both the dip in the
earth’s shape at the poles and the nonrigidity of the earth. At a latitude of 45° and at
sea level, the commonly used value of g to 5-digit accuracy is g = 9.8066 m/s® or
32.174 ft/sec?.

We introduced above the concept of a force without rigorously defining what it
is. It turns out that we know of the existence of forces and we know their effects,
but we cannot rigorously define what a force is. Here is a commonly used defini-
tion:

[A force is the effect of one body on another.|

We also note that no method exists to directly measure a force. We have de-
veloped theories on how forces affect systems and have validated those theories by
measuring the effects of the forces in the form of deformations or accelerations. In
essence, in dynamics we use cause and effect relationships. For example, people
weighing themselves on a mechanical bathroom scale read an output of the spring
deflection caused by their weight, multiplied by the spring constant.

We can categorize the forces acting on bodies into two general types: (1) Con-
tact forces, such as friction, impact, spring, dashpot, and so forth. These forces are
applied to a point or an area on the body. (2) Field forces, such as gravitational and
electromagnetic. These forces are applied to the body uniformly.

A special class of force that is of importance in dynamics is friction. Friction
forces are developed when a body in contact with another moving or fixed body
has a tendency to slide (slip) over that other body. The contact force between the
two bodies is the normal force, hence a reaction force. The amount of slippage de-
pends on the material properties and surface characteristics (rough, smooth, etc.)
of the contacting bodies. The study of friction is a very complex subject, and an
accurate representation of friction forces is difficult. Often, we use the model known
as dry friction or Coulomb friction to describe friction. This model approximates
the friction force as a coefficient of friction multiplied by the normal force. The
coefficient of friction, denoted by u, is an approximate quantity whose value de-
pends on the material properties of the contacting bodies, the relative speed of
the contacting bodies, and to a lesser degree, the temperature. Many engineering
handbooks have tables of the coefficient of friction for a variety of materials and
surfaces.

Another factor that affects the value of the coefficient of friction is whether the
point of contact is moving or not. If there is slip between the point of contact and the
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surface, one uses the coefficient of kinetic friction. Mathematically,
Ff = ”'kN [1.4.7]

where Fy is the friction force, N is the normal force, and wy is the coefficient of
kinetic friction. If there is no slip between the contacting bodies the friction force
is a quantity less than or equal to the static coefficient of friction multiplied by the
normal force, and it can be expressed as

Fr = uN [1.4.8]

in which u; is the static coefficient of friction. In general, u; = w;. (When no other
information is given, one assumes @ = ws.) Sliding begins when the friction force
reaches psN, and after that point w is used to describe the amount of friction.

The friction force acting on a body always opposes the impending motion. For
moving bodies the friction force opposes the velocity of the contacting point relative
to the point of contact. Fig. 1.21 illustrates this concept. The friction force can be
represented in vector form as

Ff = —I.le‘{rv or Ff = —urNe; [1.4.9]
For rectilinear motion one can write
Fy = —uNsign(v) [1.4.10]
in which
sign(v) = 1 whenv > 0 sign(v) = —1whenv <0 [1.4.11]

The friction force is a nonlinear function. When solving problems involving
friction one must be careful in determining the direction the friction force should be
acting and whether there is slipping or not. In many cases the direction of the friction
force may not be obvious. To determine whether there is slipping, one can begin by
assuming that there is slipping (or that there is no slipping) and then check the va-
lidity of this assumption. For example, if one assumes no slipping, one can calculate

N N

Figure 1.21
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the magnitude of the friction force and compare it with the maximum magnitude the
friction force can attain.
When solving a dynamics problem one should:

1. Isolate the bodies involved.

2. Select a coordinate system and positive directions, and draw free-body dia-
grams.

3. Write the force balances.
4. Use the kinematics of the problem to eliminate redundant variables.

If the objective is an instantaneous analysis, the accelerations and reaction forces
are calculated. If one desires to solve for the response, the kinematics is used fur-
ther to eliminate the reaction forces. The resulting equation(s) are differential equa-
tions in terms of the motion variables only. Such equations are called equations
of motion.

When considering the response, one first needs to decide whether to obtain a
qualitative or a quantitative solution of the equations of motion. A quantitative solu-
tion implies actual solution of the differential equations of motion and it depends on
the nature of the differential equation of motion as well as the form of the forcing F.
The tremendous evolution in the field of differential equations in the past few cen-
turies has produced several methods of solution. Several approximate methods have
also been developed that can be implemented on digital computers.

A qualitative solution gives information about the nature of the response, or it
gives the response at specific points in time and space, without having to solve for
the response explicitly. Such qualitative analysis includes

Impulse-momentum relationships
Work-energy relationships
Other motion integrals

W=

Equilibrium and stability

We will discuss these approaches in the remaining sections of this chapter.

31

A collar of mass m slides in a circular track of radius R, as shown in Fig. 1.22. The coefficient
of friction between the collar and the track is . The collar is given an initial velocity vg. Find
the distance traveled by the collar when it comes to a rest.

We can use either normal-tangential or cylindrical coordinates to solve this problem. The
free-body diagram of the collar is given in Fig. 1.23. Summing forces perpendicular to the
plane of the motion yields

mg = N, [a]

where N, is the component of the normal force perpendicular to the plane of the motion.
Summing forces in the normal and tangential directions, we obtain

| Example
1.8
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y
R
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X n
Figure 1.22 Figure 1.23
02
F, = mye = N, [b]
dv
F, = ma, = m— = —uN Le]

where N, is the component in the normal direction and N is the total normal force

2
N = /N?+N? = [m2g® + ’”Rf [d]

Introducing Eq. [d] into Eq. [c] and eliminating the mass term, we obtain

dv v
- —n 8+ B [e]

which represents the equation of motion. It can be solved by moving the dt term to the right
and the radical to the left. The problem, however, asks us to find the distance traveled, so that
we seek to convert Eq. [e] to one in terms of the displacement, as

dv _dvds _ dv , v
@ Ga Va T WEtTR i

d
vdv B Ig]

JRg+# R

Equation [g] can be integrated from the initial velocity v, to the final velocity O to yield

e _1 1 2, [p2g2 44
Es—iln(Rg) Eln[vo-i- R?g? + v [h]

or
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which can be solved for the distance traveled by the collar as

R [v% + /R2g? + vg]

S=ﬁ1n Rg

The distance traveled is inversely proportional to the coefficient of friction.
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The mass-spring system shown in Fig. 1.24 consists of a block of mass m attached to a wall
with a spring of constant k. The coefficient of friction between the block and the surface it
slides on is w. A force F(t) acts on the block. Find the equation of motion.

We draw the free-body diagrams in Figs. 1.25 and 1.26. Summing forces in the vertical di-
rection yields

N = mg [a]

To find the friction force we multiply the normal force with the friction coefficient. To
find the direction of the friction force, we note that the block moves back and forth, so that
the friction force is in a different direction depending on the velocity of the block. We have
that

whenx >0, F;= —uN = —umg [b]

when x <0, F; = uN = umg [el
so that the equation of motion can be written considering the two regimes as

whenx >0, mi+kx =F — umg [d]

when x <0, mi+kx = F + umg [e]

where we note that both equations of motion are linear. The two equations of motion [d] and
[e] can be combined into a single nonlinear equation by

mx + kx = F — pumgsign(x) €1

l Example
1.9

1.5 DEGREES OF FREEDOM AND CONSTRAINTS

In the beginning of this chapter we studied coordinate systems commonly used in
dynamics. Three physical coordinates were required to specify the position of a

mg . mg

- X —_— X
F
-— kx ——e kx
F
—— -—
unN UN
N N

Figure 1.24 Figure 1.25 Figure 1.26
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particle. In the previous section we studied Newton’s second law, which related the
resultant acceleration of a particle to the applied force. Equation [1.4.2] is a vector
relationship, and it can be separated into three scalar components.

In many circumstances the motion of a particle is constrained to move in a sub-
set of the three-dimensional configuration space. Examples of this include a vehicle
moving along a track or on a fixed surface. In these cases, it is not necessary to use
all three coordinates associated with a reference frame to describe the motion; de-
pending on the constraints, one or two coordinates are sufficient. For example, if the
particle shown in Fig. 1.27 is constrained to move along a surface whose mathemat-
ical description is

fx.yz8) =0 [1.5.1]
then two coordinates are sufficient to describe the motion. Selecting them as x and y,
the z coordinate can be ascertained by solving Eq. [1.5.1]. A constraint of the form

above is known as a configuration constraint. A more general form of a constraint
is when the constraint is expressed in the form of differentials, such as

ardx +aydy + a,dz+ apdt = 0 [1.5.2]
or, dividing Eq. [1.5.2] by dt,
asx +ayy+a;z+ay =0 [1.5.3]

in which the coefficients ay, ay, ay, and a; are functions of x, y, and z. We will see
a more complete analysis of constraints in Chapter 4.

A constraint equation is a geometric or kinematic representation of the restric-
tions on the motion of a body. What causes the body to execute such restricted mo-
tion is the constraint force associated with the constraint. When the constraint can
be represented as a surface, as in Eq. [1.5.1], the associated constraint force is al-
ways normal to the surface. While we will prove this formally in Chapter 4, we can
explain it physically here by noting that the particle velocity is always tangent to
the surface. Hence, the particle cannot have a motion normal to the surface. This is
caused by the constraint force.

f(x$y’Zv =0

X

Figure 1.27
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We define by degree of freedom the minimum number of independent coordi-
nates necessary to describe the configuration of a system. Each constraint applied to
a system reduces the number of degrees of freedom by one. For example, the orienta-
tion of a vehicle moving up a spiral in Example 1.5 can be described using cylindrical
coordinates. The radius is a function of the angle traversed, which constitutes one
constraint. The rise of the spiral is also described in terms of the angle, which con-
stitutes another constraint. Hence, only one of the coordinates R, 8, or z is sufficient
to describe the motion. The number of degrees of freedom can be calculated using
the relationship

No. of degrees of freedom = No. of coordinates — No. of constraints [1.5.4]

Newton’s second law for a particle yields three scalar equations. The number
of equations of motion is determined by the number of constraints. If one (or two)
constraints act on a particle there will be two (or one) equations of motion and the
remaining equations will represent reactions. The reaction equations can usually be
identified easily. We will see a more complete analysis of constraints in Chapter 4.

The system shown in Fig. 1.28 consists of a vehicle undergoing rectilinear motion. A pendu-
lum is attached to the vehicle. Find the equations of motion.

Solution
This is a two degree of freedom problem. If unrestricted, the vehicle has one degree of free-
dom and the mass has three. The wire restricts the motion of the pendulum. Denoting the

displacements of the pendulum in the horizontal and vertical directions by xp and Yyp, WeE can
express them as

xp = x+ Lsin@ yp = —Lcos@ [al

which constitutes two constraint equations. Hence, the combined system has two degrees of
freedom.

The free-body diagrams of the vehicle and pendulum are given in Fig. 1.29. For the
vehicle, summing forces along the horizontal we obtain

Mx = Tsinf + F [b]

For the pendulum, we have the force balances in the horizontal and vertical directions as
mip = —Tsin® or m(x + LOcos@ — LO*sinf) = —T'sin @ Lel
myjp = Tcos —mg or m(Lésin@ + L6 cos@) = T cosd — mg [d]

13 lMg
— x
AN

; L
APy
’ m @ ®)

Figure 1.28 Figure 1.29
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Egs. [a], [c], and [d] are three equations that contain the constraint force (in this case the
tension in the pendulum) explicitly. We can eliminate 7 from the above equations and obtain
two equations of motion, the same number of equations as the degrees of freedom. This can
be accomplished in a number of ways. One way is as follows: First, we introduce Eq. [c] into
Eq [b], which yields

(M + m)% + mLé cos@ — mL§*sin8 = F [el

Then, we multiply Eq. [c] by cos 6 and Eq. [d] by sin 6 and add the resulting expressions.
Doing so yields

mLé + micos® + mgsind = 0 If]
which can be put into a more familiar form by multiplying it with L, so that
mL2?0 + mL%cos® + mgLsin6 = 0 gl

Equations [e] and [g] are the two equations of motion in terms of the two independent
variables x and 8.

1.6 IMPULSE AND MOMENTUM

Newton’s second law states that the rate of change of the linear momentum of a
particle is equal to the applied force, or

dp
F@) = — 1.6.1
0 = = [1.6.1]
If we multiply the above equation by dr and integrate from an initial time #; to final
time t,, we obtain

p(t2)

153
j F(i)di = j( | dp = )~ pn) = mv) = mv@) (1.6
1] plt

Eq. {1.6.2] is the impulse-momentum theorem for a particle. The term on the left
is called the impulse, which is equal to the change in linear momentum.® The unit of
linear momentum is mass times velocity, ML/T . In the U.S. system one commonly
uses Ib * sec and in the SI system, N es.

When there is more than one particle, the linear momentum of the entire system
is obtained by adding up the linear momentum of each particle that comprises the
system. For example, for a system of two particles of masses m; and m;, the linear
momentum is obtained by simply adding the linear momenta of each particle, p =
mv; + myvs.

An interesting special case is when F(t) = 0, or over the interval (;, t;) the
integral of F(?) is zero. It follows that in such cases the initial and final values of

| SNote that this definition is different than the common use of the word.
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the linear momentum are the same, p(f;) = p(¢;), which denotes the principle of
conservation of linear momentum. The principle states that if the net effect of forces
acting on a particle is zero over a time period, then the linear momentum of the
particle has the same values at the beginning and end of the interval.

The principle of conservation of linear momentum is generally of more use when
more than one particle is involved. Note that linear momentum of a system can be
conserved in a certain direction of the motion only and not be conserved in the other
directions. Defining a unit vector e along the direction the linear momentum is con-
served and taking the dot product of Eq. [1.6.2] with e, we obtain

t p(12)
J F(t)+edt = J dp+e = p(t;)*e — p(f)) e [1.6.3]
3] p()

An interesting application of the impulse-momentum theorem is when the dura-
tion of the applied force is very short. A large force applied through a very short time
period is defined as an impulsive force. Denoting by & the duration of the impulse,
and taking the limit as & approaches to zero, we have

ti+e N
limf F(t)dt = F(ty) [1.6.4]
n

e—

where ¥ is the impulsive force and has the dimension of force X time. Theoretically,
the amplitude of the impulsive force approaches infinity. To mathematically describe
an impulsive force we make use of the Dirac delta function.

Consider Fig. 1.30. The Dirac delta function at point # = a is denoted by é(t—a)
and is defined as®

0(t—a)=0 whent+#a

f ot —a)dt = 1 [1.6.5]

8(r-a)

e e t

a

Figure 1.30  Dirac delta function

®We are using a different notation than the traditional delta to differentiate between the Dirac delta, the Kronecker
delta, and the variation functions.
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The value of 8(f —a) att = a approaches infinity. Therefore, this function is defined
not by what its amplitude is but by what its integral is. When a function f(¢) gets
multiplied by the Dirac delta function and integrated, the result is

j F0B( - aydr = j F@8(t — aydt = f(a) f 8¢ — ayd = f(a)
- o - [1.6.6]

so that multiplying f(¢) by the Dirac delta function at point a and integrating yields
the value of f(f) att = a. This is similar to taking a snapshot of the function f(¢) at
t = a.

The impulsive force in Eq. [1.6.4] can be expressed as a continuous (in time)
function as

F(r) = k8(t — 17) [1.6.7]

The Dirac delta function is not a discontinuous function. Rather, it can be shown
to arise from a limiting process of a continuous function, and it obeys the laws of dif-
ferentiation. This implies that the derivative of 8(¢ — a) exists. Denoting the deriva-
tive of the Dirac delta function by Q (t — a), we multiply it with the function f(¢) and
integrate by parts, which yields the relation

J f08( — aydt = f(1)8(t — a)f*., — J_ F@®8(t — aydt = — f(a) [1.6.8]

The interested reader is referred to the text by Greenberg for more details.

The effect of an impulsive force is a sudden change in velocity, with no apparent
change in position. To demonstrate this, consider motion in one direction and write
the equation of motion in the general form '

mi(t) + g(x(@), x(t)) = F(©) [1.6.9]

in which g(x(¢), x(¢)) is the sum of all forces acting on the particle that are a function
of x(¢) and x(#). Examples of such forces include gravity, springs, and dashpots.
When the force F(¢) is impulsive and it is applied at ¢ = 0, multiplying Eq. [1.6.9]
by dt, integrating from 7 = Oto ¢t = ¢, and taking the limit as ¢ — 0, we obtain

lir%js{mjc'(t) + g(x(@), (1))} dt = lir%fe F(t)d: [1.6.10]
£ 0 had 0

The first term on the left side becomes

limJ mi(t)dt = limJ m dx dt = lim{mx(e) — mx(0)} = mx(0*) [1.6.11]
£—~0 Jo e—0 Jg dt e—0

Using Eq. [1.6.4], the right side of Eq. [1.6.10] becomes equal to F(0). The second
term on the left side of Eq. [1.6.10] vanishes when integrated over the time period
¢. This is because finite time is required for a displacement to develop. Recall that
g(x(#), x(2)) is a force of finite magnitude. Hence, the limit of its integral over the

duration of the impulse is zero. It follows that immediately after the impulse we have
x(0") = x(0)  mx©") = F(0) [1.6.12]
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v(t)
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Figure 1.31

In real situations, one does not have actual impulsive forces, but forces of large
magnitude applied over very short periods of time. Hence, the consideration of a
force as impulsive is an approximation. The validity of this approximation should
always be checked, especially when friction forces are involved.

Let us next consider the motion of constrained bodies subjected to impulsive
forces. As an example, consider the system in Fig. 1.28 and the tension in the pendu-
lum. When the force F applied to the mass is impulsive, the tension T also becomes
impulsive, while the weight of the pendulum does not. If a body or series of bod-
ies is constrained in some fashion, the impulsive force applied to one body will be
transferred to the other interconnected bodies by means of impulsive reaction forces.

Next, we define angular momentum. Consider Fig. 1.31 and denote the position
of the particle as measured from point O by r and its absolute velocity by v. The
angular momentum about point O (denoted by Hy), which is also referred to as the
moment of the linear momentum vector about point O, is defined as

Hp = rXmv [1.6.13]

where r is the vector connecting the reference point O to the particle. Angular mo-
mentum is a vector perpendicular to both the linear momentum vector and the posi-
tion vector from the reference point O to the particle. Angular momentum about O
can be physically explained as the tendency of a particle to rotate about point O. If
r and p are in the same direction, there is no tendency to rotate about O.

The dimension of angular momentum is ML2/T or FLT. In the SI system one
usually uses Nemes or kgem?/s, and in the U.S. system, Ibsftesec.

While linear momentum is an absolute quantity, one calculates angular momen-
tum about a specific point, an indication that it is a relative quantity. The choice
of this point is important when solving dynamics problems. A basic guideline is to
choose a point that is fixed, or to select O such that the angular momentum term has
a physical significance or is simplified.

Now, differentiate Eq. [1.6.13], which yields

dHp d(r X mv)
dt dt
rXma=rXF [1.6.14]
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The quantity on the right side of this equation is recognized as the moment of the
resultant of the external forces about point O, My = r X F, so that

dHp

— =M 1.6.13

i 0 [ 1

The rate of change of angular momentum of a particle about a point is equal to the
applied moment about that point. The above equation is of considerably more use
when dealing with systems of particles.

There is debate among scientists on whether Eq. [1.6.15] is a derived relation-
ship or a stated principle, like Newton’s second law. The argument in support of
the stated principle viewpoint is based on the idea that shear forces are neglected in
the derivation, and that every physical body has a nonzero volume. What makes the
derivation above possible is the assumption that a particle has no physical dimen-
sions.

Similar to the linear momentum case, we can integrate Eq. [1.6.15] over time,
yielding the angular impulse-momentum theorem as

12 Ho()
J Mo(t)dt = J dHp = Hp(ty) — Ho(t) [1.6.16]
f Hp(t)

The term on the left is defined as the angular impulse. As with linear momentum,
if the integral over time of the moment about a point is zero, angular momentum
is conserved about that point. Also, because Eq. [1.6.16] is a vector relationship,
angular momentum may be conserved in a particular direction while not conserved
in another direction. _

If the applied moment is impulsive, that is, its duration is infinitesimally short,
the angular impulse-momentum relationship for zero initial conditions becomes

My(0) = Hp(0") [1.6.17]

An impulsive angular moment can be generated by a very large torque applied
over a very small interval, or by an impulsive force applied through a moment
arm. For particle mechanics problems, the commonly used coordinates for angular
momentum problems are cylindrical coordinates. The central force problem, as
demonstrated in Example 1.12, is a classic case. Remember that when we discussed
cylindrical coordinates, we emphasized the importance of attentively selecting the
origin of the coordinate frame. The same argument is valid when selecting the point
about which to calculate the angular momentum.

One of the earliest industrial applications of the principle of conservation of angular momen-
tum is the centrifugal governor. James Watt used the centrifugal governor to control flow in
steam engines. Fig. 1.32 shows a typical governor. As the speed of the governor changes, the
arms of the governor move. Because the only external force acting on the governor is along
the shaft, the angular momentum about a point along the axis of the shaft is conserved.

The links are of length L = 0.2 m and assumed to be massless. The balls are 0.6 kg
each. The governor is originally rotating at 50 rpm and the arms make an angle of 6 = 30°
with the vertical. What is the value of # when the governor’s speed becomes 75 rpm?
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Figure 1.32

Solution

Consider point O as the moment center. The angular momentum of the balls about O is along
the vertical to the fixed plane of rotation, so it can be expressed in scalar form. The magnitude
of the angular momentum is

Ho| = 2|r X mv| = 2mr’ew [a]

where w is the angular velocity and r is the horizontal distance from the shaft to the balls,
r = Lsin6. We can then write the conservation of momentum relationship as

[wsin0,-,, = [ sin® 6], Y]
which can be solved for 6(z,) as
sin? 6(t,) = sin? B(z;) 2V Ie]
w(t)
Substituting the given values we obtain
sin? (t,) = 0.52% = 0.1667 [d]

so that 8(t;) = sin'l(\/0.1667) = 24.10°. Notice that a small change in the angle 8 leads
to a substantial change in the angular velocity. The same phenomenon occurs when figure
skaters bring their arms inward to increase their rotational speed.

CENTRAL FORCE FIELD PROBLEMS A very interesting example of the conser-
vation of angular momentum is in central force field problems. Consider a particle moving
along a path, as shown in Fig. 1.33. It is acted upon by a force F that is always directed toward
a point O (hence, the name central force). Selecting point O as the origin of the coordinate
frame, and using cylindrical coordinates, we express the applied force as

F = Fe, [al
The moment that force F causes about O is

Mo =rXF =re, XFe, =0 [b]

l Example
1.12
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S

Figure 1.33

which is an obvious result: as the line of force passes through point O it does not cause a mo-
ment about O. It follows from Eq. [1.16.16] that the angular momentum about O is conserved,
and Hp = constant.

Because the angular momentum is constant in both magnitude and direction, the particle
can only move in a plane perpendicular to the angular momentum. We select the z direction
as the direction of the angular momentum. Using Eq. [1.6.13], we obtain

Hp = r X mv = re, X m[ie, + reg] = mr*0k = constant 03]
We can express the angular momentum per unit mass, h, as
r0=nh [d]

where the value of & depends on the initial conditions.

Equation [d] can also be derived by directly integrating Newton’s second law expressed
in polar coordinates. Indeed, writing Newton’s second law in the radial and transverse com-
ponents as

miiE—r?) =F, m(ré+2/0)=F, =0 [el

and considering the derivative of 26,
d .- 9: . . .
E(r29) = 1?0 + 2rr6 = r(rf + 2r6) [

We conclude that 726 is constant when the force always lies along the line connecting
the particle and point O. A typical example of central force problems is in orbital mechanics,
as the gravitational attraction between two bodies is along the line joining the centers of mass
of the two hodies. In the absence of other external disturbances, the motion of one body with
respect to the other (that is, the orbit) lies on a fixed plane.
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1.7 WORK AND ENERGY

In the previous section, we integrated Newton’s second law over time to obtain mo-
mentum relationships. Here, we integrate it over the spatial variable. To this end, we
consider a particle whose position is described by the vector r and which is acted
upon by a force F, as shown in Fig. 1.34. We define by dW the incremental work
that the force does on the particle as the particle moves by an incremental distance
dr as

dW = Fedr = |F||dr|cosy = mae<dr [1.7.1]

where ¢ is the angle between F and dr. Recalling that v = dr/dr and a = dv/dt,
and multiplying and dividing the right side of the above equation by dr, we obtain

dv dr dv 1
dW = Fedr = mE.Edt = mawdt = mvedv = imd(v-v) [1.7.2]
We next define by T the kinetic energy of the particle as
1 1,
T = imv V= Emv [1.7.3]

where v = |/vev is the speed. The incremental change in kinetic energy is dT =
md(v *v)/2 = mve+dv. The kinetic energy is an absolute quantity and, hence, dT is
a perfect differential. We then write Eq. [1.7.2] as

dW =dT [1.7.4]

The work done on the system by the force F is denoted by W, .,, and it is
obtained by integrating the motion from point 1 to point 2, hence

ry T,

Wi, = J Fedr = J dT =T, - T, [1.7.5]
ry Tl

which gives the work-energy theorem:

T+ Wis, =T, [1.7.6]

t
/ dr

r

o

Figure 1.34
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We distinguish between cases when dW is a perfect differential and when it is
not. When dW is not a perfect differential, we cannot express it as the differential of
a function, but merely as an infinitesimal element. The necessary condition for dW
to be a perfect differential is that the force depends on the position vector alone, F =
F(r) (although there are cases when F = F(r) and dW is not a perfect differential).

One can take advantage of cases when some of the forces acting on a body lead
to perfect differentials. Such forces are known as conservative forces. Examples
of conservative forces include spring forces, gravitational forces, and certain elec-
tromagnetic forces. The incremental work can be expressed as the derivative of a
potential function as

dW = F(r)+dr = —dV(r) [1.7.7]

where the potential function V is an explicit function of r only. Because dW is a per-
fect differential, its integral is independent of the path followed and it is dependent
only on the end points of the integration. Over a closed path the value of the integral
is zero, or

f F(r)sdr =0 [1.7.8]

Moreover, Eq. [1.7.7] can be evaluated by integrating from a reference position rg
(or datum) to the location of the particle to yield

V() = — Ir F(r)+dr [1.7.9]

R

The potential function V(r) is also known as the potential energy. Physically,
potential energy is explained as the potential of a body to do work, or the stored
energy.

Note that while kinetic energy is an absolute quantity, potential energy is rela-
tive: its value depends on the reference point about which it is measured. Because
the interest is in increments of potential energy, selection of the reference point does
not make any difference. One selects the datum to either simplify computations or
to give the problem at hand a better physical interpretation.

The dimension of work, kinetic energy, and potential energy is force times dis-
tance, FL, or ML?/T?. In the SI system one commonly uses the units Nem. A joule
(J) is defined as a unit of energy as 1 J = 1 N+ m. In the U.S. Customary system
the commonly used unit is ft * 1b. Do not confuse the unit of energy with the unit of
a moment, which has the same dimension as energy. In the U.S. system, the unit of
a moment is usually denoted by Ib« ft. Also, joule is never used as a unit of moment
in the SI system.

We now consider three types of forces that lead to potential energy.

1.7.1 GRAVITATIONAL POTENTIAL ENERGY

The gravitational attraction force between two bodies was given in Eq. [1.4.3] as
F = Gmymy/r2, where G is the universal gravitational constant, m; and m, are the
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masses of the two bodies, and r is the distance between the two bodies. Consider m;
to be a celestial body. The incremental work d W done by m; on m; can be expressed
as a perfect differential, so that the potential energy can be written as

_ Gm1m2 R

TG

mym

—j —dr = [1.7.10]
rr r r r

V() = —Jr F(rydr =

R

The reference value the potential energy is measured from is commonly chosen as
the distant stars, so that rz = o, which leads to the expression for the gravitational
potential energy:

V(r) - _ Gm1m2

[1.7.11]

Around the surface of the earth, we can calculate the expression for gravitational
potential energy in a number of ways. One way is to write the gravitational force as
—myg, as derived in Section 1.4. Denoting by z the height of the particle from the
surface of the earth, we obtain for the potential energy

Z
V() = —J —mygdz = mygz [1.7.12]
0

Another way is to substitute for m; the mass of the earth m, and express r as

= r¢+2z, where r, is the mean radius of the earth and z is the distance of the particle

to the surface of the earth (altitude). Note that r is being measured from the center
of the earth, as shown in Fig. 1.35. Equation [1.7.11] can then be written as

_Gm.m, 1

Vi) = V() = r. 1+ar

[1.7.13]

which, by considering that near the surface of the earth z is much smaller than r,,
can be approximated as

V() = —M<l - 5) [1.7.14]

There are two terms in the above expression; one is a constant, and the other
is a function of z. The constant term, Gm,my/r,, can be eliminated, and doing so

my=m,

™~

Figure 1.35
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moves the datum to the surface of the earth. Considering the definition of the gravita-
tional constant from Sec. 1.4, g = Gm,/r2, the potential energy expression becomes

Eq. [1.7.12).

1.7.2 POTENTIAL ENERGY OF SPRINGS

We will be concerned here with two types of discrete springs, axial and torsional. The
subject of continuous springs, which exert their forces over an area, will be covered
in Chapter 11. Consider an axial spring that is compressed (or stretched) by a distance
x, as shown in Fig. 1.36, and the associated free-body diagram. The simplest model
for an axial spring is a linear axial spring.” Such a spring exerts a resisting force
approximated as linearly proportional to its deflection, F = —kx, where k is the
spring constant. The dimension of the spring constant is force/distance. It is easy to
see that the spring force is conservative, and the potential energy becomes

X
V(x) = —J —kxdx = %kx2 [V.7.15]
0

When dealing with spring defiections, the datum point for the potential energy
has to be taken as the undeformed position of the spring. The potential energy of a
spring is the same when the spring is stretched or compressed by the same amount.

Torsional springs resist rotational motion and hence exert a moment on the body
they act on, as Fig. 1.37 shows. When the spring deforms by an angle 6, the moment
exerted by the spring has the form

M@) = —kr6 [1.7.16]
6
— x —l Undeformed
I_] position
M=k
U F=-ke
i Undeformed
;% position
[
f kT
Figure 1.36 Axial spring Figure 1.37 Torsional spring

7\We prefer the terminology axial so as to not cause confusion between an axial spring and a linearly varying
spring force.
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where kr is the torsional spring constant, having the dimension of moment =
force X distance. The spatial variable is the angle 6, and the potential energy can be
written as

0 6

M(6)do = —f —kr6do = %krﬂz [1.7.17]
0

V(@) = —J

0

As in the axial spring case, the datum point for a torsional spring must be selected
as the undeformed position.

Equation [1.7.16] and F = —kx, representing the resistive moments and forces
of torsional and axial springs, are linear approximations to the actual spring force
and moment. The linearity assumptions are valid when the spring deflections are
within a certain range. This range, referred to as the linear range, is a property of
the material the spring is made of, the size of the spring, and the range of operation.
The range of operation is a function of the applied forces.

More accurate models of springs have nonlinear expressions that describe the
resistance of the springs. Two such models are softening and stiffening springs.
Figure 1.38 shows the spring force as a function of the spring deflection. A stiff-
ening spring is one whose resistive force increases more than that of a linear spring
as the applied load increases. A common model of a stiffening axial spring is

F(x) = —kx — kix3 [1.7.18]

with k; a positive constant. By contrast, the resistive force of a softening spring
decreases as the spring deflection increases. The spring force here is commonly ex-
pressed as

F(x) = —kx + kyx® [1.7.19]

in which k; is positive. This model is accurate only until the resistive force F(x)
becomes zero at a point x # 0; after that, either the spring provides no resistance or
it breaks.

Stiffening
spring

Linear
———
range

Softening
spring

Figure 1.38
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1.7.3 ELASTIC STRAIN ENERGY

This form of potential energy is associated with the elasticity of a deformable body.
We will study this subject in more detail in Chapter 11. For now, we write the strain
energy for a simple case and draw analogies with discrete springs. Consider the axial
deformation of an element, such as of the rod as shown in Fig. 1.39. Using standard
assumptions from linear elasticity theory, the only component of strain is in the axial
direction.

The axial strain at any point is defined as the change of length per unit length.
The strain in the x direction is denoted by &,,. For small deformations, it can be
approximated as ex, = du(x)/dx, where u(x) is the axial elongation of the rod at
point x. The associated axial stress is denoted by o and, in the linear range, it is
related to the strain by Hooke’s law, o'xx = Eg&,x, with E denoting the modulus of
elasticity (Young’s modulus). The modulus of elasticity is a measure of the stiffness
of the material used. It is analogous to the spring constant k.

We next consider the potential energy associated with the deformation, called
the strain energy. Consider a differential element of the rod shown in Fig. 1.40.
In the linear range, the strain energy has the form

2

The factor of one half comes from the fact that the stress is integrated over the strain
to get the strain energy per unit volume. This is entirely analogous to integrating the
spring force over the displacement for a discrete spring.

V= J L g exxx dVol = J %E(sm)2 dVol [1.7.20]

1.7.4 WORK-ENERGY RELATIONS
We next relate conservative forces and potential energy. Because Eq. [1.7.8] involves
a line integral, we can invoke Stokes’s theorem,?

VXF =0 [1.7.21]

where V is the del operator. This term is zero only if F can be expressed as the
gradient of a function. It is easy to show that this function is the negative of the
potential energy. We then have

F(r) = —VV(r) [1.7.22]

Figure 1.39 Figure 1.40

8 A-dr = [ [V x A)-ds, where A is any vector, { denotes a line integral, and |, denotes a surface integral.
Stokes’s theorem converts a line integral into a surface integral.
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In the Cartesian coordinate system, the del operator has the form

J J 0
V=—i+—j+—k 1.7.23
ax 3y Tz [ !
so that, expressing the force vectoras F = F,i + F vi + F_K, one relates the compo-
nents of the force to the potential energy as

oV A% A%
Fr = —— Fy=—-—— F, = —— 1.7.24

ox Y dy ¢ 9z I ]

When using cylindrical coordinates the del operator has the form

a 14 a

V= ﬁer + Eﬁeg + a———zk [l -7-25]

and the components of the force are related to the potential energy by

av 19V v

Fr=-2 0= "z =3 [1.7.26]

Now consider that some of the forces acting on a particle are conservative and
some are not. Forces that are not conservative are referred to as nonconservative.
Express the force vector as F = F. + F,,, the notation being obvious. It follows that
the incremental work done by the force also can be divided into two parts; that is,

dW = dW. +dWp. = —dV + dW,, [1.7.27]

where dW,. = F,. *dr is the work done by the nonconservative forces. We obtain
the total work by integrating the overall work as

| ) r; rn
Wis, = j aw = j F.+F,)edr=V, -V, +f Fo.edr [1.7.28]

ry | 1 r
where the work done by the nonconservative forces is
r;
Wae,., = J F,.+dr [1.7.29]
r
Substituting Eqs. [1.7.28] and [1.7.29] into Eq. [1.7.6] yields
Ti+V, + Woeioy = T2+ V, [1.7.30]
The total energy of the system is defined as E = T + V. One writes the energy
balance as
E, + Wae,., = Ea [1.7.31]

The total energy of a dynamical system under the influence of nonconservative
forces changes as the system moves. If all the forces acting on the body that do
work are conservative, Eq. [1.7.31] indicates that its total energy remains the same.
This is known as the principle of conservation of energy, and it explains the name
conservative force. This principle can be written as

E =F [1.7.32]



CHAPTER 1 © BaSIC PRINCIPLES

It is sometimes more convenient to express work as an integral over time. We
divide and multiply the integrand in the expression for work by dr, so that

r 123 dl. 23
W1a2=J F-dr=J F-—dt=J Fevdt [1.7.33]
r n o dt n
in which #; and #, denote initial and final times, respectively. The integrand on the
right side of the above equation is defined as power, and it is denoted by P,

P=Fev [1.7.34]

Power is basically the measure of how fast a force can do work. The dimension
of power is work/time. In the SI system, the unit watt (W) is defined to represent
power as 1 W = 1J/s = 1 N+m/s. The U.S. system represents power using either
ft « Ib/min or horsepower (Hp), where 1 Hp = 550 ft « Ib/sec. We have

]
dd_":, =P Wi =I Pdt [1.7.35]

n

Some texts define work as the integral of power over time. The above equation
can also be viewed as the integral of the expression

dE _ Fpcov = Wy [1.7.36]

dt
over time. It indicates that the rate of change of the total energy (rate of work done)
is equal to the power of the nonconservative forces acting on the body.

A special category of forces comprises the forces that do no work. From
Eq. [1.7.1], for a nonzero force to not do any work, either dr = 0, or F is per-
pendicular to dr. Included in this category are normal forces, other reaction forces
perpendicular to the direction of motion (perpendicular to the tangential direction),
and forces applied to points that have zero velocity. Obviously, if a force is applied
to a stationary point, there is no work done. A very important force that does no work
is the friction force in a rigid body rolling without slip.

Example
1.13

Consider the 30 m long incline of 15° shown in Fig. 1.41. Along the incline there are two
paths, one a straight line and the other a semicircle. A mass of 0.5 kg is released at the bottom
with an initial speed of 15 m/s, first along the straight path and next along the circular path.
The coefficients of friction between the mass and the incline are p; = pi = 0.1. What will
be the speed of the mass as it reaches the top of the incline following the straight path, and
then, following the circular path?

Solution

This problem can be solved using the work-energy theorem. From the free-body diagram on
Fig. 1.42, the forces acting on the mass are gravity, contributing to the potential energy; the
normal force N, which does no work; and the friction force F, a nonconservative force. From
the force balance along the incline we obtain

N = mgcos 15° = 0.5(9.807)(0.9660) = 4.736 N [al
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Figure 1.41 Figure 1.42

so that the friction force is
F = N = 0.1 mgcos15° = 0.1(0.5)(9.807)(0.9660) = 0.4736 N [b]

Note that the friction force is in the direction opposing the motion. We assume that friction
acts only at the bottom of the paths and that the walls of the path are frictionless. Hence, the
magnitude of the friction force is the same for both paths, even though its direction is different
for the two paths. We take as a datum point for the potential energy the bottom of the incline.
This way, V| = 0. The initial kinetic energy is

T, = %mv2 = %(0.5)(15)2 = 56.25N+m [e]

Let us first consider the motion of the mass along the straight path. Assuming that the
mass reaches the top, the potential energy at the top of the incline is

V, = 30mgsin 15° = 38.07 N+em Id]
The work done by the nonconservative force can be expressed as
Wi, = —=F(30) = —0.4736(30) = —14.21 Nem [el
Using the work-energy theorem, we obtain
In=T+Vi+W.;—V, =5625+0- 1421 — 38.07 = 3970 Nem f1

and we calculate the velocity as

_[ar, [2x3.97
v = /=0 = 05 = 3985mis [g]

Considering motion along the semicircular path, V, remains the same, but the nonconser-
vative work changes, as the path is longer. To reach the top, the path length that is traversed is
the circumference of a semicircle of radius 15 m, so that the nonconservative work becomes

Wioa = —F(m)(15) = —0.4736(3.142)(15) = —22.32N+m [h]

Comparing Eqgs. [c], [d], and [h], we conclude that the mass does not reach the top of the
incline, as the value of kinetic energy at that point would be negative. We then ask how far
the mass travels along the incline before it comes to a stop. To find this value, it is preferable
to work with the angle ¢, as shown in Fig. 1.43. The mass has traveled a distance of R¢,
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with R being the radius of 15 m. The height of the mass is R(1 — cos ¢) sin 15°. It follows that
the potential energy and nonconservative work become

Va = mgR(1 — cos ¢)sin 15° = 0.5(9.807)(15)(0.2588) = 19.04 — 19.04 cos ¢
Wio2 = —FR¢ = —0.4736(15)¢ = —7.104¢ (1]

Noting that T, = 0 when the mass comes to a rest, we write the work-energy theorem
as

Ty + Wiy — Vo = 56.25 — 7.104¢ — 19.04 + 19.04cos ¢

1]
= 37.21 — 7.104¢ + 19.04cos ¢ = 0
The solution of Eq. [j] can be obtained numerically, and it can be shown to be
¢ = 2.756rad = 157.9° k]

One can next ask whether the mass, after coming to a rest, slides back or not. To examine
this issue, we need to perform a force balance along a line tangent to the path at ¢ = 157.9°.
Fig. 1.43 shows the configuration. We define the plane of the incline as the xz plane, with
the y direction perpendicular to the incline. The normal force and the magnitude of friction
force remain the same as before. However, we are now summing forces along the tangential
direction, that is, the direction of impending motion. We write the gravity force as

F, = —mgsin15% — mgcos 15°) m
The mass will move if the component of the gravity force along the tangential direction is
larger than the friction force. From Fig. 1.43 we express the unit vector i in terms of normal-
tangential coordinates as
i = —sinye, — cos e, [m]
in which ¢ = 180° — ¢ = 22.1°. The component of gravity along the path becomes
F,+e, = mgsin15°sin22.1° = 0.4773 N n]

Comparing Eq. [n] with Eq. [b] we conclude that the mass moves back, as the component
of gravity in the tangential direction is greater than the friction force.

n Z
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Consider the system in Fig. 1.28. The pendulum is released from rest from the position § =
7/2. Find a relation for the velocity of the base as a function of 8, for F = 0.
Solution
We treat the two masses as one system. The only forces external to the system are gravity and
the normal force acting on the cart. We conclude that (1) there are no nonconservative forces
that do work, so energy is conserved, and (2) there are no external forces in the horizontal
direction, so the linear momentum in the horizontal direction is conserved.

Using as datum the horizontal position of the pendulum, we can obtain the total energy
by considering the initial condition as

E(e - g)= T(o - g)w(o - g) [a]

where T |0 = g = 0, as there is no initial motion and V = 0. It follows that the total energy

is E = 0 = constant. We next take an arbitrary position of the pendulum and write the kinetic
and potential energies

T = %sz + %mvi, V = —mgLcos8 [b]

where v} = v3, + v}, and
d . . : d -
Upy = a—;(x + Lsinf@) = x + LOcosH, Upy = E(—Lcos@) = LOsing [e]
Substituting Egs. [b] and [c}] into Eq. [a] we obtain for the total energy
E=0= %(M +m)x* + %mL292 + mLx cos 6 — mgL cos 6 [d1

We next look at the conservation of linear momentum in the horizontal direction. The
initial linear momentum is zero. The linear momentum for any value of  is

p = Mi+mvup, = Mx + m(x + LOcos@) = 0 [e]

which can be rewritten as

(M + m)x = —mL6 cos 6 Ifl
or
. M+ mi
0 =~ Lcost Is]

We eliminate 6 from Eq. [d] by substituting Eq. [g] into Eq. [d] and simplifying, which
yields

1T M+ m)?i?

1 .2
E(M +mxt+ 2m  cos?@

—mgLcos® =0 [h]

When cos @ = 0, the above relation cannot be used. However, from the initial conditions
and Eq. [f], whencos@ = Othen x = 0 as well. Also, note that Eq. [h] is in terms of x2. The
sign of the velocity of the cart can be determined from Eq. [f].

Example
1.14
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1.8 EQUILIBRIUM AND STABILITY

Equilibrium is an essential and very useful concept in dynamics. For a system of
particles or interconnected bodies, static equilibrium is defined as the state when all
the particles and bodies comprising the system are at rest. Both the velocity v(¢) and
the acceleration a(z) of each body are zero at equilibrium.

When discussing the equilibrium of a system, two important questions come to
mind: (1) How does one calculate the equilibrium position? (2) What happens to the
system if it is displaced from equilibrium?

To calculate the equilibrium position one can use Newton’s second law. Setting
the acceleration to zero results in the equilibrium relation

F=0 [1.8.1]

where F is the sum of all the external forces. An alternate procedure that gives more
of a qualitative insight is to look at the energy. Consider a particle and the case
when the kinetic energy is only quadratic in terms of the velocity of the particle.®
We take the differential form of the work-energy principle and remove from it all
velocity- and time-dependent terms (including the kinetic energy as well as all
time-dependent parts of the nonconservative force). From Eq. [1.7.28] we
have

dW = (F. + Fp)edr = —dV +dW,. =0 [1.8.2]

The right side of this equation is zero because at equilibrium the particle is not mov-
ing; hence, no work is done on it by the external forces. The equilibrium equation
then becomes

dVv = dWy, [1.8.3]

When the system is conservative, the equilibrium condition is defined as
av =90 [1.8.4]

which can be interpreted as the potential energy having a stationary value at equi-
librium. For a single degree of freedom system, Eq. [1.8.3] can be solved easily, and
it is the preferred approach for systems consisting of interconnected components.
In Chapter 4 we will derive the general form of Eq. [1.8.3] for multiple degree of
freedom systems.

Now consider the second question: What happens to the particle when it is dis-
turbed from equilibrium? Three scenarios are possible:

1. The particle returns to the equilibrium position and stays there. In this case, the
equilibrium position is called stable, or asymptotically stable.

| 9The relevance of this requirement will be discussed in Chapter 5.
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2. The particle hovers around equilibrium without staying at one point, but it does
not return to or get away from the equilibrium position. The equilibrium position is
referred to as critically stable, merely stable, or neutrally stable.

3. The particle moves away from the equilibrium point and it never returns there.
The equilibrium position is called unstable.

There are several approaches that enable one to examine behavior in the vicinity
of an equilibrium position. The simplest is to linearize the equations of motion about
the equilibrium position. A theorem from stability theory states that if the linearized
equations of motion in the neighborhood of equilibrium reveal significant behavior
(continuous decaying or growing in amplitude), then the general motion (in the large)
is governed by this significant behavior.

Consider a particle of mass m, and write the equation of motion as

F(x(®), x(1)
m

X = = f(x(0), x(1) [1.8.5]
At equilibrium, all the velocity and acceleration terms are zero; therefore, the
equilibrium condition is obtained by

f(x,0)=0 [1.8.6]

where x. denotes the equilibrium position. Depending on the nature of function f,
there can be more than one equilibrium position. We now define a local variable
€ = x — x., and expand each term in the equation of motion about the equilibrium
position x = x,, X, = 0, ¥, = 0. The term %(¢) simply becomes &(r). We expand
the right side of Eq. [1.8.5] in a Taylor series and retain the linear terms:

of| ., 9f

ﬂx ax

flx, x) = f(x.,0)+ £ [1.8.7]

Xe

€

The first term on the right side of Eq. [1.8.7] is zero by definition of the equilib-
rium relation in Eq. [1.8.6]. Defining by y; and vy, the partial derivatives evaluated
at the equilibrium position,

_9f

_9f
ox X

9% [1.8.8]

Yi = Y2 =

Xe Xe

and using the local variable &, we can express f(x, x) as

f(x, x) = —y18(t) — y26(8) [1.8.9]

This results in the linearized equation of motion for small motions (local behavior)
around equilibrium,

E(t) + v28(1) + v18(1) = 0 [1.8.10]

Note that all coefficients in the above equation are constant. Consider a time-

dependent solution of e(f) = EeM, where A denotes the time dependency and E is
the amplitude. Substitution of this into Eq. [1.8.10], yields

A2+ y2A + y1)EeM = 0 [1.8.11]
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e

Unstable

Unstable

Unstable

Stable

Stable

Figure 1.44

Because Ee* cannot be zero for a nontrivial solution, one must have
A +yd+y =0 [1.8.12]

This is known as the characteristic equation, whose roots are

A = Y2 V¥~

2

The behavior in the neighborhood of equilibrium is dictated by the roots of the
characteristic equation. If the roots A are both real negative or complex with negative
real parts, () decays exponentially and the equilibrium position is stable. If any one
of the roots has a positive real part, then &(f) grows exponentially. The equilibrium
position is unstable. If the A roots are purely imaginary, then &(¢) oscillates with
constant amplitude. The linearized equations in this case do not represent significant
behavior and they are not conclusive. One has to conduct additional analyses to
determine the nature of the motion. Such analyses include qualitative approaches
such as energy theorems, the Liapunov method, or quantitative analyses such as
numerical integration.

‘More advanced concepts from stability theory are beyond the scope of this text.
We will discuss one important stability theorem here, referred to as the potential
energy theorem. The theorem states that

[1.8.13]

for conservative systems, if the potential energy has a minimum in the equilibrium
position, then the equilibrium position is critically stable. Otherwise, it is unstable.

The theorem is illustrated conceptually in Fig. 1.44.

Find the equilibrium position for the two links attached to a spring in Fig. 1.45. The spring is
not stretched when the links are horizontal.
Solution

We have a conservative, single degree of freedom system. The displacement of every compo-
nent (both links and the spring) can be expressed in terms of the angle 6. Denoting the spring
deflection by x, we can write

x = 2L(1 —cosB) [al
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To solve for the equilibrium position by a vector approach, we need to draw a free-body
diagram for each link and invoke the equilibrium relations. This is quite cambersome, as we
need to model and include in our calculations the reaction forces at the joints. It is preferable
to seek a scalar solution by means of the potential energy function. The free-body diagram of
the system is shown in Fig. 1.46. There are three external forces that do work acting on the
system. Two of these are the force of gravity on the rods; we denote them by

Fl = F2 = —mgj [C]

and they act at the midpoints of the beams. The third force is the spring force and it is ex-
pressed in the form

F3; = —kxi = —kL(1 — cosO)i Id}

We write the potential energy as

V= %kxz - 2mg <£ sin 0) %k[ZL(l —c0s9))* — mg Lsin@ [e]

2

We obtain the equilibrium position by differentiating the potential energy and setting it
to zero; thus,

0= % = 4kL*(1 - cos ) sin@® — mgL cos 6 (]
Upon rearranging, this gives
sinf . _ mgL  mg
cos0! T = e = Tk [s]

to solve for 6. Solution of Eq. [g] can be obtained numerically.

— 2kl(1-cos8)

Figure 1.46
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A particle of mass m = 1 is acted upon by an excitation F(x) = —x + x%/4. Find the equi-
librium positions and determine their stability.

This problem is similar to a mass-spring system with a nonlinear spring constant. We can find
the equilibrium position by setting F(x) = 0, with the result

_F(x) _ _x\_ _ _
f)=——= x(] 4>—0 > x=0 o x =4 [al

We have two equilibrium positions. To find the linearized equations, we expand f(x)
about equilibrium. From Eq. [1.8.8], v, = 0 for all positions, as there are no terms in f that
are functions of x. Differentiating Eq. [a] with respect to x we obtain f'(x) = —1 + x/2. We
then evaluate 7y, for each of the equilibrium positions to yield

Forx, =0, vy, =1 Forx, =4, vy = —1 ()]

so that the linearized equations of motion about equilibrium become

Forx, =0, &@0+e(lt)=0 Lel
Forx, =4, &0 —-el) =0 Id]

Equation [c] represents a simple sinusoid, so that the linearized equations do not exhibit
significant behavior. One can further analyze this case using the potential energy theorem.
The potential energy has a minimum at that point, as from Egs. [1.7.24] and [1.8.8] the term
v1 describes the second derivative of the potential energy. Hence, the equilibrium position
is critically stable. By contrast, the equilibrium position x, = 4 is unstable, as it has an in-
creasing exponential solution. The characteristic equation for this case is

A-1=0 [el

which has the solution A = *1, indicating one real positive root. One can also physically
explain this result: If — f(x) is regarded as the spring force, once the variable x passes the
equilibrium point x, = 4, the spring force becomes negative, thus offering negative resis-
tance. Of course, in an actual mass-spring system, once the point x, = 4 is crossed there
would no longer be a spring.

One can verify the result for x, = 4 by invoking the energy theorem. The second deriva-
tive for the potential energy is negative, indicating a local maximum and an unstable equi-
librium position.

1.9 FREE RESPONSE OF LINEAR SYSTEMS

In previous sections we obtained the equations of motion and equilibrium, and then
linearized the equation of motion about equilibrium. We now consider the explicit
response of a linear (or linearized), constant coefficient, single degree of freedom
system.

In this section, we shall analyze the free response, that is, when there are no
external forces. The linearized equation of motion of a system with one degree of
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freedom is given in Eq. [1.8.10]. Introducing the notition w, = /y; and { =
¥2/2w,, and the variable x to describe the motion in the vicinity of equilibrium, we
rewrite Eq. [1.8.10] as

¥(t) + 2w x(t) + 02x(t) = 0 [1.9.1]

The quantities w, and { are known as natural frequency and damping factor, respec-
tively. The natural frequency is a measure of the amount of stiffness versus mass in a
system. It is related to the potential energy. The damping factor { is a measure of the
energy dissipation in the system. Energy dissipation is caused by internal friction,
as well as by dissipative forces, such as forces generated by a dashpot. When{ = 0
the motion is referred to as undamped and when { > 0, the motion is called damped.

To observe the physical significance of these expressions, we begin by consid-
ering the mass-spring-dashpot system in Fig. 1.47. Consider a linear model for the
spring and dashpot, so that the spring force is described by Fy; = —kx(#) and the
dashpot force is in the form F; = —cix(t), with ¢ referred to as the viscous damp-
ing coefficient. This coefficient indicates the strength of the dashpot. This way of
modeling dissipative force acting on a body is convenient, as it leads to equations
of motion that are linear. The external force is denoted by F. Summing forces, we
obtain

mi(t)y = —cx(t) — kx(t) + F - mi(t) + cx(t) + kx(t) = F [1.9.2]

In the above equation, w, = k/mand { = /2 km. We analyze the natural
frequency as m and k are varied. As the spring constant is increased, we have a stiffer
system, and the natural frequency becomes larger. As the mass increases the system
gets heavier, so the natural frequency decreases.

We first consider systems with no damping, { = 0. The equation of motion re-
duces to

1)+ @’x(®) =0 [1.9.3]

To solve this equation, we introduce the general solution x(¢) = X eM and collect
terms, so

(A +wd)XeM =0 [1.9.4]

For there to be a nontrivial solution, Xe* cannot be zero, from which we con-
clude that

NP+ol=0 [1.9.5]

which is recognized as the characteristic equation. The roots of the characteristic
equation are A|, = *iw,, where i> = —1. Complex roots indicate an oscillatory

% . .

7

m —_— F

(@) (@]

Figure 1.47
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system. The response can be expressed as
x(t) = X1 + Xpe ot [1.9.6]

where X and X, are complex constants of integration. Because x(¢) is real and '~
and e~ *n’ are complex conjugates, X; and X, must be complex conjugates of each
other as well. Introducing the real valued constants amplitude A and phase angle ¢
such that

1

X = EAe_id’ X, = %Ae""’ [1.9.7]

and substituting in Eq. [1.9.6], we obtain
x(t) = %A(e"("’""d’) + e 1@~y = Acos(wnt — P) [1.9.8]

The constants A and ¢ are determined from the initial conditions. Given initial
conditions of x(0) = xp and x(0) = vy, it is easy to show that

2
A= [x2+ (59) ¢ = tan™! (aTv%cG) [1.9.9]
n n

and that the response can also be expressed as

vo .
x(t) = xgcoswut + 20 sin wnt [1.9.10]
n
The nature of the motion is harmonic, repeating itself in cycles. Using the rela-
tion

Acos(wut — ) = AcosQm + wpt — @) [1.9.11]
the amplitude of the motion attains the same value after a time of period T so that
_ 2 [1.9.12]
Wy

The value of T is known as the period of oscillation; it is usually measured in
seconds, and it describes the length of a cycle. The units of natural frequency are
in radians/second. Another quantity commonly used to describe harmonic motion is
the frequency, f,, defined as

1 w,

fn = ? = '2; [‘.9013]

The unit of frequency is cycles per second (cps) or hertz (Hz). A frequency of
1 Hz = 27 rad/s. Fig. 1.48 shows a plot of x(z). An interesting property of the nat-
ural frequency of a system is that it is a quantity dependent on the parameters of a
system and not on the initial conditions.

We next consider the case when the damping is not zero. Introducing x(¢) =
Xe* to Eq. [1.9.1] and using the same line of thought, we obtain the characteristic
equation

P+ 2oA+02 =0 [1.9.14]
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Figure 1.48 Undamped response Figure 1.49 Damped response
whose roots are
A2 =0 (={*J* -1 [1.9.15]

The nature of the motion depends on the values of the damping coefficient. We
identify the following five cases:

1. When ¢ > 1, the roots are real, negative, and distinct. The motion is in the form
of a decaying exponential and it is not periodic. Such a system is called overdamped.
The response has the general form

x(t) = AjeM' + Aye™’ [1.9.16]

with A; and A, being real quantities whose values depend on the initial conditions.
The above equation can also be expressed in terms of hyperbolic sines and cosines.

2. When 0 < ¢ < 1, the roots are complex conjugates with negative real parts in
the form

)\1,2 = wp(—{ T iy 1 - g2) = —{w, * iwg [1.9.17]

where w; = w,/1 — {? is the damped natural frequency. This quantity basically
represents the frequency of oscillation of the damped system.
To obtain the response, we note the identity e@*?) = e%?, so that

x(t) = Xle(—{wnJriwd)l + Xze('{wn—iwd)t
— e—{wnt(xleiw,jt +X2e~iwdl)

Following the approach used for the undamped system, one can express this equation
as

[1.9.18]

x(t) = Ae b cos(w,{t — ) [1.9.19]

The motion is in the form of a decaying sinusoidal, with an exponential decay
envelope, as shown in Fig. 1.49. Such a system is known as underdamped. One can
show that, in terms of the initial displacement xq and initial velocity vy, the response
has the form
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vo + {wnxo

x(t) = e %ot (xo coswgyt + sin wdt) [1.9.20]

wyq

Note that, similar to the natural frequency, the damping factor is also not dependent
on the initial conditions, but it is a function of the system parameters.

3. The case { = 1 represents the border between underdamped and overdamped
systems. It is called critically damped. The roots of the characteristic equation are
real, negative, and equal to each other, A; = A, = —w,. The motion is in the form
of a decaying exponential. The response has the form

x(t) = (A; + Apt)e™ [1.9.21]

in which both A, and A, are real.

4. The case { = 0 represents the undamped case that we saw above. Here, wy; =
wy, and Eq. [1.9.20] reduces to the undamped response of Eq. [1.9.10].

5. When { <0, the roots of the characteristic equation Oave positive real parts,
and they may or may not be complex. A positive real root implies an exponentially
growing solution and instability, as we saw in the previous section. Such a system is
sometimes called negatively damped.

Example
1.17

Consider Fig. 1.47. The block weighs 20 Ib and the spring is of constant ¥ = 5 1b/in. Damping
is negligible and F = 0. The block is released from rest with an initial displacement of xy = 3
in. Find its position and velocity after four seconds.

Solution
The equation of motion is

mi() + kx(t) = 0 [al
withm = 20/g = 20/32.2 = 0.6211 slugs = 0.6211 Ib +sec?/ft = 0.05176 1b * sec?/in. The

natural frequency is
w, = £ = —5— = 9.829 rad/sec [b]
"“Vm V005176

From Eq. [1.9.10] we can write the response to an initial displacement as
x(t) = xpcosw,t x(t) = —wpxpsinw,t [<]
so that at ¢t = 4 sec we have

x(4) = 3c0s(9.829 X 4) = —0.1382in  x(4) = —3(9.829)sin(9.829 X 4) = —29.46 in/sec
[d]

| 1.10 RESPONSE TO HARMONIC EXCITATION

In this section we consider single degree of freedom systems subjected to harmonic
excitation. Rather than studying the general case of response to arbitrary excitation
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first and then considering the special case of harmonic excitation, we prefer to study
harmonic excitation independently. The reason for this is twofold: First, excitations
of a harmonic nature play a very important role in engineering. For example, most
machines have rotating parts, which generate harmonic forces on their supports or
other bodies they are in contact with. Second, one can study response to harmonic
excitation using the steady state motion approach, where one is primarily concerned
with the motion amplitudes and phase angles, rather than with initial conditions.

Consider a dynamical system, whose linearized equations of motion have the
form

@) + 2w i) + 02x(t) = @) [1.10.1]

where f(¢) is the external excitation. For harmonic excitation with a single driving
frequency w, f(f) can be written in the general compact complex form

f(® = Aw2e™ [1.10.2]

One of the advantages in writing the excitation in this form is that the excitation
amplitude A has the same units as x(#). For example, for translational mechanical
systems f(r) has the units of force/mass and A has units of displacement. Also, be-
cause e’ = coswt + i sinwt, one can solve for the response for a cosine or a sine
excitation simultaneously. The response to a complex excitation will also be com-
plex, so that the real part of the solution will be the response to a cosine excitation,
and the imaginary part, response to a sine excitation.

We are interested in the steady state motion. At steady state, all effects due
to transient sources, such as initial conditions and impulsive forces, have died out,
and the response is only due to the external harmonic excitation. Hence, we assume
that the response is of the same nature as the excitation and consider a steady state
solution in the form x(r) = X(iw)e'*. Introducing this solution and Eq.[1.10.2] into
Eq. [1.10.1] and collecting the coefficients, we obtain

(—w? + 2ivlw, + 0)X(iw)e™' = Awle! [1.10.3]
which can be rearranged and solved for X(iw) as

A
1 — (w/wy)? + 2i{wlw,
The amplitude X(iw) can be characterized by the ratio of the excitation ampli-

tude A multiplied by a nondimensional ratio. This ratio dictates the amplitude of the
response, so we define it as

X(iw) =

[1.10.4]

1

Gliw) = 1— (/o) + 2ilwlo,

where G(iw) is called the frequency response. Recalling that a complex number

a + ib can be expressed as Me'Y, where M = /a? + b2 and ¢ = tan~!(bla), we
can express the frequency response as

G(iw) = |G(iw)|e™™ [1.10.6]
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where
. 1 o1 Yowlw,
Gl = T wlwn P+ Dl ¥ T T e,
[1.10.7]

The quantity |G(iw)| is referred to as the magnification factor, and the angle
is the phase angle, not to be confused with the phase angle ¢ defined in the previous
section. The steady state response can then be written as

x5(f) = AlG(iw)|e"@ ¥ [1.10.8]

The value of the magnification factor is affected by the amount of damping, as
well as by the ratio of the driving frequency to the natural frequency. A plot of |G(iw)|
versus w/w, is given in Fig. 1.50 for various values of the damping factor. The mag-
nification factor becomes smaller with increasing amounts of damping, as one would
expect. For a given amount of damping, the magnification factor becomes larger as
w/w, approaches unity. For an undamped system when w/w, = 1 the magnifica-
tion factor becomes infinity. This phenomenon, called resonance, manifests itself as
very high amplitude vibrations when the driving frequency becomes very close to
the natural frequency.

Dynamical systems subjected to harmonic excitation are designed such that res-
onant frequencies are avoided, or encountered as briefly as possible. Furthermore,

)/
SN
a

0.5 i 1.5 2 25 3
wlw,

Magnification factor
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such systems have a certain amount of damping to reduce vibration amplitudes. A
poorly designed system can experience dangerous levels of vibration, which can
cause physical damage, discomfort to occupants, and reduction in precision.

A plot of the phase angle ¢ versus w/w, is given in Fig. 1.51. The phase angle
is always less than 90° when w/w, < 1 and greater than 90° when w/w, > 1. The
resonance point becomes the defining factor for the phase angle, as all curves go
through the point ¢y = 7 and w/w,

When w/w, < 1, the response has the same sign as the excitation. In this case
the response is referred to as being in phase with the excitation. By contrast, when
w/w, > 1, the response has the opposite sign as the excitation, indicating that it is
out of phase with the excitation.

An interesting special case to analyze is that of undamped vibration. Here, set-

ting { = 0 we can write the steady state response as

xs(t) =

1.

A

1— @)

iwt

When w/w, = 1and f(t) = Aw? cos wyt, the response can be shown to be

A .
x(t) = Ew,,tsmw,,t

indicating that the amplitude of the response increases with time in a linear am-
plification envelope. Fig. 1.52 shows the response. An infinite amplitude is never
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x(8)

Figure 1.52  Resonance

reached in reality. As the amplitude increases, either the mathematical analysis be-
comes invalid and nonlinear and other effects begin to dominate the motion, or the
amplitudes become high enough to damage the system. Also, all physical systems
have some energy dissipation mechanism, in the form of viscous damping or in some
other form, which helps reduce vibration amplitudes.

Example I A very interesting application of response to harmonic excitation is the motion of a vehicle

over a wavy terrain. Consider such a vehicle, modeled as a single degree of freedom system,
traveling with constant speed v over a road that has a sinusoidal shape, as shown in Fig. 1.53.
Derive the magnification factor.

Solution

The road surface can be modeled as

2mx

y(x) = Ysin (—L—) [a]

y(x)

Jj(t)

Y
3

(ST
N

—
o

0]
I _ Iit

N
—

Figure 1.53
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where Y and L denote the amplitude and length of the wave. Because the vehicle is traveling
at constant speed v, we can express its location on the x axis as x(f) = vt. Substituting this
into the above equation, we obtain

Y1) = Ysin (@) = Ysinwr [b]

where @ = 27v/L. The problem now is reduced to one of a mass-spring-damper system
whose base is undergoing a prescribed harmonic motion. The speed of the vehicle dictates
the frequency of the excitation.

Consider the free-body diagram of the vehicle. The deflection of the spring is 6(¢) =
z(t) — y(t). Writing Newton’s second law, we obtain

mi(t) = —k8(t) — cd(1) — mg el
which leads to the equation of motion as
mZ(8) + ci(2) + kz(t) = —mg + cy(t) + ky(r) [dl

We divide this equation by m and make use of the expressions for natural frequency and the
damping factor. Further, we can put y(¢) and y(¢) into exponential form as y(f) = Y Im(e'*),
y(®) = YIm(iwe™"), and write the equation of motion as

W) + 2waz(t) + 022(t) = —g + Yol (i wlw, + 1)e [e]

The first term on the right side has the effect of lowering the mass by a height of g/w? =
mg/k. It is the static deformation of the mass due to its own weight. Measuring z(¢) from static
equilibrium, we have two terms for the excitation, so that the response also consists of two
terms

2(t) = YH(iw)e™! [l
where

H(iw) = Glio)i2{w/w, + 1) (]

is the frequency response of this system. The magnification factor (also known as transmis-
sibility for this problem) is the magnitude of H(iw). Recalling from complex algebra that
(a + ib)(c + id)| = |(a + ib)| X |(c + id)|, we have

H(iw)| = V1 + (2 wlw,)? |Glio)| [h]

Fig. 1.54 plots the transmissibility for various values of the damping factor. As expected,
as the driving frequency gets close to the natural frequency, the transmissibility becomes very
large. Peak values occur at frequencies slightly lower than the natural frequencies. It is inter-
esting to note that as w/w, gets larger—that is, as the vehicle goes faster—the transmissibility
becomes less than 1 and approaches zero. Also, this ratio goes to zero faster when the damping
factor becomes smaller.

Anyone can observe these results when driving a vehicle. As a vehicle goes faster, the
effects of uneven terrain and of potholes are felt less by the passengers. (It should be cautioned
that when a vehicle goes faster over potholes, the damping forces exerted by the dashpots also
become larger; hence, such driving wears out the shock absorbers.)
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| 1.11 FORCED RESPONSE OF LINEAR SYSTEMS

We will obtain the general response of a linear system by making use of its response
to impulsive loading. Consider the system in Eq. [1.10.1] subjected to an impulsive
excitation f = F/mattimet = 0

#(t) + 2 wni(t) + 0ix(t) = f8(t —0) [1.11.1]

in which £(¢) is the impulsive force per unit mass. In Section 1.6 we learned that
an impulsive force applied to a system results in a sudden change in velocity. For a
system originally at rest, from Eq. [1.6.12], the position and velocity immediately
after the impulse are

x(0") = x©) v = f [1.11.2]

One can view the response of the system after the application of the impulse
as the free response with the position and velocity right after the impulse as initial
conditions. From Eq. [1.9.20], for zero initial displacement, the response has the
form

A

f

x(f) = —e ' sinwgt [1.11.31
(OF]
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1@

fla) -

\ A

We generalize this result to the case when the amplitude of the impulsive force
is unity by calling it impulse response g(t) as

1 :
g(t) = —e 4 sinwyt [1.11.4]
(OF]

We next represent an arbitrary force as a summation of impulses. Consider a
force f(t), as shown in Fig. 1.55. At any point ¢ = q, the impulse due to the force
applied over a time period of Aq has the form f(t —a) = f(a)Aa. Considering that
Aa is very small, we can treat f(a)Aa as impulsive and, from the above equation,
give the response to an impulse applied at # = a the form

xa(t) = f(t — a)g(t — a) = f(a)g(t — a)Aau(t —a)  [1.11.5]
where the subscript in x,(¢) signifies that it is the part of the response due to the
impulse at ¢ = a, and u(¢ — a) is the unit step function, defined as
u(t —a) = 1lwhent = a
w(t —a) = Owhent <a

To find the response to the entire excitation, we sum Eq. [1.11.5] over all the
impulses. As Aa becomes smaller, the summation is replaced by integration and
we get

t
x(t) = f f(a)g(t — a)da [1.11.6]
0

Equation [1.11.6] is known as the convolution integral. By a proper change of vari-
ables (say,f —a = 7,a = t — 1,da = —dr), one can show that

x(t) = th(t - 7)g(r)dr = th(‘r)g(t —ndr [1.11.7]
0 0

When solving for the response, one can use either form of Eq. [1.11.7]. One bases
the selection of which form to use on the ease with which the convolution integral
can be evaluated. For example, if the excitation is constant, use of the form with
f (@ — 7) is preferable.
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Note that the response obtained from the convolution integral is the response of
the system to zero initial conditions. To find the total response, we superpose this
with the response to initial conditions only, given in Eq. [1.9.20], with the result

vy + {wnxo

x(t) = e 59t (xo coswgyt +
wq

. 1 (! - .
sinwgt |+ —J ft — T)e T sinwyTdT
w4 Jo
[1.11.8]

For an undamped system, the general response reduces to

t
x(t) = xgcoswyt + Y sinw,t + LJ f@—1)sinw,7d7 [1.11.9]
Wy Wy Jo

As stated earlier, there are other ways of solving Eq. [1.10.1]. One way is the
homogeneous plus particular solution approach (obtain the homogeneous solution,
the particular solution, add them up and then impose the initial conditions), and the
other is the Laplace transform solution. Actually, the Laplace transform solution is
equivalent to the convolution integral. Note that with this approach we obtain the so-
lution as the sum of two quantities, the response of an otherwise free system with the
given initial conditions plus the response to the excitation for zero initial conditions.

An interesting special case is the response of systems subjected to Coulomb type frictional
forces, such as the mass-spring system in Fig. 1.24 in Example 1.9. While the friction force
is nonlinear, the equation of motion can be split into two linear equations, depending on the
value of the velocity. Ignoring the external force F, Eqs. [d] and [e] in Example 1.9 can be
written as

1l

whenx >0, i+ wﬁx —ug [a]

kg [b]

Consider as initial conditions an initial displacement xp and zero initial velocity. We first
need to determine whether motion will take place or not. This depends on whether the spring
force is larger than the friction force. At the point when the velocity is zero, there will be
subsequent motion if

when ¥ <0, i+ wlx

kx| > pmg or |wix| > pg 0]

Assuming that at the onset of motion, the spring force is larger than the friction force,
the velocity first encountered will be negative. Therefore, we use Eq. [b] as the equation of
motion. From Eq. {1.11.9] we obtain

x(1)

1 .
X COS Wyt + —J pgsinw,rdr
Wy Jo

1 1
Xp COS w,t + aT;ng—(l — CoSwyt) = % + (xo - %f—)cosw,,t [d]

n n n n

The velocity becomes zero at a half cycle, t = T/2 = 7/w,. The displacement at this point
is

x(l) = —xgp + 2”28 [e]
w

wp n



1.12  FIRST INTEGRALS

N . P -"L‘"WH-L"“:N‘{-

Figure 1.56 Response to Coulomb friction

We now switch to Eq. [a] as the equation of motion, as long as Eq. [c] holds. The response
in the second half cycle can be shown to be

2
x(t) = —'u—f + (xo - 3“—‘§)cosw,,t T =2 1
w w

n n wy w,

When ¢t = T = 2@/w,, the velocity is again zero, at which point the displacement has the
value

2 4
x(ﬂ)—ﬂ) =X~ :gg 9]

It turns out that at every half cycle the amplitude of vibration is reduced by 2u g/w?.
Hence, the response subject to Coulomb friction is in the form of a decaying curve, with the
decay envelope in the form of two straight lines of slope 2ug/Tw,. A typical response curve
is shown in Fig. 1.56. The motion stops when the velocity is zero and the spring force is less
than the friction force.

The problem with dealing with Coulomb friction is that the solution has to be obtained
for every half cycle individually, making the analysis cumbersome. Often, engineers replace
the Coulomb friction model with an equivalent viscous damping model and use linear equa-
tions. While this is a gross simplification, if one considers the uncertainties in determining
the friction force and the damping factor, the simplification does not look as bad. It is difficult
to model the damping properties of a system accurately.
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1.12 FIrST INTEGRALS

In preceding sections we learned about quantities that were derived by integrating
Newton’s second law. For the linear and angular momenta, Newton’s second law
was integrated over time, and for energy, the integration was carried over the dis-
placement variable. We also studied the circumstances under which energy and mo-
mentum were conserved.

When applicable, the principles of conservation of momentum and energy give
qualitative information about the motion without solving for the response explic-
itly. This is a desirable feature, especially for systems with complicated equations
of motion and when one needs to know the nature of the motion but not the ex-
plicit response. When they are conserved we refer to energy, linear momentum, and
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angular momentum as first integrals, or integrals of the motion. The terminology is
due to the equations of motion being integrated once to arrive at the first integrals.
First integrals involve expressions in which the highest order derivative is one less
than the highest order derivative in the equations of motion.

Energy and momentum are not the only first integrals that can be found for a
dynamical system. There exist other first integrals such as the Jacobi integral and
generalized momenta associated with ignorable coordinates. In most cases, integrals
of the motion have physical explanations, even though one can generate a first inte-
gral that may not have an obvious physical interpretation. First integrals also come
in handy when integrating the equations of motion numerically, as they can be used
to check the accuracy of the numerical integration. One of the first steps when ana-
lyzing a dynamical system should be to search for the existence of first integrals in
order to ascertain the qualitative description of the system behavior.

First integrals are also used for the geometric analysis of motion. A typical ex-
ample of this is phase plane analysis, where one plots the dependent variable versus
its time derivative. We will not go into this subject in detail but will outline some of
the uses of the phase portrait when dealing with conservative systems.

Consider, for example, a particle of mass m moving in one direction and being
acted upon by a force F(x). From Newton’s second law, we have mx(f) = F(x).
Energy is conserved. One can arrive at this conclusion by integrating the equation
of motion over x, which yields

#2 — G(x) = C = constant [1.12.1]

where dG(x)/dx = 2F(x)/m. C is basically a measure of the total energy, and it
depends on the initial conditions. We can rewrite Eq. [1.12.1] to show the relationship

between x and x as
x =+ /C—G(x) [1.12.2]

From Eq. [1.12.2), the phase portrait of X versus x has a number of properties: It
is symmetric about the x axis. Also, the phase portrait is continuous with continuous
derivatives, so that there are no sharp corners in the phase portrait. For conservative
systems, each curve of the phase portrait corresponds to a specific energy level. One
can plot the phase portraits for different energy levels and analyze the motion. It
can be shown that phase portrait curves below (or above) the x axis corresponding
to different energy levels never cross each other.!0 If the phase portraits did cross
each other, one would not know the energy level associated with the point where the
curves met.

The phase portrait is also a useful tool for systems that do not admit integrals
of the motion. In such systems, the phase portrait will not be symmetric about the x
axis. Phase plane analysis is one of the cornerstones of nonlinear stability theory; it
is widely used in mechanical and other systems (electrical, chemical, etc.) as well
as in control theory.

10Except a curve that crosses the x axis, which ends up infersecting its symmetric counterpart. Such a curve defines
critical points and regions on the phase space, separating stable and unstable regions of the phase space. It is
called a separatrix.
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Plot x versus x, the phase portrait for a particle of unity mass subjected to the forces (1)
F(x) = —x + x3/9,and (2) F(x) = —x — x3/9.

Solvution
From the analysis in the previous section, we can write Eq. [1.12.1] for case (1) as

=
-

%%+ x* — =~ = E, = constant [a]

1

[}

The energy constant, of course, can be evaluated using the initial conditions x(0) and x(0)
or the values of displacement and velocity at any other time when they are known. For case
(2) the integral of the motion becomes

4
P2+x+ _1% = E, = constant bl
Before we plot the phase trajectories, we investigate the equilibrium positions and their
stability. For case (1), the equilibrium points can be shown to be x = 0 and x = *3. A
stability analysis and plot of the potential energy indicates that the equilibrium point x = 0
is critically stable and the two equilibrium points x = *3 are unstable. To see this, we note
that f(x) = —x + x/9, so that its derivative is

2

, X
flx)=-1+ 3 [el
At the equilibrium position x = 0, y; = 1, and for x = *3, y; = —2. For case (2),

there is only one equilibrium point, x, = 0, and it is stable.

The phase portraits are shown in Figs. 1.57 and 1.58, where velocity is plotted versus
displacement for various values of the energy constants E; and E;. It should be noted from
Section 1.7 that the two cases considered in this example are representative of softening and
hardening springs, respectively. The quantity F(x) can be treated as the spring force acting
on the body. In case (1) the spring force is zero or negative in the range —~3 = x = 3, and
positive when |x| > 3. This implies that as the deflection of the spring gets bigger, the spring
force gets smaller. When x > 3 (or x < —3), the spring force becomes less than zero, leading
to an unstable equilibrium position.

By contrast, case (2) represents a spring force that keeps growing as x gets larger. Con-
sequently, there is no equilibrium point other than x = 0. As x moves further away from
equilibrium, the force pulling it toward equilibrium becomes larger.

Figure 1.57 Case (1) Figure 1.58 Case (2)

I Example
1.20
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For case (1) when disturbed from unstable equilibrium (in this case for |x| < 3), the
particle leaves the vicinity of the unstable equilibrium point and moves toward the stable
equilibrium point. This is typical of systems that have stable and unstable equilibrium posi-

tions.
Example | A particle of mass m, shown in Fig. 1.59, is acted upon by a force expressed in polar coordi-
1.21 nates as F = k/r%e,, where r is the distance from the origin to the particle. Find the integrals
of the motion.
Solution

This problem is similar to the central force problem discussed in Example 1.12. The angular
momentum about the origin O is conserved, so that it is an integral of the motion. To show
that this indeed is the case, we write Newton’s second law in polar coordinates as

F = ma— r—kze, = m(¥ — r@)e, + m(rd + 2i9)eq fal

We resolve Eq. {a] into its radial and transverse components as

m(i — r6?) = 52 [b]
r
m(rf + 270) = 0 [e]

We first manipulate Eq. [c] and note that
%(#é) = P20 + 2ri6 = r(rf + 2/9) = 0 [d]
which implies that r20 is constant. Hence, one integral of the motion is

r?0 = h = constant [el

This first integral has a physical significance, as it is the angular momentum of the particle
about the origin of the coordinate system
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Hp = r X mv = re, X m(re, + réeg) = mr?0k (L]

This integral of the motion can be directly identified by noting that the applied force F does
not create a moment around O. Next, consider Eq. [b] and eliminate the § term from it using
Eq. [e]. Writing Eq. [e] as 6 = h/r?, and introducing it into Eq. [b], we obtain
2
mi = F(r) = ":h + X [g]

72
The above equation describes a conservative system, with F(r) denoting the conservative
force. The energy is conserved, and it has the form

2
mi? +3 l mh + I;( = E = constant [h]

We identify the above expression as another integral of the motion. For general central force
problems, F = f(r)e,, Eq. [h] becomes jmi* + 1mh*/r? + V(r) = E, where

ver = =[ swyar [
o
For orbital mechanics problems it is convenient to introduce the variable # = 1/r and
to analyze the equations of motion in terms of u. We will study this subject in more detail in
Chapter 3.
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1.13 NUMERICAL INTEGRATION OF EQUATIONS OF MOTION

In previous sections, we saw closed-form approaches for obtaining the response of a
single degree of freedom system described by linear, constant coefficient equations.
Such equations are almost always approximations to more complex equations, often
about equilibrium. Even then, if the external excitation is a complicated function,
finding a closed-form solution of the convolution integral may become prohibitive.
In cases when no analytical tool is available to obtain the response, numerical inte-
gration of the equations of motion by means of a digital computer is often a viable
alternative.

There are several types of computational methods for integrating the equations
of motion of a system and getting its response. The different types of methods are use-
ful in treating different types of equations. We will not go into the various approaches
here, but we will discuss the general principles behind numerical integration.

Dynamical systems are governed by differential equations, where the excitation
and response are usually continuous functions of time. Digital computers are de-
signed to deal with discrete phenomena. Hence, integration of equations of motion
on a digital computer needs to be discretized and carried out on an incremental basis.
The basic idea is as follows: Consider the equation of motion

X(@) = h(x(t), x(1)) + f(2) [1.13.1]

We select a time increment, say A, and initial time, say fy. The time increment
A is also called the sampling period. We feed the computer the initial conditions
for position and velocity at ¢ = o, x(tp), and x(to), as well as the value of the
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external force, f(fo), and invoke the numerical integration routine. The output of the
numerical integration routine will be approximations to the position and velocity at
t = to+ A, x(tg + A) and x(fo + A). This is considered as one step of the integration.

We then go to the second step of the integration. Values generated for the dis-
placement and velocity at the end of the first step, x(fo + A) and x(¢ty + A). are fed
into the computer as initial conditions, together with the external force f(fo + A).
The output is approximations to the position and velocity at the end of the second
step, x(fo + 2A) and x(tg + 2A). The process continues until the final time or other
selected condition is reached.

Two obvious questions involve the selection of the numerical integration ap-
proach, and the selection of the time increment A. One selects the numerical inte-
gration approach based on the nature of A(x(?), x(t)) as well as of f(r). One selects
the sampling period such that the results of the numerical integration are accurate.
A very small value of A increases the computational effort quite a bit, while a large
value of A leads to inaccuracies. Often, the nature of the equations of motion gives
guidelines for the selection of A. For example, in a vibrating system like the one
considered in Sections 1.9-1.11, the sampling period A should be less than 7/6, one
sixth of the period of vibration.

It turns out that almost all numerical integration methods require that the
describing equations be cast into what is known as state form. In state form,
the system is represented by first-order differential equations. The left side of
the equations contain first-order derivatives of the variables and the right side
of the equations do not have any time derivatives. For example, to write the vibrat-
ing system of Eq. [1.10.1] in state form, we introduce two new variables,

z(t) = x(1) 220 = x(@) [1.13.2]
and write the equation of motion in state form as the two equations
21(1) = 22(0)
o) = —0pu () — Aw.z@) + f@) [1.13.3]
For multidegree of freedom systems we have a set of variables {z@)} =
[21(D), 22(2) . . . Zm(?)]T, and can write the state equations as

{z} = [AQz()OD] + [BEzODKf ()} [1.13.4]

in which { f(¢)} is the excitation vector. When linear, constant coefficient systems are
expressed in state form, the equations have the form

{z(O} = [AKz} + [BHSf (D} [1.13.5]

where [A] and [B] are constant coefficient matrices.

Example
1.22

Mdentify the [A] and [B] matrices for the system described by Eqs. [1.13.3].

Solution

We have one input, f(z), so that {f(#)} is a scalar. Thus, [A] is a 2 X 2 matrix, and [B] isa
matrix of order 2 X 1, hence a vector of order 2. We have

cor=[29 w=-[2 L] wm-[] ve-so -
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HOMEWORK EXERCISES

SECTION 1.2

1. Given the values for g = 32.174 ft/sec? and that a block of mass 1 kg has a
weight of 2.2046 Ib, determine how many newtons equals a force of 1 Ib.

SECTION 1.3

2. Show that the radius of curvature of a projectile’s trajectory reaches a minimum
at the top of the trajectory.

3. Consider normal and tangential coordinates and show that the radius of curvature
and torsion are related to the path variable s by Egs. [1.3.39]. Then, consider two-
dimensional motion (x, y) and derive the expression for the radius of curvature
given in Eq. [1.3.15].

4. A pm is constrained to move in a gu1de slot whose curve is defined by y =
—x2 + x, as shown in Fig. 1.60. The pin is being pushed by a motor such that it

yx) =%+ x
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10.

11.

has an acceleration X(f) = 1 + 0.2¢. The initial conditions are at t = 0, x(0) =
—0.6, x(0) = 0. Find the acceleration of the particle when ¢ = 0.5 s, and find
the radius of curvature at that instant.

. A particle moves along a surface defined by z = 2xy, such that x = 3 sina

and y = 3 cos e, in which « is a parameter. Find the unit vectors in the normal,
tangential, and binormal directions, as well as the radius of curvature and torsion
of the curve when a = /4.

. At a certain instant, the velocity and acceleration of a particle are defined by

v = 3i+4j— 6k m/sand a = —2i + 3k m/s”. Find the radius of curvature and
change of speed of the particle at that instant.

. Consider Example 1.3 and find the distance traveled by the particle on the curve

between the points « = 0 and @ = /6.

. A vehicle modeled as a particle of mass m is moving up a spiraled road of con-

stant radius R, as shown in Fig. 1.61. It takes the vehicle five full circles to reach

the top, which is at a height 4 from the bottom.

a. Express the position, velocity, and acceleration of the particle using
cylindrical coordinates.

b. Obtain the relationships between the unit vectors in the cylindrical
coordinates and the normal-tangential coordinates. What is the radius of
curvature?

Using a spherical coordinate system, express R, 6, and ¢ in terms of x, y, and
z. In other words, find the counterpart of Eq. [1.3.63] in spherical coordinates.

A particle is traveling along an elliptic path, described by the equation x%la* +
y2/b* = 1, with a = b. Show—using path variables—that an approximate so-
lution for the perimeter of the ellipse is 277/0.5(a? + b?), and that the solution
becomes exact when a = b. Hint: You will need to use elliptic integrals and
their tables to arrive at your result.

Equations [1.3.32] and [1.3.33] relate the distance traversed along the path in
terms of the rectilinear coordinates x, y, and z as well as the path parameter «.
Derive the equivalent expressions for ds in terms of spherical and cylindrical
coordinates.

e
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Figure 1.62 Figure 1.63

A rod is attached to two sliders moving in guide bars by universal joints as shown
in Fig. 1.62. Find the velocity of slider B when slider A is at a height of 25 in.
and is sliding down with a speed of 3 in/s.

Arod is attached to two sliders moving in guide bars by universal joints as shown
in Fig. 1.63. Find the velocity of slider B when slider A is at a height of 60 cm
and it is sliding up with a speed of 20 cm/s.

SECTION 1.4

14.

15.
16.

Using spherical coordinates, find the equations of motion of the pendulum in
Fig. 1.13.

Find the equations of motion for the double pendulum in Fig. 1.64.

Consider the vehicle moving up a spiraled road of problem 1.8. There is a coef-
ficient of friction of u between the road and the vehicle. Derive the equation of
motion. First, use all three cylindrical coordinates as motion variables and gen-
erate three constrained equations. Then, using the traversed angle as the motion
variable, reduce the equations of motion to one. Treat the vehicle as a bead slid-
ing around a helical wire. A force pushes the vehicle up.

Figure 1.64

79
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17.

18.

19.

20.

21.

22.

Figure 1.66 Figure 1.67

A vehicle modeled as a particle of mass m is moving with constant speed v along
a curved road with radius of curvature p, as shown in Fig. 1.65. The coefficient
of friction between the road surface and the vehicle is . In order to reduce
slipping, the road is banked by an angle 6. Find a relationship between u and 6
that will prevent the vehicle from slipping when the brakes are applied and the
vehicle slows down with deceleration a.

A bead of mass m slides without friction on a wire shaped as the curve z = x2/4,
as shown in Fig. 1.66. Find the equation of motion for the bead.

Find the equation of motion for the mass sliding with friction over a disk of
radius R, as shown in Fig. 1.67. A spring connects the mass with the top of the
disk. The spring is unstretched when 8 = 0.

A particle of mass m is being acted upon by a force F(x, x, t) = xx. Find its
response using initial conditions x(0) = xp, X(0) = vp. Consider two cases: (a)
vo > x3/2m, and (b) vo < x3/2m.

Find the equation of motion of the system in Fig. 1.68. The two sliders have mass
m and the link is massless. Friction affects only the slider moving horizontally.

A steel ball of mass 0.2 kg is released into the frictionless inner surface of a
cone with an apex angle of 15°, at a distance of 65 cm from the apex, as shown

Massless




HOMEWORK EXERCISES 81

Figure 1.70

in Fig 1.69. What should be the initial speed of the ball, so that the ball does not
fall to the bottom of the cone and its elevation remains the same? Use spherical
coordinates.

23. The wedge (15°) in Fig. 1.70 of mass M rests on a rough platform with coefficient
of friction u. A mass m, is suspended by a string and is attached by a pulley to
another mass m; which slides without friction on the wedge.

a. Solve for the accelerations of m;, m;, and the tension in the string when u
is sufficient to keep the wedge from moving.
b. Find the smallest value of u for which the wedge remains at rest.

SECTION 1.5

24. Determine the number of degrees of freedom for the systems shown in Figs.
1.71 and 1.72.

Ll L I I47

3m

ZZ

Figure 1.71 Figure 1.72
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Figure 1.73

SECTION 1.6

25. A fugitive who weighs 180 1b is running on top of a train. The train car weighs
10,000 1b and is moving at a speed of 5 mph, as shown in Fig. 1.73. The fugitive’s
goal is to jump onto the next car, which has the same mass and speed and which
has just separated from the car behind it. As the fugitive jumps, he resembles a
projectile which has left the ground with an angle of 30° and a speed of 20 mph
relative to the train. What is the speed of the second car after the fugitive jumps
on it and he comes to a stop on the train?

26. Consider the double pendulum in Fig. 1.64. An impulsive force F is applied

to m, in the horizontal direction. Find 91 and ()2 immediately after the im-
pulse.

SECTION 1.7

27. The forces acting on a particle, expressed in the Cartesian coordinate system,
are F = 2x +3x2y—y* +4,Fy, = 2y + x> = 3xy* + 1, F; = 0. What is the
potential energy V?

28. Find the period of oscillation of a simple pendulum for arbitrary motions of the
pendulum.

29. A particle slides over a circular cylinder of radius R, as shown in Fig. 1.74.
The angle that the line connecting the center of the cylinder with the particle
makes with the vertical is denoted by 8. The particle is slightly tilted with speed

@ (b)

Figure 1.74
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vo in the x direction at the top of the cylinder. Find the value of the angle 6 when
the particle and cylinder lose contact.

Consider the particle in the previous problem. The particle is released from the
top with an initial velocity of vo = vyl + vy,j, and u = 0.1. Derive the equa-
tions of motion, and discuss the difficulties in solving for the value of 6 when
the particle loses contact with the cylinder.

SECTION 1.8

31.
32.

33.

34.

Find the equilibrium position for the system in Fig. 1.72.

Find the equilibrium position(s) of a particle of mass m = 1, which is acted
upon by the forces:

a. F(x,x) =06x+x—0.1x> b F(x,x) = —0.4% + x + x% + 0.05x2
A particle of mass m is at the tip of a massless rod of length L and is being used
as an inverted pendulum attached to two springs, as shown in Fig. 1.75. Find the
equilibrium positions for the mass and check for their stability. Assume small
motions and that the springs always deflect horizontally.

Assess the stability of the equilibrium points associated with the mass in Prob-
lem 1.32.

SECTION 1.9

35.

36.

37.

Obtain the equation of motion for the system shown in Fig. 1.76. The rod is
massless. Then, assume small motions and linearize.

Obtain the equation of motion and calculate the natural frequency of the two-
pulley system shown in Fig. 1.77. Assume that the pulleys are smooth and
massless.

Consider Example 1.17 and that a dashpot of constant ¢ = 0.3 1b * sec/in act-
ing on the mass-spring system. Find the displacement and velocity after two
seconds.

e

at—L3——L13——1L/3—
=
[9)

e
B

Figure 1.75 Figure 1.76
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Figure 1.77 Figure 1.78

SEcTION 1.10

38.

39.

40.

41.

42.

A machine of weight 50 1b is mounted on a 110 1b table (vibration isolator),
which is supported by three springs of constant 500 1b/in each, as shown in
Fig. 1.78. The rotor inside the machine rotates with a speed of 1000 rpm, and it
generates a force that varies harmonically between —30 and 30 1bs. Find the am-
plitude of the response, assuming that the table has no rotational motion. What
is the force transmitted to the support?

A machine with rotating components is to be placed on four springs and four
dashpots. The machine weighs 200 1b and it operates at 600 rpm. Design the
spring and dashpot constants such that only 50 percent of the shaking force of
the unit is transmitted to the supporting structure, and { = 0.3.

A mass-spring-damper system has a mass of 10 kg and spring constant of 500
N/m. The viscous damping coefficient is not known and is to be determined ex-
perimentally from the frequency response. When the system is excited by a fre-
quency @ = 14.5 rad/s, the magnification factor is observed to be 0.3, and when
w = 11 rad/s, the magnification factor is 0.65. Find the damping coefficient that
will give values for the magnification factor closest to the two measurements.

In Fig. 1.28, the mass M moves according to the relation x(f) = xo cos wt. Find
the equation of motion for the pendulum, assuming that 6 remains small at all
times.

Consider the small motions of the double pendulum in Fig. 1.64. Let 8, be spec-
ified and find the resonance condition for 8,. Then let 8, be specified and find
the resonance condition for 8.

SEcTION 1.11

43,

The step response of a system is the response to the excitation f(#) = 1u(?) in
Eq. [1.10.1], with zero initial conditions. Find the step response for an undamped
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system and show that the derivative of the step response is the impulse response
g().

An undamped mass-spring system (mx + kx = F) is subjected to the excitation
F(f) = tu(z), with zero initial conditions. Find the response.

An undamped mass-spring system is subjected to the excitation F(f)
!t = o) and no excitation after ¢ > #;. The initial displacement is x
with no initial velocity. Find the response.

Fo (0 =
—Fy/3k,

An undamped mass-spring system is subjected to the excitation F(f) =
F{ sin 2w 2, with zero initial conditions. Derive an expression for the response.
Compare this expression with the frequency response in Section 1.10 and com-
ment on the difference.

SECTION 1.12

47.

48.

49.

A particle of mass m is being acted on by a force expressed in polar coordinates
asF = k6/r ey, where k is a constant. Find the integrals of motion of this system.

A particle of mass m is being acted on by a force expressed in spherical coordi-
nates as F = kReg, where k is a constant. Find the integrals of motion of this
system.

Find the integrals of the motion for the pendulum shown in Fig. 1.13.
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RELATIVE MOTION

2.1 INTRODUCTION

When motion is observed from an inertial frame, the expressions for velocity
and acceleration have simple forms. Often it is necessary or advantageous to ob-
serve motion from a moving reference frame rather than an inertial frame. One
can find examples of this from, among other cases, machine dynamics, vehicle
dynamics, and motion relative to the rotating earth. In machine dynamics, one
needs to relate the motion of one component to the other. Measurement of motion
from a moving vehicle or platform is a common necessity. And, in an expanded
sense, all motion measured on the earth is with respect to a rotating coordinate
system.

Ignoring the earth’s rotation is a realistic assumption in a number of problems.
Motion over short distances and over short time intervals can be accurately analyzed
without considering the earth’s rotation. In a number of cases, though, the effect of
having a noninertial reference frame must be considered. For example, for computa-
tions associated with weather patterns and ocean dynamics, and just about any type
of motion over long time periods, neglecting to consider rotation of the earth gives
incorrect results.

In this chapter we consider the motion of reference frames with respect to each
other and establish relative motion equations. A major difference between an inertial
and a noninertial reference frame arises when we calculate the derivatives of vec-
tors. We distinguish between local derivatives, that is, derivatives calculated from
moving reference frames, and global (or total) derivatives, which are calculated with
respect to inertial reference frames. We discuss the differences in form between the
translational velocity vector and angular velocity vector and emphasize that angular
velocity is a defined vector, rather than the derivative of another vector. We consider
motion involving the rotating earth. Within this context, the reader is introduced to a
basic perturbation technique to obtain approximate solutions to complex problems.

87
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2.2 MOoOVING COORDINATE FRAMES

Consider two coordinate frames: XYZ, a fixed frame with origin at O, and xyz, a
moving frame with origin at B, as shown in Fig. 2.1. We define the unit vectors
along the fixed axes X, Y, and Z by I, J, and K and along the moving axes x, y, and
z by i, j, and k, respectively.

We are primarily interested in the case when the moving xyz frame rotates. Con-
sider the motion of a point P. One can observe the displacement of P from the inertial
frame, using the vector rp, or from the relative frame, by the vector rpg. From vector
calculus we write

Irp = Ip + Ipg [2.2.1]

For the sake of discussion, assume that points O and B coincide, and drop the
subscript P. One can expressr = rpasr = XI + YJ+ ZK orr = xi + yj + Zk.
To investigate the relationships between the velocities as observed from the differ-
ent frames, we differentiate r with respect to time. In terms of the inertial frame
components, because the unit vectors I, J, and K are fixed in direction, we have

v = %r = XI+ ¥YJ + ZK [2.2.2]
and in terms of the moving frame
V= xi+yj+ K+ xi+yj+zk [2.2.3]

The first three terms on the right in Eq. [2.2.3] describe the velocity as observed
from the relative frame. The last three terms describe the rate of change of the unit
vectors and, hence, the contribution due to the motion of the relative frame itself. The
normal-tangential, cylindrical, and spherical coordinates that we studied in Chapter
1 are in essence rotating coordinate systems.

We identify two types of terms: the local derivative terms, taken in the relative
frame, and an added set of terms that depend on the motion of the relative frame. The
local derivatives together with the added terms constitute the global derivative terms,
measured in the inertial frame. From this comes the simple but important conclusion
that derivatives of a vector are different quantities when taken in different reference
Jrames. One must clearly specify which reference frame the derivative is taken in.

Figure 2.1
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Using a similar approach, we obtain the expression for the acceleration of point
P as

a= %v = #i+ 3+ k+xi+yj+k+ 200+ yj+ k) [2.2.4]

The first three terms on the right in this equation describe the acceleration as
observed from the relative frame. They constitute the local second derivative. The
next three terms describe the acceleration of the relative frame. The last three terms
exist because there is motion with respect to a moving reference frame. These terms
arise from two sources: the differentiation in time of the unit vectors in the expression
xi + yj + ZK, and the differentiation of the displacement variables in the expression
xi + yj + zk. These are known as the Coriolis terms.

We obtained Eqs. [2.2.3] and [2.2.4] by a straightforward differentiation of the
displacement expressions. We followed this procedure in Chapter 1 when obtaining
derivatives of unit vectors associated with the coordinate systems we were consid-
ering. One may ask whether there is a more general way to obtain derivatives of
vectors. Indeed, there is, as we will see later on in this chapter.

When selecting a moving coordinate system, one must establish the relationship
between the inertial and the moving coordinate systems. A simple illustration of a
coordinate transformation is given in the example that follows.

Wiater is flowing out of the garden sprinkler in Fig. 2.2 with the constant speed of 2 m/s. The
sprinkler arm rotates counterclockwise at the constant rate of 20/7r rpm. As it exits the sprin-
kler, the water makes an angle of 15° with the horizontal. Find the velocity and acceleration
of a particle of water as it leaves the sprinkler arm, and the velocity 0.05 seconds later.

We have two convenient locations to define the origin of the relative axes: to place point B at
the pivot, or to place point B at the tip of the sprinkler. Let us locate point B at the pivot, so
thatrp = 0, vz = 0. We define the inertial coordinate frame with the Z direction along the
vertical. The orientation of the relative axes is selected such that the Z and z axes coincide
and that the projection of the sprinkler on the XY plane is along the x axis. Defining the angle
between the X and x axes by 6, the xyz frame is obtained by a counterclockwise rotation about
the Z axis by 6, as shown in Fig 2.3. We have

i=cosfI+sind] Jj = cos8J — sin6I k=K [a]

‘ Example
2.1
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Differentiation of Eq. [a] with respect to time yields the rates of change of the unit vectors
i,j),and k as

di - : A d R o pe dk _
7 6sin 6L + 0 cos 0] = 6j yri Ocosfl — §sinf) = —06i Tl 0
G WY ) I ST Y. S T d’k
p7 a3 + o_dt = 0j— 0 r7 i 0i e_dt = —0i— 0 yra —[(:.]

indicating that the component of the motion in the z-direction is not affected by the motion of
the relative frame. The rotation of the moving frame is described by
5, _ 20 rev Imin27rad _ 2

7 min 60s rev 3 rad/s 6=0 Le]

It is useful to write the position vector associated with a water particle inside the sprink-
ler as

rp =TIpp = xi+ Zk [d]

so that the coordinate y and all its derivatives are zero. Using this information, Eqs. [2.2.3],
[2.2.4), and the vector derivatives in Egs. [b],

vp = i+ Kk + xi = xi + 2k + x0j [e]
ap = ii+ 7K+ xi + 2xi = #i + 7k + x(6j — 0%) + 2x0j I
As the water particle is about to leave the sprinkler, we have from Fig. 2.2,

x =04m z=03m X = 2cos15° = 1.932 m/s

z = 2sin15° = 0.5176 m/s i=%2=0 Ig]

Substituting the above values into Egs. [e] and [f], we obtain
vp = 1.932i + 0.2667j + 0.5176k m/s )
ap =04 (Oj - gi)+ 2(1.932)§j = —0.1778i + 2.576j m/s* )]

Because the xyz axes are continuously changing direction, the velocity and acceleration can
be expressed more meaningfully using their components in the vertical and in the horizontal
plane. We can hence write

Uyerr = 0.5176 m/s Uhoriz = v 1.9322 + 0.26672 = 1.950 m/s n

As soon as the water particle leaves the nozzle, the only force that acts on it is gravity.
Also, we are no longer viewing motion from a set of rotating coordinates. It is more convenient
now to look at the horizontal and vertical components of the velocity. Ignoring air resistance,
the horizontal component of the velocity does not change. The vertical component changes
due to gravity, which we can express as a = —9.807K m/s2. After 0.05 seconds, the vertical
component of the velocity becomes

Uverr = 0.5176 — 0.05(9.807) = 0.02725 m/s k]

indicating that the water particle is about to start going down.
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2.3 REPRESENTATION OF VECTORS

In this section we describe different ways of representing vectors. Consider a rec-
tilinear coordinate system with unit vectors e;, €, and e3 and two vectors r and u
defined as

r = rje; + rne; +res u = uje; + uzey; + uzes [2.3.1]

We will refer a set of vectors described this way as geometric vectors or spatial
vectors. The dot and cross products of these vectors yield the results

reu = rju; + rpup + r3us
rxu = (ruz — r3upi + (r3u; — rius)j + (riug — raupk [2.3.2]

We also express the vectors r and u in column vector format as

r U
{r}=1|n {u} = luy [2.3.3]
r3 u3

The column vectors {r} and {u} are also referred to as algebraic vectors. Using this
description, we can express the dot product of two geometric vectors in column vec-
tor format by

reu — {7 {u} [2.3.4]
where T denotes the matrix transpose. To express the cross product r X u using

column vectors, we introduce the skew-symmetric matrix [7] associated with the
vector r, and write

0 -nr r
Al = r; 0 —n [2.3.5]
it &) r 0
so that
rauz — r3up
rxXu— [F{u} = |rsu; — nus [2.3.6]
riu; — ni

Hence, the geometric vector operation of r X u and the column vector operation
of [Fl{u} are equivalent. Note that because r X u = —u X r, we can also write
[Flu} = —Lalr}.

In dynamics, one frequently encounters the vector product r X (r X u), which is
used to describe centripetal acceleration. The expression is commonly shortened to
r X r X u, with the understanding that the cross product between r and u is performed
first. Using the notation introduced above,

r X (r X u) — [F[FH{u} [2.3.7]

and we note that the matrix multiplications in [#][F]{#} can be performed in any order.
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The relations derived above are only valid when all vectors involved are ex-
pressed in the same coordinate system. If the vectors r and u are not represented in
the same coordinate system, Eqgs. [2.3.4] and [2.3.6] no longer hold. For example, if
we have two coordinate systems with unit vectors e;e,e; and e;e;e; and two spatial
vectors r and u in the form

I = rie; + re; + rie; u= ulei + uzeé + u3e§ [2.3.8]

their dot product becomes

3 3
reu=> > riue;ce; > {r}T[cHu} [2.3.9]

j=1k=1
in which r and u are given in Eq. [2.3.1] and the matrix [c] has the form

erce; e *e;, e e}
[c] = |exe] erce) e;-e [2.3.710]
e;ce; e3ce, e3ce;

The expression [c]{u} can be viewed as the column vector representation of u using
the e; e;e; triad. Conversely, the expression {r}”[c] can be viewed as the transpose of
[c]7{r}, the column vector representation of r in the e e/} triad. In the next section,
we will formally define the entries of [c] as direction cosines.

It should be noted that sets of geometric vectors can also be represented in col-
umn vector format. The elements of the column vector will be geometric vectors.

For instance, the triad e;ee; can be written as

€
{e} = le, [2.3.11]
€3

This form is also useful when taking dot or cross products of unit vectors. For exam-
ple, the expression g = ge; + g,e; + g3e3, where gi(i = 1,2, 3) are scalars, can be
written using the column vector format as g = {e}” {g} in which {g} = [g1 2283

The column vector notation is not restricted to describing geometric vectors.
This formulation is commonly used to represent variables in a Euclidean space.

Next, consider differentiation of scalars and vectors with respect to other vec-
tors. This procedure can be conveniently illustrated using column vectors. Consider
the scalar S and a vector {g} = [¢; ¢q» ... gn]" of dimension n, where the el-
ements g1, g2, .. ., 4, are independent of each other. The derivative of S with re-
spect to {g} is defined as the n-dimensional row vector dS/d{q}, whose elements have
the form

a5 —[‘;S 95 ﬁ} [2.3.12]

dlgt ~ oq dq:"" 9qn
In compact form, dS/d{q} is also written as Sigy- When {q} is the column vector rep-

resentation of a geometric vector in rectilinear coordinates, the above operation be-
comes similar to the gradient operation. We can write VS = [ds/di{g}’.
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In a similar fashion, we obtain the derivative of a column vector with respect to
another. Given the column vector {u} of order m, where {u} = [y u ... um)7,
the derivative of {u} with respect to a vector {g} of order 7 is obtained by differenti-
ating every element of {u} with respect to every element of {q}. The end result is the
m X n matrix, referred to as the Jacobian, and denoted by [{u}i;] or by [1,], having
the form

o ow ]
dgi  dq2 9qn

diu} uy w9

aa = Hulg] = [ugl = 3q1 g 9Gn [2.3.13]
Um Uy dum
[9qy dqz " g

We now investigate some of the special forms of the scalar § and its derivative
with respect to a vector. Consider, for example, the n-dimensional column vectors

{v} =[vi vs ... vl and{gq} and define the scalar S as
S = {v}'{q} = {g}"{v} = > viax [2.3.14]
k=1

in which ve(k = 1,2, ..., n) are the elements of {v} and g;(k = 1,2,..., n) are the
elements of {g}. Taking the derivative of S with respect to {g}, we obtain

as  d(v){g)

dlgg  dig} [2.3.151
n n n
vy vy vy
= (v + E gr—— U2+ qrm— .- Unt qk
rer i i1 9% ioi 99

For the special case when the elements of {v} are not functions of gx, vj # vj(qs),
(j, k = 1,2,..., n) we obtain

45 _ 9

digt  dlq}

If we write the vector {v} as {v} = [D]{h} where [D] is a square matrix of order

n and {h} is an n-dimensional vector, so that § = {h}"[D]"{g} = {g}" [D}{h} and

consider the case where none of the elements of [D] and {h} are a function of {g},
then

({v}T{q}) =} [2.3.16]

s _ d{{n"IDI"{g})
diq} dig}

It follows that if [D] is not a function of {#} the derivative of S with respect to {h} is

ds _ d{inT(DI"{g)) _ dfg}"IDXR) _ .7
= = = D 2.3.18
In mechanics, one commonly encounters scalar quantities that are quadratic in
terms of the motion variables, such as kinetic and potential energy. Define S as

= {n" D" [2.3.17]
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S = {g}"[D){q}. The derivative of S with respect to {g} in this case has the form

d—‘% = {g}"[D] + {g}" [DY" [2.3.19]
and when the matrix D is symmetric, this becomes

d(g"(DUgY) ., r

&g~ dar'ID] [2.3.20]

Consider the symmetric form above and the case when the matrix [D] has ele-
ments that are functions of {g}. We frequently encounter this situation in Lagrangian
mechanics. The derivative of a matrix with respect to a vector is a tensor of order
three. We can avoid dealing with tensors of order three by taking the derivative of
the product [D){g}, so that we now have

d(ef"(DYg}) _, r d([D1"{g})
—_— = D] + T———— [2.3.21]
Next, let us obtain the derivatives of functions of several variables with respect
to time. Consider the scalar x, which is a function of n variables q1, 92, ..., g, and
time 7, so that x = x(q1, g2, ..., gn, t). The derivative of x with respect to time is
obtained using the chain rule as
. dx ax dx
k== Z 5ar 2o et o [2.3.22]

We can express this relationship in column vector format. Indeed, introducing the

column vector{g} = [q1 ¢» ... gnl7, we write Eq. [2.3.22] as
dx ) dx
= a{q}{ }+ = xglq} + > [2.3.23]

where we recall that the derivative of a scalar with respect to a column vector is a
row vector. Extending this to the case when the time derivative of a column vector {r}

is sought, where {r} = [r;, r» ... r,]7, where ri =ri{q1, 92 ....qn 1), (j =
1,2,..., m) we obtain

. . ar ar

{r} = Hrkg}d4} +{ 5] [rgKq} + { 3 t} [2.3.24]

in which [{r};] = [r,] is recognized to be a matrix of order m X n. When {r} is the
column vector representation of a geometric vector, m = 3 and [rg]becomesa3 X n
matrix with [r,]jx = drjldq, (j = 1,2,3; k = 1,2,..., n). To visualize this better
we express the vector {r} in terms of a set of unit vectors as

{rt=1[n rn nl" r=re +nre+re [2.3.25]
so that
nor or 3. dr; 3. [N ar; or;
r = —gr+— Oor r = _J_e.= _j.'+_1 .

[2.3.26]
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To evaluate the second derivative of {r}, we use the chain rule again. We wish to
avoid taking the partial derivative of a matrix with respect to a vector, so we make
use of Eq. [2.3.21] and write

%r

R
{7} = [rgHgh + (IrgHgt) g, {4} + 2 [rHg} + [ e

] [2.3.27]

The second term on the right side of this equation can also be expressed as
([reH@d)) 1} = Uy [riggd} {6} LraggHg} {4} [raggHgH"  [2-3.28]
in which the elements of the matrices [r;4l(j = 1,2, 3) are
J*r I

Fioadiv = =123 1,k=12...,n [2.3.29]
[jqq ik aqiaqk J

It is important to remember that the differentiation operation is conducted in
the same reference frame as the vector r is measured in. In the above equations we
considered an inertial frame.

Consider the two coordinate systems XYZ and xyz, with unit vectors LIJK and ijk. The xyz co-
ordinate system is obtained by rotating the XYZ system first by an angle of 30° counterclock-
wise about the Z axis and then rotating the resulting intermediate x'y’z’ coordinate system
by 45° clockwise about the y' axis. Fig. 2.4 shows the rotation sequence. Given the vectors
a=31+4J+6Kandb = 2i + j + 2Kk, find a*b and the matrix [c].

Solution
We first represent the unit vectors ijk in terms of LJK. From Fig. 2.4, we can write the unit

Tyl !

vectors of the intermediate x'y'z’ axes as
i’ = cos30°I + sin30°J j = —sin30°I + cos 30°J k' =K [a]

The xyz coordinate system is related to the intermediate axes by a clockwise rotation of
45° about the y' axis, so that—using the short notation for the sine (s) and cosine (c) of an

Z7

Figure 2.4

| Example
2.2
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angle—the unit vectors in the coordinate systems are related by
2
i=c45% +s45°k’ = c45°(c 30°1 + 5 30°)) + s 45°K = ?I + ‘/T_J + ‘/TEK [b]
j=j§ =-s30I+c30°) = — ; +J7§J [e]
k = —s45%' + c45°k’ = —s45°(c 30°T + s 30°]) + c 45°K = —él - ?J + ——?K
[d]
Introducing these expressions to the vector b, we obtain
b=2i+j+2k = 2(£I+ £J+ £K) %I+ ‘/T§J+2<——{‘—EI
- £J+ £K) —%I+ §J+2\/EK [e]
We can now find the dot product of a and b as
a.b_3( 2)+4</2§)+6(2ﬁ)= 18.94 If1
Let us now generate the direction cosine matrix and write
[Isi I+j I°k c45°¢c30° —s30° -—s45°¢30°
[e]=|Jei Jej Jek|=|c45°s530° c30° -—s45°s530° gl
K«i K-+j K<k s 45° 0 c45°
V64 —112 ~ Jel4
= (V24 B - J2ua
V22 0 J2n
To find the dot product using column vectors we use Eq. [2.3.9], which yields
Jol4 —112 - J6/4[2
b = {a}"[c{b} = [346]|V24 32 ~/2/4||1] = 18.94 [h]
NGY/ 2 (NNLY))
which, of course is the same as the result in Eq. [f].
Example Figure 2.5 shows a door opened at an angle . On the door at point C is an ant that starts
2.3 crawling upwards in a straight line. Its path makes an angle ¢, which is fixed, with the bottom

of the door. Determine the position of the ant, and obtain the velocity of the ant using Eqgs.
[2.3.23] through [2.3.26].

Solution

We attach the inertial coordinates XYZ to the door frame and the moving coordinates xyz to
the door, as shown in Fig. 2.6. The xyz axes are obtained by a clockwise rotation of XY Z by
an angle of 8 about the Z axis. The position of the ant is

r = —LKk+ hi+ s(—cos¢i + singk) = (h — scos p)i + (—L + ssinp)k [a]
We relate the inertial and moving coordinates by
k=K i = cos(—0)I + sin(—6)J = cos 01 — sin0J Ib]
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\h

\ C

Figure 2.5 Figure 2.6

which, when introduced into Eq. [a], yields
r = (h—scos¢)cos0I — (h — scosp)sinfJ + (—L + ssinp)K [e]

Two variables that can describe the motion are @ and s so that {g} = [6 s]7. To find the
velocity of the ant, we write the position vector in column vector form. We then find [r,],
which will be a 3 X 2 matrix, with its columns containing derivatives of {r} with respect to 6
and 5. We thus have

(h — scos¢)cos —(h — scos¢)sinf® —cos¢dcosh
{r} = [—(h - scos¢)sin0} [r] = l—(h — scos¢)cos b cos¢sin0} [d]
—L + ssing 0 sin ¢

Noting that there is no explicit time dependence in the position vector, we can write the
velocity as

[—(h — scos@)sinf@ — coscpcosf]
—(h — scos¢)cos 8 cos ¢ sin 6

{v} = [rolg}

.
—
G D
| S )

0 sin ¢
[—(h — scos ¢)sin BQ — cos¢dcosBs]
= | —=(h — scos¢p)cos 08 + cos@sinfs [e]
sin ¢s

While one can obtain the above relation by direct differentiation of Eq. [c], the use of
Eq. [2.3.24] lends itself to efficient computer implementation and is preferred for more com-
plex problems.
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Consider two coordinate frames, x;x,x3 with unit vectors e;, e;, and e3; and x;x,x3
with unit vectors e}, e}, and e;. Without loss of generality we select the frames such
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622

Figure 2.7

that their origins coincide, as shown in Fig. 2.7. The position vector to a point P can
be expressed as

r = xj€ + x2€; + x3€3 = x;€] + x,€; + x3€3 [2.4.1]
in which
X1 =re*¢; X2 =TI*€ X3 = rees
X =ree X, =ree; X3 =Treey [2.4.2]

These terms can be generalized to resolve the vector r into its components along a
coordinate system with unit vectors e;e,e; as

r =(reeye; +(reeye, + (reeses [2.4.3]

In a similar fashion, we can express unit vectors in the two coordinate systems
in terms of each other. For example, we express the primed unit vectors as

e; = (ejce))e; + (ej*er)e; + (e] *e3)e;
e; = (ey°ep)e; + (e er)e; + () *e3)e;
e; = (e3+ep)e; + (e *ex)e; + (e e3)es [2.4.4]

Let us now examine the nature of the dot product terms in Eqgs. [2.4.4]. Take,
for example, €] * €, = e; * ;. Evaluating that expression, we obtain

e ey = e;°e; = |ef||er]cos By = cos by [2.4.51

where 6 is the angle between the x, and x; axes (Fig. 2.7). The dot product
between two unit vectors is equal to the cosine of the angle between them. We define
a quantity called direction cosine between the two axes x; and x; by the cosine
of the angle between the x; and x' axes, and denote it by ¢; i =€ -e} = cosf;;
(i, j = 1,2,3). The angles that the coordinate axes make with the axes of another
coordinate system are called direction angles. Considering the preceding relations,
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one can write for x;

x; =ree; = (x1€; + x2€3 + x3€3) ¢ [(e] *€1)e; + (€] *ez)ey + (€] * e3)e;]

xle'l *e; + X2e’1 *e; + x;eﬁ *e3 = X)C1] T X2021 + X3C3 [2.4.6]

Similar expressions are derived for x; and x;. Define the column vectors {r} and {r'}
as

T
{r}=[x1 x =x3] {rY=1x; x5 x17 [2.4.7]
and the direction cosine matrix [c] as
it €12 €13

[cl = |c1 ¢ 3 [2.4.8]
€31 €32 (33

which leads to the relationship between {r'} and {r} as
{r'} = [c]"{r} [2.4.9]
Next, we express x1, X2, x3 in terms of x;, x5, x3. Following the same procedure
as above, we obtain
x| = cnixp + cixp + c13x3
X3 = c1x1 + €22X3 + C3X3
X3 = c31x] + cnxy + €33%3 [2.4.10]
which can be written as
{r} = [clr'} [2.4.11]

Equation [2.4.9] can be inverted to yield {r} = [c]~T{r'}. Comparing with Eq.
{2.4.11], we conclude that the direction cosine matrix is a unitary (also called or-
thonormal) matrix, that is, its inverse is equal to its transpose, or

[l =[c" [’ =[1] [2.4.12a,b]

where [1] is the identity matrix.
Observe from the preceding equations that the unit vectors can also be expressed
in terms of each other using the direction cosine matrix. Defining the column vectors

!

€y €,
{e} = |ey e} = |e; [2.4.13]
€3 eg
it is easy to show that
{e'} = [c){e}  {e} = [cHe} [2.4.14]

Be aware that the definition of direction cosine we are using here is not univer-
sally accepted. Some texts instead define the direction cosine as ¢;; = €] *e;.

We defined one direction cosine for each angle between the ith and jth coordinate
axes, for a total of nine. The question arises as to how many of the direction cosines
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are independent of each other. Equation [2.4.12b] represents six independent equa-
tions that relate the direction cosines (six because of the symmetry of the equations),
reducing the number of independent direction cosines c;;, and hence independent
angles 6;;, to three.! It follows that, at most, three parameters are necessary to rep-
resent the transformation from any given configuration of coordinate axes to another
one.

The important question is how to select these parameters. One possibility is to
use three rotation angles. In this case, any two successive rotations need to be about
nonparallel axes. Otherwise the rotation angles will not be distinguishable. Another
possibility is to use a single rotation about a particular axis. We will make use of this
case in Chapter 7.

Let us consider three rotation angles and analyze how one can accomplish rota-
tions of coordinate systems, and explore means of expressing rotations of coordinate
systems and the rates of change of these rotations. To this end, we identify two ap-
proaches: a body-fixed rotation sequence and a space-fixed rotation sequence.

To carry out a body-fixed rotation sequence, begin with an initial frame and
rotate it about one of its axes. Make the next rotation about one of the axes of the
rotated coordinate system, which leads to a third coordinate system. Then rotate this
third coordinate system about one of its axes to obtain the final frame. This rotation
sequence can be visualized by imagining a box attached to the moving reference
frame. Each rotation is performed along one of the edges of the box. The position of
the box with respect to the final rotated coordinate frame is the same as its position
with respect to the initial frame.

Consider an initial frame x;x,x3 as shown in Fig. 2.8, and rotate it by an angle
of 61 about the x; axis. Denoting the resulting frame by y; y2y3, we have

Y1 = X y2 = xpc086) + x3sin 6, y3 = —xs8inf; + x3cos8,
[2.4.15]

6
X1

Figure 2.8 A 1 rotation
1One can demonstrate this by writing [c] as three column vectors [{a} {a} {03}]. These vectors are orthonormal

vectors, and they represent the direction angles of the axes of the transformed coordinates. Equation [2.14.12b)
represents the six possible dot products among these vectors.
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or, in matrix form,

{ = [Ril{x} [2.4.16]
in which
»n X1 1 0 0
DY =|» {x}=|x [R]=|0 cos@, sin6;| [2.4.17]
y3 X3 0 —sinf; coséh,

where [R,] is referred to as the rotation matrix. We recognize that [R;] is the trans-
pose of the direction cosine matrix between the two coordinate systems, [c;] =
[R;]7. The above transformation is also known as a I rotation, denoting the axis
about which the rotation takes place.

Take the y; y,y3 axes and rotate them by an angle 6, about the y; axis (Fig. 2.9).
This type of rotation is called a 3 rotation. Denoting the resulting frame by z;2,23,
we can show that

{z} = [R2l{y} [2.4.18]
in which
21 cosf, sinf, O
{z2} = |22 [Ry] = | —sinf, cosf, O [2.4.19]
3 0 0 1

The rotation matrix [R;] is the transpose of the direction cosine matrix between {z}
and {y}. Finally, rotate the z,z,z3 axes by 85 about the z, axis (a 2 rotation) to obtain
the x| x;x; axes (Fig. 2.10). Similar to the previous rotations, we have

{x'} = [Rsl{z} [2.4.20]

Y3, 23

Plane of z;z; and xyx;

0;

7 x|

Figure 2.9 A 3 rofation Figure 2.10 A 2 rofation

22, %
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in which
Xy cosf; 0 —sinfy
{x}=|x [R3l=] O 1 0 [2.4.21]
X3 sinf; 0O cos 03

To obtain the xjxjx; axes from the x;x;x3 axes, we combine Egs. [2.4.16]

through [2.4.21], which yields
{x'} = [RIRAIR ){x} = [c3] [e2)  [e1]"{x} = [Rl{x} [2.4.22]

in which [R] is the rotation matrix between the unprimed and primed coordinates.
It is clear that [R] = [c]7, where [c] = [ci]lcz2][c3]. The transformation we have
just performed is referred to as a 1-3-2 rotation sequence, describing the order of the
axes about which the coordinate systems are transformed.

We can continue to perform more rotations of the kind above, and in some cases
it may be convenient to do so. However, performing more rotations than three intro-
duces a redundancy. As an illustration, consider again the same rotation sequence.
Given the direction cosine matrix between the initial and rotated frames, and what
the rotation sequence is, one can uniquely determine angles 6, 6, and 83. This is
because Eq. [2.4.12b] describes three independent equations which can be solved
for the three unknowns 81, 6,, 8. If we have a fourth rotation, with an angle 64,
we still have three independent equations; but now we have four unknowns with no
unique solution.

All rotation matrices [R;] (i = 1,2, 3) have determinants equal to 1, that is,
det[R;] = 1. From linear algebra,

det[R] = det([R:}[R:][R;]) = det[Rs;]det[Ry]det[R;] = 1 [2.4.23]

so that the combined transformation from {x} to {x'} is carried out by a matrix whose
determinant is equal to 1. This implies that the direction cosine matrix between {x}
and {x'} has a determinant of unity. The determinant of a general orthogonal matrix
is *1, so that we have in effect shown that for an orthonormal matrix to represent a
direction cosine matrix, its determinant must be equal to unity. One can show inde-
pendently of the preceding argument that the direction cosine matrix between any
two right-handed coordinate systems has a determinant equal to 1.

The second approach mentioned for describing rotation transformations between
coordinate systems is by means of the space-fixed rotation sequence, where the ro-
tation transformations are carried out about the initial axes. Consider a set of initial
coordinates xyx,x3. We first rotate this frame about the x; axis by an angle 6, to
obtain the y; y,y; axes and call this rotation matrix [R;]. Then, we rotate the v, y,y3
coordinates about the x, axis by an angle 6, to obtain z;z,z3 coordinates. We de-
note this transformation matrix by [R;]. In a similar fashion, we perform the third
transformation about the x3 axis by 63 to obtain the final coordinate system x; x;x;.
Denoting the rotation matrix by [R3], one can show that the final coordinates are
related to the original coordinates by

{x} = [Rx} = [Ril[R][R3]{x} [2.4.24]
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Rotation Rotation
by 90° about x, by 90° about y;

2 2

3:¥3

] (©

Rotation Rotation
by 90° about x5 by 90° about y,

X3, Y3 )
Y2

21N

N

(d) (e o))

Figure 2.11 Finite rotations do not commute

Looking at Eq. [2.4.24], we see that the final transformation matrix is in reverse
order compared with the transformation matrix for body-fixed transformations.

In general, one uses body-fixed transformations to relate one coordinate system
to another. It is usually more convenient and meaningful to visualize the motion and
to express angular velocities and accelerations in terms of a set of axes attached to
the body. Nevertheless, space-fixed rotations provide an alternate description, and
they help one to visualize the rotation angles.

We are interested in expressing transformations from one coordinate system to
another as vectors. We can see from the preceding analysis that the order in which
the rotations are performed makes a difference in the orientation of the transformed
coordinate system. One can verify this visually, by just taking a book and rotating
it about two axes in different sequences. The concept is illustrated in Fig. 2.11 for
a body-fixed rotation sequence. One can illustrate this concept using a space-fixed
rotation sequence as well. Therefore, it is not possible to represent rotations of coor-
dinate systems by finite angles as vector operations, because the commutativity rule
will not hold.

We analyze the minimum amount of information needed to determine the direction cosine I Example
matrix uniquely. We begin with a set of axes x;x2x3 and transform it into x{x}xj. We have 2.4

nine direction cosines and six independent equations resulting from Eq. [2.4.12b], so that

three of the direction cosines have to be specified. Consider first the case where the following
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Figure 2.12

information is given:
Angle between the x; and x| axes is 60°
Angle between the x; and x; axes is 45°
Angle between the x; and xj axes is 60°

We are given the task of finding the direction cosines. We need to first check to see if
the information given is consistent, or, in other words, geometrically compatible. Given the
angle between two axes, the locus of points that are compatible defines a right circular cone
with the apex angle as the angle between the two axes, as shown in Fig. 2.12. In this example,
the axis x; defines a right circular cone about x; with apex angle 60°. Similarly, the x; axis
defines a cone about x; with apex angle 45°. It follows that the maximum angle between any
two lines on the cones is 105°, making it possible for the angle between the x, and x; axes
to be 90°. In a similar fashion, it is possible to have a 90° angle between the x| and x; axes
and the x; and xj axes. Therefore, the information given is compatible with a right-handed
coordinate system.

(As an illustration of a geometrically incompatible case, suppose we were given the
problem above, except that the angle between the x; and x; axes is 30°. It follows that the
maximum angle that one can have between the x| and x; axes is 75°, making it impossible
to have a right angle between x; and x;.)

Returning to the original problem, once we determine that the information we have is
consistent, we proceed with finding the direction cosines. From the above relations

cn = 0.5 Ci2 = 0.707 C13 = 0.5 [-]
Equation [2.4.12b] written in terms of c;; results in the six equations

2 2 2 _ 2 2 2 _ 2 2 2 _
chtep+ep =1 cteptep =1 5 +cpto =1
cnca + cipepn +ep3en =0 ciesr +cpcp + cpzezz = 0

ca1631 + 22632 + c3c33 = 0 [b]

The values in Eq. [a] satisfy the first of Egs. [b] uniquely, so that we are reduced to
five equations for the six unknown direction cosines. Hence, the direction cosines cannot be
solved for. The physical explanation of this is that only the x, axis is uniquely specified with
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respect to the x| xjxj frame. The x, and x3 axes are not specified at all. A coordinate system
obtained by any amount of rotation about the x; axes will satisfy Eq. [b].

The conclusion is that, to define the direction cosines, one needs consistent and compati-
ble information about the direction angles of at least two different axes in any frame. Consider
now the following information:

Angle between the x3 and xj axes is 15°
Angle between the x; and x; axes is 35°
Angle between the x; and x; axes is 125°

This information results in the direction cosines
¢33 = 0.9659 cpn = 0.8192 cip = —0.5736 [e]

A quick examination of ¢y, and ¢y, indicates that c3; = 0, so that the x; axis lies on
the plane generated by the x; and x, axes. The transformation from x,x;x3 to x x,x; is
accomplished in two rotations. The first is a counterclockwise rotation about the x3 axis by
an angle of 35°, resulting in the intermediate coordinate system y; y,ys;. The second rotation
is about the y; axis by an angle of 15°. What we do not know at this point is whether this
second rotation is clockwise or counterclockwise. Fig. 2.13 illustrates the rotations. It follows
that in this case, we need one more piece of information to uniquely determine the transformed
coordinates. This additional information can be in the form of a sketch.

One way to visualize body-fixed rotation transformations is to attach an imaginary box to the
coordinate frame and observe what happens to the box as the coordinate system is rotated.
Consider the box in Fig. 2.14. Rotate the box about line OA clockwise by 30°, then about line
OB counterclockwise by 105°. What are the coordinates of point D in the initial frame after
these rotations?

Solution
The relative frame is attached to the box. We denote the initial frame by XYZ. The interme-
diate frame after rotation about OA (the X axis) is denoted by x'y’z’, as shown in Fig. 2.15.

The final configuration xyz is obtained by a counterclockwise rotation about OB (the y' axis)
by 105°, as shown in Fig. 2.16.

X3 X3 %3
59

Figure 2.14
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Using rotation transformation equations, we write the relations between the coordinate
frames as

1 0 0
x' 1 0 0 X 3 1{[X X
y =10 cos(—30°) sin(—30°) || Y| = 0 2 2|{Y|=I[R]|Y| Ial
2] [0 —sin(=30° cos(—30°](z 1 \/3 z z
0o = >
2 2
x cos(105°) 0 —sin(105°)7[x’ —0.2588 0 -0.96597[x’ x'
y|= 0 1 0 y|= 0 1 0 Y| = R}y
z sin(105°) 0 cos(105°) ] 2’ 09659 0 -0.2588]|z z
[b]
so that the relation between the original and the rotated frames is
X X X
y| = [RIR]|Y | =[R]|Y [e]
z Z zZ
in which
—0.2588 —0.4830 —0.8365
[R] = [R:I[R1] = 0 0.8660 —0.5000 [d]
0.9659 —0.1294 -0.2241

is the final transformation matrix. Equation [c] is valid when relating the initial, as well as
the final, orientations of points on the box as the box is moved. Denoting these initial values
by the subscript i and the final coordinates by the subscript f, we can write

Xi X,- .Xf Xf
yi| = [R]|Y; yr|=[Rl|Y; [o, f]
Zi Zi Zf Zf

On the other hand, because the moving frame is attached to the box, the coordinates of
a point on the box before rotations in the initial frame are the same as the coordinates of that
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point in the rotated frame after rotations. We therefore have

Xf X,'
yr| = |Yi [g]
4 Z;
Introducing the inverse of Eq. [f] into Eq. [g], we obtain
Xf X5 X;
Yol =R |y | =R)|Y, [h]
Zf Zf Zi

To find the coordinates of point D, we denote the initial and final positions of point D as
D; and Dy. The initial coordinates of point D are (0, 2, 1); thus, its final coordinates are

Xps Xpi 0 0.9659
Yps | = [RI" | Yo | = [RI"|2]|=| 1.603 [
Zpy Zpi 1 —-1.224
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In the previous section we saw that consecutive rotations of coordinate frames by
finite angles do not lend themselves to representation as vectors. Hence, one does
not have a vector to differentiate in order to represent rotation rates. To express rates
of rotations, we begin by analyzing infinitesimal rotations. Consider, for example, a
1-2-3 body-fixed rotation sequence with rotation angles of 8, 8,, and 63 (; about
x1, 8, about y,, and 63 about z3). The final transformation matrix can be shown to
be

cOcO; cB;s03+5s60,80,c03 sO;s03 —cO;s0,c03
[R] = |—cO,503 c@1cO3; —s0s6s03 s0,cf3+cBs0,563| [2.5.1]
502 *501002 001C02

Now, consider that all the rotation angles 6, 8,, and 63 are very small, and
replace them with A8, A@,, and Af;. We also assume that these small rotations
take place during a short time period of Az. Invoking the small angle assumption of
sin A; = A6;, cos AB; =~ 1, and neglecting second- and higher-order terms in A6;,
the rotation matrix becomes

1 AG; —A6,
[R] = |—-A6; 1 A6, [2.5.2]
A0, —-A8, 1

It should be stressed that A8y, A@,, and Af; are not the differentials of finite
expressions but differential quantities themselves. This observation is critical to
understanding the definition of angular velocity. Examining Egs. [2.5.1] and [2.5.2]
more closely, it becomes clear that no matter what the order of transformation is,
[R] in Eq. [2.5.2] has the same form, indicating that infinitesimal rotations are
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commutative. The orientation of the transformed coordinate system does not depend
on the sequence of the infinitesimal rotations.

Let us explore ways to express infinitesimal rotations, and their rates, as vectors.
We write the relation between the coordinates of a point in terms of the initial and
transformed coordinates as

{x} = [R{x}  {x} = [R)"{x"} [2.5.3]

We express the rotation matrix as [R] = [1] — [A#], in which [1] is the identity
matrix, and

0 —A0; A6,
Af3 0 -0,
—A6; A6, 0

[(A0] = [2.5.4]

is a skew-symmetric matrix, that is, [AG]T = —[A@]. It follows that [R]T = [1] +
[A6].

We now obtain a relationship between the initial and final coordinates of a point
as the reference frame is transformed. Denoting quantities pertinent to the initial and
final positions by the subscripts i and f,

{x} = [RUxi}  {xj} = [RHxs}  {xj} = {x} [2.5.5]
Next, we define by {Ax'} the change in the coordinates by

(Ax} = (5} — () = {x) - () = RT) - (=) [2.8.6]

Now, dropping the subscript i, and using the relation [R]”T = [1] + [A6], we can
express {Ax'} as

{Ax'} = [RI"{x'} = {x'} = (1] + [A6]}{x} — {x'} = [A{x"} [2.5.7]

Note that we could have derived the equivalent of Eq. [2.5.7] in terms of the
initial coordinates x;x;x3. Indeed, defining the change in coordinates as {Ax} =
{xs} — {x;} and substituting into Egs. [2.5.5], one obtains {Ax} = [A6}x}.

Eq. [2.5.7] can be viewed as the column vector representation of the relation

Ar = AO xr [2.5.8]
where
AQ = Afie] + Ab,e; + Afse; [2.5.9]

is an infinitesimal rotation vector.? The concept is illustrated in Fig. 2.17. The ro-
tation takes place about an axis passing through the vector A@. The rotation is by
an amount A#, which is the magnitude of A@. Note that the boldface in the above
equation, indicating that the quantity is a vector, is over the entire expression A® and
not just over the 6. This signifies that A0 is not the infinitesimal value of a vector
but a defined quantity consisting of a collection of infinitesimal rotations.

2We defined by Eq. [2.5.9] the infinitesimal rotation vector without rigorously fE;roving that it indeed is a vector.
The proof requires that certain fransformation properties be satisfied. It can be found in the text by Meirovitch.
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Rotation
axis

Figure 2.17

Let us divide Eq. [2.5.8] by the time increment Az during which the rotations
take place, and take the limit as At approaches zero. The left side leads to a simple
derivative term, written

im 5T -9 _; [2.5.10]
Aa—0 At dr o
To evaluate the right side, we take Eq. [2.5.9], divide it by At, and take the limit

as At approaches zero. We define the resulting expression as the angular velocity of
the moving frame with respect to the initial frame and write it as

A0
® = lim — 2.5.11
A}To At [ ]
where
® = wie] + we; + w3e; [2.5.12]
in which
. Ag;
= =7 = 1,2, .5.1
w; Altlglo A7 i 3 [2 3]

are the components of the angular velocity, also referred to as the instantaneous
angular velocities of the rotating frame.

We have shied away from writing the right side of Eq. [2.5.11] as a derivative.
What should be emphasized is that angular velocity is a defined quantity and that
it is not the derivative of any vector. For this reason, the angular velocity vector is
referred to as nonholonomic, a term that is associated with expressions that cannot
be expressed as derivatives of other terms. A nonholonomic expression cannot be
integrated to another expression. The way one arrives at the angular velocity vector is
completely different from the derivation of the expression for translational velocity,
or the rate of change of any defined vector.
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In view of this discussion, one can write the rate of change of the position vec-
tor as

. d, 0 gt
r=owXr E{x = [o){x'} [2.5.14]

in which [@] is the matrix representation of the angular velocity vector ,

0 —w3 w32
[@] = w3 0 —w [2.5.18]
—ws w1 0

It should be reiterated that r is a vector whose components are fixed in the rel-
ative frame x| x}x}. Equation [2.5.14] is illustrated in Fig. 2.18. The change in r is
due to a change in direction, and hence, I is orthogonal to r. It is also orthogonal to
the angular velocity vector, as r can be visualized as rotating about the axis generated
by the angular velocity vector. By definition of the cross product, I is perpendicular
to the plane generated by the vectors » and r.

Now that we have defined angular velocity as a vector, we can obtain the angular
velocity of a reference frame by adding up the angular velocities associated with the
rotations that lead to the orientation of the reference frame.

Equation [2.5.14] is valid not only for a vector describing the velocity of a point,
but for any vector u whose components are constant relative to the moving frame.
We have

u=mwXu [2.5.16]

An example is when u is a unit vector. For the unit vectors considered in this section,
we have -

® X e = —we; + wie

. —‘Q-
Il

¢, = wXe = we; — wie

wXe; = —we; + we; [2.5.17]1

n-
w
I

7 Plane generated by
r and ®

Figure 2.18



2.5 INFINITESIMAL ROTATIONS, ANGULAR VELOCITY

Note that the magnitude of the time derivative of a unit vector, |é§| (i=1223),is
not equal to unity.

The preceding definition of angular velocity is not the only way angular velocity
can be defined. In the following, we present a more abstract definition. Consider a
moving reference frame which is rotating with respect to a fixed reference frame.
The angular velocity of the rotating frame is defined as the vector w, which, when
crossed into any vector fixed in the moving frame, gives the rate of change of that
vector viewed from the inertial frame. The angular velocity of the relative frame w
is the quantity that makes the relationship [2.5.16] hold.

Using the unit vectors of the moving reference frame, which in this section we
have taken as €], e;, and e;, and their rates of change, one can define the angular
velocity vector as

o = (e;°e3)e; + (e3¢e))e; + (€] *ey)e; [2.5.18]

This definition can be verified by analyzing the expressions for the rates of change
of the unit vectors from Eqgs. [2.5.17]. While this definition is more abstract than
the way we arrived at Eq. [2.5.12], it is mathematically more sound, and it can be
substituted more easily in mathematical operations that involve angular velocity. In
Chapter 7 we will see yet another definition of angular velocity.

Note that in this section so far, we have defined angular velocity in a number of
ways, discussed what it is physically, and derived expressions for rotating reference
frames. What we have not done is to come up with a general way to quantify angular
velocity as a function of rotational parameters. We will analyze the quantification
issue for the general case in Chapter 7, within the context of rigid bodies.

Now let us discuss a special case of angular velocity. Previously, we defined an-
gular velocity as a vector with certain properties and stated that it is not the deriva-
tive of any quantity but rather it is a defined one. There is an exception to this. When
angular velocity is along a fixed direction, then angular velocity is called simple
angular velocity, and it becomes the time derivative of the rotation angle about the
fixed diréction.

If we denote the unit vector along this fixed direction by, say, J, we can express
the angular velocity by @ = wJ, and can write w as an exact differential in the form

_do

= — 2.5.19
dt 2.5 ]

Here, 0 is the angular displacement about the fixed axis. The commonly studied
special cases of plane motion and rotation about a fixed axis involve simple angular
velocity.

Let us next consider more than one relative reference frame. We begin with a
fixed frame XYZ and rotate it by an angle 6, about the X axis to obtain the x'y’'z’'
frame. The angular velocity of the x'y’z’ frame with respect to the inertial frame is
recognized as simple angular velocity. Denoting it by «;, we can write

0w = éll = éli' [2.5.20]

We then rotate the x'y'z’ frame about the z' axis by 6, and obtain the x yz frame. The
angular velocity of the xyz frame with respect to the x'y'z’ frame, which we will
denote by w,, is also “simple” when this second rotation is considered by itself, thus
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w) = ézk’ = ézk [2.5.21]

The angular velocity of the rotated frame xyz can be written by adding the angular
velocity terms associated with the two rotations as

®=w +0; = 6;]+6k [2.5.22]

Let us express the angular velocity in terms of the different reference frames.
First, consider the final relative frame. We find i’ by reading the first column of Eq.
[2.4.19] as I = i’ = cos 6,i — sin 8,j. We introduce this into Eq. [2.5.22] and obtain

W =MW +0 = é] cos 6i — é] sin 0, + ézk [2.5.23]

We observe that @ cannot be expressed as the derivative of another vector. Hence, it
cannot be classified as simple angular velocity, although both w, and w, are simple
angular velocities when considered individually. This can be explained by noting that
while w, is about a set of fixed axes, w; is actually with respect to a set of rotating
axes. The situation does not change when we express the angular velocity vector
using the unit vectors of the inertial frame. Indeed, if we use, from Eq. [2.4.17], the
relationk = k' = —sinf;J + cos 8K and substitute it into Eq. (2.5.22), we obtain

®W =0 +n; = 911 - 62 sinf,J + 92 cos K [2.5.24]

We hence conclude that for a sequence of rotations about nonparallel axes, the com-
bined angular velocity will not be “simple.”

Example
2.6

A momentum wheel is a useful classroom tool to demonstrate angular momentum conserva-
tion. It is basically like a bicycle wheel with a thickened rim and handles along the spin axis.
The angular momentum principles are illustrated by asking a student to hold the wheel and
spin it, and then to move the wheel around or stand on a platform that is free to rotate, as
shown in Fig. 2.19.

At a given instant, the momentum wheel is spinning counterclockwise (viewed from the
right) with angular velocity of 3 rad/s, and the student holding the wheel is leaning left with

Figure 2.19
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an angular velocity of 0.2 rad/s and making an angle of 15° with the vertical. At the same
time, the platform is rotating with a clockwise angular velocity of 0.5 rad/s. Find the total
angular velocity of the wheel.

Solution

Figure 2.20 illustrates the reference frames involved. We attach the frame x'y'z’' to the plat-
form. The inertial Z axis is in the vertical, and it is aligned with the 7' axis. The orientation
of the wheel can be obtained by rotating the x'y’'z’ axes by an angle of 15° counterclockwise
about the x’ axis. Referring to this coordinate system by xyz, the momentum wheel’s spin is
in the y direction. We write the angular velocity as

® = Wpjaform + Wswdentplatform + Wwheel/student = —=0.5k’ + 0.2i" + 3j rad/s [al

At the instant shown, the unit vectors in the xyz and x'y’z’ coordinate frames are related by

i 1 0 0 i
j|=10 cos 15° sin15° J [b]
k 0 -—sinl5° cos15° k'

Using the inverse of Eq. [b], we have k' = sin 15°j + cos 15°%k = 0.2588j + 0.9659k and
i’ = i, so we can express the angular velocity in terms of a set of coordinates attached to the
momentum wheel as

o = —0.5(0.2588j + 0.9659k) + 0.2i + 3j = 0.2i + 2.8706j — 0.4830k rad/s  [¢]

Note that to express « in terms of the unit vectors associated with an inertial reference
frame XYZ requires that the exact relationship between the coordinates xyz and XYZ be
known. In this problem, we conducted an instantaneous analysis and did not specify the iner-
tial XY Z axes, except for the vertical direction. Expressing e in terms of a moving coordinate
system is more meaningful.

The robot arm makes an angle of 40° with the rotating shaft, which oscillates about the y’ l Example
axis with the relation 8(f) = Z cos 2t rad, as shown in Figs. 2.21 through 2.23. The shaft has 2.7
an angular velocity of w; = 0.5 rad/s. At the tip of the arm, there is another shaft. A disk is
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vertical < | >

/X, x'
Figure 2.22 Figure 2.23

spinning counterclockwise with w3 = 7 rad/s about this shaft. Find the angular velocity of
the disk atz = 3 s.

Solution

As shown in Fig. 2.22, the Z axis is the vertical, and the X'Y'Z axes are attached to the shaft.
The x'y'z’ axes are obtained by rotating the X'Y'Z’ axes about the X' axis. The y' axis is
along the robot arm. We use a rotation about the y’ axis by 6 to go from the x'y’z’ axes to the
xyz axes of the second shaft, about which the disk turns. We have

i=cosfi' —sinfk'’ j=j Kk =sin6i+cosfk’ [a]
The angular velocity of the disk can be written as
W =0 +0;+o; [b]
in which
w; = 0.5K = 0.5(sin40°k’ — cos40°j") = —0.3830j + 0.3214k’ rad/s

m

10
Att = 3, 0(3) = 0.1508 rad, so that

o, = 03) = sin6j = 0.08778jrad/s w3 = Tirad/s 03]

k' = —sinfi + cos6k = —0.1502i + 0.9887k [d]

and we can express the total angular velocity in terms of the xyz coordinates as

o = 0.3214(—0.1502i + 0.9887k) — 0.3830j + 0.08778j + 7i
= 6.952i — 0.2952j + 0.3178Kk rad/s [e]

Note that in this example, as well as in the previous one, we did not express the angular
velocity in terms of a set of coordinates attached to the rotating body. Rather, we used the
xyz coordinates attached to the spin axis of the disk. This is commonly done when analyzing
axisymmetric bodies, as we will see in Chapters 7 and 8.
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Obtain the derivatives of the unit vectors in the cylindrical, spherical, and normal-tangential
coordinates using Eq. [2.5.16] and compare with the results in Chapter 1.

Solution

We begin by examining the angular parameters associated with the coordinate systems. First
consider cylindrical coordinates, as shown in Fig. 1.9. The z direction is fixed and the coor-
dinate frame rotates in the xy plane with angular speed 8, so that @ = @k. The unit vectors
are expressed as the mutually orthogonal triad e, €4, and k. For the time derivatives we then
have

e, =0kXe =0ep € =0kXe;=—-0e, k=0kxk=0 [a]

For spherical coordinates (Fig. 1.12), the mutually orthogonal unit vectors are ez, €4,
and ey. Denoting the unit vectors in the inertial frame by i, j, k and those in the rotated frame
by i, j’, k', from Fig. 1.12 we can write

ot .t

i'=e jJ=€ Kk'=e [b]

From Fig. 1.12, there are two angular components, § about the z axis and ¢ about the polar
axis. The combined body-fixed rotation matrix [R] is

chp 0 —sdl[ co s6 O cpcl cpsh -sod
[Rl=]0 1 0 [—so c6 0} = [ -s0 ch 0 } [c]
s¢p O chpll O 0 1 spch s¢psb cod

Using Eq. [2.4.9], we obtain for the unit vectors

€4 = cos¢cos Bi + cos ¢sinfj — sin pk
—sin @i + cos 0
sin ¢ cos 8i + sin ¢ sin 0i + cos Pk Id]

1

€9

€r

which are the same as Eqgs. [1.3.54] and [1.3.56]. The angular velocity vector is a superposi-
tion of the two angular velocities, so that

o= 9k+(f>e9 [e]

Expressing the unit vector in the z direction ask = cos e —sin e, we arrive at the angular
velocity of the coordinate frame in terms of the unit vectors in spherical coordinates as

® = 6 cos deg — ésind>e¢ + (i)eg [}
leading to the derivative expressions
eg = (6) cos ¢eg — ésin¢e¢ + ciw,,)XeR = 9sin¢eg + (i)e¢
ey = (8 cos peg — 9sin¢e¢ + d>eg)><e¢ = 6 cos ey — deg
€ = (0 cos peg — 9sind>e¢ + deg)xXeg = —écos¢e¢ — §sin dex Igl

These are the same as Eqgs. [1.3.59] through [1.3.61].
For the normal and tangential coordinates, the unit vectors are e,, e,, and e, = €; X e,.
We showed in Chapter 1 that

& = —e, [h]
p

| Example
2.8
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Figure 2.24

where p is the radius of curvature. We can write the angular velocity vector in its general
form as

0 = we, + w8, + wpep 1]

where we have yet to determine w;, @,, and wj, the components of the angular velocity in
the tangential, normal, and binormal directions. Fig. 2.24 shows the angular velocities. We
obtain the time derivative of e, using Eq. [2.5.16] as

¢ = (w€ + w,e, + wpey) X e = —w,e, + wpe, i}

Comparing Eqgs. [h] and [j], we conclude that

W, = — w, =0 [k]
p

The above relations can be explained physically and by inspecting Fig. 2.24 more closely.
Because the binormal direction is perpendicular to the osculating plane, the component of the
angular velocity in the binormal direction is the speed divided by the radius of curvature,
or the rate at which the path bends. That w, = 0 can be deduced from the same argument.
Because at any point the motion of the particle can be considered as going along a circu-
lar path whose center is the center of curvature, there is no rotation in the normal direc-

tion.
‘We next consider the time derivatives of the normal and binormal unit vectors, and write

e = (wee + wpep) X &, = wre, — Wpe; m
€ = (W€ + Wpey) X € = —w/e, [m]

Recalling the definition of the torsion of the curve as |de,| = ds/T, and how the torsion is
linked to the twisting of the osculating plane, we obtain the component of the angular velocity
in the tangential direction as

. v
W = — e = ——e n
‘T or b T [n]
As the torsion 7 gets larger, the plane of the curve twists less. Equation [1] indicates that the
rate of change of the unit vector in the normal direction depends on the way the curve bends
as well as on the amount by which it twists, an expected result. The angular velocity of the
reference frame can thus be written as

1 1
® = W8 + wpe, = U ;e, + ;e;, [o]



2.6 RATE OF CHANGE OF A VECTOR, ANGULAR ACCELERATION

2.6 RATE OF CHANGE OF A VECTOR, ANGULAR ACCELERATION

Consider a vector u observed from a moving coordinate system x yz. The coordinate
system is rotating with angular velocity w. The vector u is expressed as

u = uyi+ uyj + uk [2.6.1]
The time derivative of u can be found by differentiating Eq. [2.6.1] as
U = i+ iyj + ik + ud + uyj + uk [2.6.2]

The first three terms on the right side of this equation denote the change in u as
viewed by an observer on the moving frame. Hence, the differentiation is carried out
in the moving frame. We denote this local derivative term by

du) il + iyj + gk [2.6.3]
di rel

The next three terms on the right side of Eq. [2.6.2] denote the change in u due to the
rotation of the coordinate system. Considering Eq. [2.5.16], we can express them as

uxi+uyj+uzk=uxin+uywxj+uZka=w><u [2.6.4]

leading to the relation

u=—=E

du du
dt

) +owXu [2.6.5]
rel

This relation is known as the transport theorem. In column vector format we can
write it as

d . -
E{u} = {it}er + [@Hu} [2.6.6]
In operator notation the transport theorem is written as

%( ) = %( el + oX() [2.6.7]

The physical interpretation of the transport theorem is that the rate of change of
a vector is a different quantity when viewed from different reference frames. When
dealing with moving reference frames, one must be careful that the differentiation
operation is carried out in the proper reference frame.

A natural application of the transport theorem is the calculation of the derivative
of the angular velocity, known as the angular acceleration. The angular acceleration
of a coordinate frame, denoted by «, is defined as

a = d 8 [2.6.8]
T .6.
Note that the time derivative is being taken here in the inertial reference frame. We

write the angular velocity and acceleration in terms of the unit vectors of the relative
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frame as
= w;it+e,jtok a = o, +ayj+ak [2.6.9]
Differentiating the angular velocity, we obtain
o= d+e,jteoktoXe=aoi+ae,j+ek [2.6.10]

If we write the angular velocity in terms of the unit vectors of the inertial frame as
o = wxl + wyJ + wzK, the angular acceleration has the form

a = %w = wxl + oyJ + 0zK [2.6.11]

In both Egs. [2.6.10] and {2.6.11], the components of the angular acceleration
are the rates of change of the angular velocity, «; = @; (i = x,y,z 0ti = X, Y, Z).
We draw the following important conclusion:

If the angular velocity components of a moving coordinate frame are expressed
in terms of inertial coordinates or in terms of the coordinates of the moving frame,
the components of the angular acceleration can be obtained by a simple differenti-
ation of the angular velocity components.

When the angular velocity of the reference frame is expressed in terms of the
unit vectors of another frame that is not attached to the relative frame and is rotating
with angular velocity, say, {2, where {) # w, then the expression for the angular
acceleration has the form

=0+ 0Xn [2.6.12]

Note that in this case, a; # ;.

An interesting application of the transport theorem is in systems involving more
than one reference frame. Consider the disk in Fig. 2.25. As the disk spins, the axis
about which it rotates also turns. We attach a moving reference frame to the axis and
find the angular acceleration of the wheel.

Denote the angular velocity of the disk with respect to its axis by w, and the
angular velocity of the axis as ;. An observer sitting on the axis of the disk sees
it rotating with angular velocity w,. The total angular velocity of the wheel is w =
] + w;.

X
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To find the angular acceleration of the wheel, we differentiate the angular ve-
locity expression

d d
—®] + —m [2.6.13]}

a-—d—(w +my) =
Y et Rt dt

The first term on the right side of Eq. [2.6.13] is the angular acceleration of the
axis about which the wheel is rotating. This term can be obtained by straightforward
differentiation.

To obtain the angular velocity of the second frame, we invoke the transport the-
orem. Using Eq. [2.6.5], we obtain

d d(.u)2 .
—y = | —— + WX M) = W) + ® X0 [2.6.14]
dt dt |

We get the total angular acceleration by adding Eqgs. [2.6.13] and [2.6.14]; thus
a = @ + Wy + W X [2.6.15]

Let us contrast the difference between Egs. [2.6.15] and [2.6.10]. In Eq. [2.6.10}
we have a straightforward form for the angular acceleration, because the angular ve-
locity of the frame (the disk) was expressed in terms of the reference frame attached
to the disk only. The derivations that led to Eq. [2.6.15] are based on an intermediate
frame attached to the disk axis, rotating with ;.

To illustrate the point further, consider the coordinate frame transformation in the
previous section with an inertial frame XYZ, an intermediate frame x'y'z’ obtained
by a rotation @, about X, and the final relative frame xyz obtained by a rotation 6,
about z'. From Eq. [2.5.22], the angular velocities of the two frames are

o =01 @ =0k [2.6.16])
in which I = i’ = cos 8,i — sin 8, so that using Eq. [2.6.15], the angular accelera-
tion has the form

o= @) + @ + 0 X @y = b1 + Gk + 6,i' X 62k
= 6,(cos 0,i — sin,j) + 6,k + éléz(cos 0,i — sinf,j) X k
= (0, cosf, — 9192 sin 0)i — (6;sin8;, + 9192 cos 0,)) + 6,k [2.6.17]

Next, let us obtain the angular acceleration by direct differentiation of Eq. [2.5.23],
and write

a = (91 cos@, — 9192 sin@)i — (91 sinf, + é]ézcosez)j + ézk [2.6.18]

which, of course, is the same answer as Eq. [2.6.17].

The transport theorem is most often the preferred approach for obtaining deriva-
tives, especially for complex problems, and it is more adaptable to implementation
by digital computers.

When analyzing the relative motion of bodies and especially when studying
three-dimensional rotation problems, one may need to transform velocities and
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Figure 2.26

accelerations from one reference frame to another several times. The resulting ex-
pressions can become quite complicated. To avoid confusion, we are going to adopt
the following notation for dealing with multiple reference frames.

We will denote reference frames by capital letters, such as A, B, C, and so on. In
general, the A frame will be inertial and the B frame will be relative, and when rigid
bodies are involved, this frame will be attached to the body. The coordinate axes
in these frames will be defined with lowercase letters corresponding to the frames.
For example, for the A frame, the axes will be denoted by aj, az, and a3, and the
corresponding unit vectors by aj, a,, and a;. The origins of the relative frames will
usually be denoted by the same capital letter used to denote the reference frame. The
origin of the inertial frame will usually be denoted by O. The frames A and B are
illustrated in Fig. 2.26.

The angular velocity and angular acceleration of one frame with respect to an-
other, say of frame B with respect to frame A, will be denoted by 4w?® and 4«?,
respectively. When describing translational velocities and accelerations, as well as
the differentiation operation, the frame in which the differentiation is performed will
be denoted by a superscript on the left side of these vectors. The differentiation oper-
ation can be written as 4 %u, B %u, where u is a vector. Expressions for the velocity
of point P, where the position vector is r = rp, have the form

d d
A A B, B
dt P dt

[2.6.19]

Consider the transport theorem, Eq. [2.6.5]. Using the notation introduced above
and using the A and B frames as the inertial and relative frames, we can write Eq.
[2.6.5] as

d d
A B A B

—u="—u+"w" Xu 2.6.20

dt dt [ ]
It is clear that the transport theorem can be used to relate derivatives in any two
reference frames. We will denote the expression on the left side of Eq. [2.6.20] as
the rate of change of the vector in frame A, the first expression on the right as the
rate of change of the vector in frame B, and the second term on the right side as the
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transport term. In operator form we can write the transport theorem as
a4
dt

Equations [2.6.20] and [2.6.21] describe the transport theorem between any two
reference frames with no need to have or to identify an inertial frame. Considering
how we defined angular velocity previously, the notation introduced here is more
general. For example, the transport theorem between the B and A frames becomes

3 d
dt

0 ="20+4"x() [2.6.21]

()= "%( )+ Bwd X () [2.6.22]

which, when compared with Eq. [2.6.21], leads to the expected conclusion that
ByA — —AgB.

When there are a number of intermediate frames of reference between the A and
B frames, say A;, As, ..., Ay, one can express the angular velocity of frame B with

respect to the A frame as
to? = Aot + Bt + |+ NP [2.6.23]

The second derivative of a vector u in the A and B frames using this notation is
A % (A % ), B % (B %u). Note that in both expressions, all the derivative terms are con-

sistently in the same frame. Following this argument one can write the acceleration

of point P as
d(,d d (zd
A, _ A A B, _B% (B
ap _dt ( i l') ap ai ( i l‘) [2.6.24]

In dynamics, one frequently encounters the need to take the derivative of an
expression in one frame that has been derived by differentiation in another frame.
In such cases we again invoke the transport theorem. For example, given a vector
obtained by taking the derivative of a vector u in the B frame, we use the transport
theorem and obtain

Ai Bi _Bi Bi A, .B Bi
ar dtu =" dtu + “w” X dr“ [2.6.25]
One can show that
d (pd d(,d
A4 (pad BY (40
dt( dtu>¢ dt( dtu> [2.6.26]

When more than one derivative is taken in different reference frames, changing the
order of the differentiation gives different results. This applies not only to differen-
tiation with respect to time, but to differentiation with respect to other variables as
well. Consider, for example, a vector u that is a function of the variables ¢, g3, . . .,
gn. We denote the time derivative of u in frame A by

n, . du du

Ag A . A

u = E e + 7 — [2.6.27]
= 5qqu ot
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When considering the second derivatives of u, one can show that

g [,
A8 50U a9 (p0U #B—(A—'l) ij=12....n [2.6.28]
9qi 9qi dqi \ 9q; agj \ 94

Also, be aware that a vector u may be a function of a variable g; in one reference
frame and not in another.

Consider next the derivative of Eq. [2.6.23]. We differentiate each term individ-
ually to find the angular acceleration. The first term is measured from the inertial
frame, thus its derivative is straightforward. To obtain the derivatives of the subse-
quent terms we use the above relation. For example, for two intermediate frames,
we have

AgB — A_j_t(AwB) _ Adii;(AwA2 + A2w8>

It

d d
A (AwA2)+ A2_(A2w8)+ A X A24yB
dt dt

=AM 4 A28 A X AP [2.6.29]

The expression for the angular acceleration for the general case of several frames
is left as an exercise.

We end this section with an important note. It is crucial that one be able to dis-
tinguish between the reference frame in which a derivative is taken and the coordi-
nates of the reference frame in which the differentiated vector is resolved. Usually,
one expresses a vector to be differentiated in a particular reference frame in terms
of the unit vectors of the frame. However, exceptions to this general procedure do
exist.

Example
2.9

Consider the robot arm in Example 2.7 and find the angular acceleration of the disk, given
that w; and w3 are both constant.

Solution
From Example 2.7, the angular velocity of the disk is written as

® =0 +0;+0; [al
in which
»; = 0.5K = —0.04827i — 0.3830j + 0.3178k rad/s [»]
w; = 0.08778j rad/s w3 = Tirad/s
We use the transport theorem to get the angular acceleration, which gives
a = =0
0 = Qe + W) X 0
a3 = el + (01 + @2) X @3 = (@) + 0) X @3 [e]

so that the angular acceleration becomes

o =0 +0; + 03 = @] + 01 X (0 + @3) + 0y X @3 [d]
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We now evaluate the individual terms in the above equation. Given that 8(f) = 7 cos 2t
rad, we have atf = 3 s

Dol = —%costh rad/s? = —%cos6j rad/s? = —0.6033j rad/s?

(—0.04827i — 0.3830j + 0.3178k) X (7i + 0.08778j)
= —0.02789i + 2.225j + 2.677k rad/s’
@, X w3 = 0.08778j X 7i = —0.6145k rad/s’ [el

w; X (w2 + (.03)

Adding the individual terms, we obtain the total acceleration as
a = —0.02789i + 1.622j + 2.063k rad/s Il

123

Find the angular acceleration of the disk shown in Fig. 2.27, which is spinning at the constant
rate of 60/7r rpm. The disk is attached to a collar, which is rotating at the rate of 3/ rpm,
with the rotation rate increasing by 0.6/7r rpm/min. A rod connects the disk to the collar and
it is pinned to the collar. It makes an angle of 30° with the vertical, which is increasing at the
constant rate of 18/7 °/sec. Express the angular acceleration in terms of a reference frame
attached to the collar.

Solution
We attach an x'y’'z’ coordinate system to the collar, with the Z = ' direction denoting the

fixed vertical. The y coordinate attached to the arm is obtained by rotating the x'y’z’ axes
about the x’ axis counterclockwise by an angle of 60°, so that j = sin30°j’ — cos 30°k’. We

write the total angular velocity of the disk as

Odisk = Ocollar + Grod/collar + Wdisk/rod [a]
where
3 327\, , ,
Wollar = ;K rpm = ; (%)k rad/s = 0.1k’ rad/s
Orod/collar = %i”’/s = —1;8 (%))i’ rad/s = 0.1i' rad/s

Oiskrod = %j pm = %_Q(Sin 30°j' — cos 30°k')26—g rad/s = j' — J3K' radls  [b]

Figure 2.27
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To find the angular accelerations, we differentiate each of the angular velocity terms sep-
arately. Since the angular velocity of the collar is measured from a fixed frame, its derivative

is obtained through straightforward differentiation as
. 0.6 . 0.6 27\[ 1 S
Qollar = Dcollar = (Tr‘ rpm/mm) = (%)(%) = 3.333(10 )k’ rad/s’  [e]

The angular velocity of the rod is measured from a frame that is rotating with the angular
velocity of the collar, so we can express the angular acceleration as

" 0 . 2
Qrod/eollar = Drodicollar rel + Weollar X Wrodicollar = 0 + 0.1K' X 0.1i" = 0.01j rad/s” [d]

The angular velocity of the disk is relative to the rod; thus we can write its angular acceleration
as

Qdiskirod = Ddisk/rod rel + (Ocoltar + Drodscollar) X Wiskirod
0+ (0.1K' + 0.1i") X (§' - V/3Kk')
J3

= —0.1i' + Ej' + 0.1k’ rad/s? [e]
Adding Egs. [c]-[e], we obtain the total angular acceleration of the disk as
agige = —0.1i' + 0.1832j' + 0.1003K’ rad/s? f

Note that, as discussed before, this selection of the coordinate axes makes it much easier
to visualize the motion than would a reference frame attached to the disk.

2.7 RELATIVE VELOCITY AND ACCELERATION

Consider the two reference frames shown in Fig. 2.26. The position of point P is
expressed as

Ip =TIp+rIppp [2.7.1]

The vectors rp and rp are measured from the inertial frame, and rp; is measured
from the relative frame. To obtain the velocity, we differentiate Eq. [2.7.1] for

Vp = Vg + Vp/p [2.7.2]
We find the expression for vp/z by means of the transport theorem as

Vp/p = Tpip = Vpip,, + ® X Tpp [2.7.3]

The difference in derivatives is because rp and rp are measured from the inertial
frame, while rpp is measured from the rotating frame. Introducing Eq. [2.7.3] into
Eq. [2.7.2], we obtain the relative velocity expression, written

Vp =V + Vpp = Vg + Vpig,, + @ Xrpp [2.7.4]

The first term on the right side of this equation, vg, is known as the base velocity;
it denotes the absolute velocity of the origin of the moving frame. The second term,
Vp/B,;» 18 known as the relative velocity, as it denotes the velocity of point P as viewed
by an observer attached to the relative frame. The third term, ® X rpyp, is called the
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transport velocity; it describes the change in the position vector rpp as the relative
frame rotates.

Equation [2.7.4] can also be written in terms of a point Q, which is coincident
with point P but is not moving with respect to the rotating frame. We write

Vp = Vg + Vpio [2.7.5]

where vy is the absolute velocity of point Q, and vp/g is the relative velocity of P
with respect to Q, having the forms

Vg = Vg +®XTIpp Vpeio = VP/B [2.7.6a,b]

When analyzing the relative motion of two points both fixed on the same reference
frame, the relative velocity term vpo vanishes, P = Q represents the same point,
and we use Eq. [2.7.6a] to relate the velocities.

To find the acceleration of point P, we differentiate Eq. [2.7.4] once more, with
the result

ap=a +dv +d(w><r ) [2.7.7]
P Bt 7 VPIBy T PIB o7

Differentiation of the left side of Eq. [2.7.7] and the first term on the right side is
straightforward:

iv = d—zr ap = £1—v = iz—r
i’ ae’”’ B=dt? ar’?

Differentiation of the second and third terms requires that we invoke the transport
theorem for each of these terms, with the result

ap = [2.7.8]

d
EVP/BM = apjp, + ® X Vpg,

d
Zl_t(w Xrpp) = aXrpp+®Xvpp, +®X(wXrpp) [2.7.9]

Introducing Eqgs. [2.7.8}-[2.7.9] into Eq. [2.7.7] and combining terms, we obtain
ap = ag + a Xrpp + @ X (0 Xr1pp) + app, + 20 X Vpp, [2.7.10]

The term a X rpp is due to the angular acceleration of the rotating frame, while
® X (w X rpp) is the centripetal acceleration of point P. For the general case of
three-dimensional motion ® X (w X rp;p) lies on the plane generated by the angular
velocity o and rpp. For the special case of plane motion, the centripetal acceleration
takes the form

o X (0 Xrpp)= _w2rpj3 [2.7.11]

The fourth term ap/g, = (¥p/)rel is the acceleration of point P as measured by
an observer located on the moving frame. The fifth term, 2 X vp/p, is known as
the Coriolis acceleration. It is due to two effects: a directional change in vp/p,,, and
in @ X rp;g, a change in magnitude of rp . Both terms contributing to the Coriolis

effect arise because there is translational motion with respect to a relative frame.

128
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The direction of the Coriolis acceleration is perpendicular to the plane generated
by @ and (Vp/g)el, S0 that it always results in a change in direction from (Vp/g)el,
as shown in Fig. 2.28. Even in cases when the magnitude of this acceleration is
small, because it always causes a change in direction the Coriolis acceleration must
be considered in the analysis of several systems.

Equation [2.7.10] can also be expressed in terms of a point Q coincident with
point P but not moving with respect to the coordinate frame as

ap = ag + apjg [2.7.12]
in which
ag =agt+aXrppt+tmX (o XTp/B) apg = apg,; + 2m X Vp/B,,
[2.7.13a,b]

The term ag is the absolute acceleration of point Q. The term apg is the accel-
eration of point P due to its motion with respect to the reference frame. Unlike vpyo,
it contains two terms. The difference is the Coriolis acceleration.

When there is no motion with respect to the moving frame, such as with the
motion of two points fixed on a rigid body, the relative motion equations reduce to
Eq. [2.7.13a], and one replaces Q with P

ap = fp+a Xrpp+ X (0 Xrpp) [2.7.14]

Now let us write the relative velocity and acceleration expressions using the
notation introduced in the previous section. For the relative velocity expression from
Eq. [2.7.4] we write

Avp = Avg + Byp + AwB X Brp [2.7.15]

and, for the relative acceleration from Eq. [2.7.10], we write

4ap = 4ag + 4af X rp + ef X (“w? X rp) + Bap + 28w? X Bvp [2.7.16]

with

d d d d d d
Ap _ A% A, _ad (ad A, A% Ay _ad(ad
ap ="7;Cve) dt( dtrp) ag =" 7.("vs) dt( dtrB)
[2.7.17]

Plane of
w,v

Figure 2.28
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The most effective way of dealing with problems where more than one reference
frame is involved is to systematically break the problem into several parts and to
calculate the terms for each part individually.

We next discuss two very important issues associated with the kinematics of rel-
ative motion: how to select the origin of the relative frame(s), and how to select the
orientation of the relative frame(s). There is no clear-cut answer to these questions.
One guideline is to select, if possible, the origin and orientation of the relative frame
so that it minimizes the number of expressions in the relative motion equations. Con-
sidering Fig. 2.26, if B is selected so that it coincides with P (B = Q),thenrpp = 0.
If B is selected such that it coincides with the origin of the coordinate system O, then
vz = 0 and ag = 0. Another guideline is to select the relative frames so that the
number of relative frames is minimized and the angles that have to be calculated are
simple. The way to learn how to select reference frames is by gaining experience
and solving problems.

When there is more than one reference system involved, the relative motion
expressions can become lengthy and complicated. One way to avoid confusion is to
select a tabulation approach when obtaining the components of the relative motion
expression.

127

The platform in Fig. 2.29 is rotating with a constant angular velocity of w = 0.2 rad/s. Piv-
oted on the platform is a tube oscillating according to the relationship 8(t) = ¥ sin?2t rad.
A particle of mass m slides without friction inside the tube. The particle is attached to the
ends of the tube by a spring of constant k and dashpot of constant ¢. Find the velocity of the
particle at t = 3.6 s, at which point it is given that y = 40 cmand y = —30 cm/s. Also find
a general expression for its acceleration.

Consider an X'Y'Z' coordinate system moving with the platform and an xyz coordinate sys-
tem attached to the tube, as shown in Fig. 2.30. The Z' = Z axis is the vertical. When § = 0,
the y and Y’ axes coincide. The coordinate axes are related to each other by

x=X y = Y'cos@ + Z'sinf z= —Y'sinf + Z'cos @ [al

‘We have
®=wK+0l =0i+wsinfj+wcosbk r=yj Ve =i bl

X'

Figure 2.29 Figure 2.30

‘ Example
2.11
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Because the origins of the coordinate frames coincide, the relative velocity expression be-
comes

V=V t+wXr = yj+(éi+wsin0j+wcosek)>< yj
= —yw cos 0 + yj + ybk [el

Att = 3.65,0(3.6) = 0.4156rad,sin0 = 0.4037,cos 6 = 0.9149, @)(3.6) = 3c0s7.2 =
0.6371 rad/s. Substituting in these values, we obtain for the velocity atz = 3.6 s

v = —0.07319i — 0.3j + 0.2548k m/s Idl
The relative acceleration expression for this problem is
A=Qag +taAXr+mX(@®Xr)+2m X Vg [e]
in which
ae = Jj & = 0i+ wlcosbj ~ whsinOk fl

Note that we obtained the angular acceleration expression by direct differentiation of the
angular velocity expression in Eq. [b], rather than using the transport theorem. It was possible
to do this because in Eq. [b] the components of o were expressed in terms of the coordinates
of the relative frame.

We perform the cross products, writing

axr=(fi+wdchj— whsk) X yj = whysbi+ byk
wX(wXr) = (éi +ws0j+wclk) X (—wychi+ 9yk)
= wlysbi+ (—0%y — w’yc?0)j + >ysbcok
260 X Vi = 2(0i + ws0j + w cOK) X yj = —2yw c i + 2y6k gl
Introducing these expressions into the relative acceleration, we obtain

F = Qwlysd — 2ywcd)i + (5 — 62y — 0?yc?0)j + (276 + w?ysoco + 6y)k  [h]

Example An airplane, shown in Fig. 2.31, is moving with a speed of 420 mph. A flight attendant who

2.12 weighs 120 Ib is standing 15 ft from the center of mass. To avoid a turbulent region, the pilot
initiates an emergency maneuver. The aircraft begins to pitch upward at the constant rate of
0.1 rad/sec, and it begins to pursue a curved trajectory toward the left of the pilot with a radius
of curvature of 30,000 ft. The speed of the center of mass of the airplane does not change with
these maneuvers. Find the forces exerted on the flight attendant’s feet if the attendant wishes
to move forward with a speed of 2 ft/sec.

We consider two reference frames. The first frame is associated with the curved trajectory
and has an angular velocity of 420(88/60)/(30, 000) = 0.02053 rad/s. The second frame is
attached to the airplane, and its angular velocity is the pitch rate of 0.1 rad/s.> At the instant
considered, the two reference frames coincide. We can write the angular velocity and angular

3In order to simplify this problem, we do not consider any roll of the aircraft. In general, when an airplane makes a
turn the pilot rolls the aircroft so that the resultant acceleration vector due to the turn and due to gravity lies as much
as possible along the local vertical direction, through the spinal cords of the passengers. This way, passengers
experience less c?iscomfort.
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acceleration as
o = 0.1j — 0.02053k rad/sec a = —0.02053k X 0.1j = 0.002053i rad/sec’ [a]
We write the relative acceleration relation as
ap = ag+ a Xrpp+ ®X®Xrpp+ (@pB)et + 200 X (Vp/8)rel bl

and identify each term. The acceleration of the center of mass is due to the change in curvature
and can be written as (60 mph = 88 ft/sec)

v? 4207(88/60)° 2
—a,= ——j=—— " §= —1265jf
ag = a pj 30,000 J 12.65j ft/sec [e]

or, in aeronautics terminology, 12.65/32.17 = 0.3932g. The angular acceleration term is very
small and can be ignored. The centripetal acceleration term becomes

o X @ Xrpp = (0.1j — 0.02053k) X (0.1j — 0.02053K) X 15i = —0.1563i ft/sec’ [d]

The next term, (ap/p)rel, is zero, because we are assuming a constant speed for the flight
attendant inside the aircraft. The last term is the Coriolis term, which has the form

20 X (Vpg)ret = 2(—0.02053k + 0.1j) X 2i = —0.08212j — 0.4k ft/sec’ [e]

As can be seen from Eqs. [b] through [e], the dominant term in the acceleration is
the normal acceleration due to the change in curvature. The Coriolis term has the smallest
magnitude, and it is also in the direction of the gravitational attraction. The total accelera-
tion is

ap = —0.1563i — 12.73j — 0.4k ft/sec’ If1

Let us now draw a free-body diagram of the flight attendant (Fig. 2.32), treating the
attendant as a point mass. The forces that the airplane exerts on the flight attendant are trans-
mitted by the normal force N and the friction forces F, and F,. Using Newton’s second law,
we have

map = m(~0.1563i — 12.73j — 0.4k) = F,i + F,j + (mg — N)k Ib [g]

mg

Z z

Figure 2.31 Figure 2.32
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Solving for the unknowns
120
N = mg +04m = 120+0.4§m = 121.51b
F, = —0.1563m = —0.58301b Fy = —1273m = —47.491b [h]

Note that the coefficient of friction between the attendant’s shoes and the airplane floor
must be large enough to permit the resultant of F, and F, to be less than the normal force times
the coefficient of friction. Even then, because of the large forces acting on the attendant, it is
very difficult for the attendant to keep standing or to walk. The Coriolis acceleration makes
the flight attendant feel heavier, and for someone further away from the center of mass of
the airplane the centrifugal force becomes much larger. Even for passengers who are sitting
down, any change in the curvature of the path of the airplane causes a substantial amount of
discomfort. It is for all these reasons that pilots navigate aircraft such that the path followed
by the center of mass of the airplane is as close to a straight path as possible and any angular
velocity is very small.

Example

Consider the robot in Fig. 2.33 mounted on a rotating shaft. The robot arm is attached to the
shaft with a pin joint (in robotics terminology, a revolute joint). With a motion similar to that
of an automobile antenna, a second arm can extend from the outer end of the first (in robotics
terminology, a prismatic joint). Given that the shaft angle 6(¢) and first arm angle ¢(z) vary
with the relationships 8(r) = 0.2¢ rad, ¢(¢) = w/4(1 + sin 7r¢) rad and that the second arm
is extending with the relation » = 3¢ cm, find the angular velocity and angular acceleration
of the robot arm as well as the velocity and acceleration of the tip.

Solvution
We solve this problem using two approaches. In the first approach we use two relative frames,
one attached to the shaft and rotating with 6, the other attached to the robot arm and rotating

with ¢ with respect to the shaft. In the second approach we use a single relative frame attached
to the robot arm.

First Approach The two relative coordinate frames are denoted by H and B, as depicted
in Fig. 2.34. The inertial frame is denoted by A. The H frame is attached to the rotating shaft,

y

o)
, Q/
SQ

hy
Extending
arm

[

Figure 2.33

Figure 2.34
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and the B frame is taken such that the b, axis is along the extending arm and attached to the
tip of the first arm. The angular velocities of the reference frames can be written as

) . 2
Awfl = gh; = 0.2h; rad/s HeB = ¢h; = %ccs 7t hy rad/s [al

Considering first the B frame, we can express the position and relative velocity of P as
rpp = 0.03th,m  Zvp = 0.03b, m/s b1
where the unit vectors of the B and H frames are related by
b =h b, = sin¢h; — cos ¢ph; b; = cos¢h, + sin¢h; [e]

The relative velocity expression for the H and B frames is

Hyp = Hyg + HdB X rpjp + Bvp ()]
in which
Hyp = 0.6¢bsrad/s  Bvp = 0.03b, m/s
Hw® X rp5 = by X 0.03tb; = 0.03t¢bs m/s [e]
so that
Hyp = (0.6 + 0.035)¢b; + 0.03b, m/s [

Now transfer the velocity of point P to the inertial frame. The relative velocity equation
between the A and H frames is

Avp = Avy + 4@ Xrpy + Pvp Ig]
in which
Avg =0 Awf Xrpy = 6as X (0.6 + 0.030)b, [h]
Noting that a3 = — cos ¢b, + sin ¢bs, we obtain for the velocity of point P
Avp = —6sin (0.6 + 0.039)b; + 0.03b, + (0.6 + 0.03/)dbs mv/s m

Second Approach  The angular velocity of the single frame is
AwB = A" + HwB = §(thh; + ¢(H)b; = ¢b; — 6 cos db, + Osin db; (1]
and the relative velocity expression is

AVP = AVB + AmB X rpp + BVP [k]

We find
Avg = “0® X rgy = (dby — @ cos db, + 0 sindbs) X 0.6b, = —0.60 sin b, + 0.6¢bs
Aw® X rp = (Pb, — O cos db, + 0 sin pbs) X 0.03th, = —0.0310 sin b, + 0.031¢bs
Byp = 0.03b, m/s m

which, when added up, yields Eq. [i]. Note that if we attach the relative frame to point H,
4yp = 0. Or, if the relative frame is attached to the tip of the protruding arm, then rp;z = 0.
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Acceleration To find the acceleration of point P, let us use the single coordinate frame
approach. The angular acceleration between the A and B frames has the form

AaB — AaH +HaB +A(0H waB [m]
in which
-
Aol =0 Haf = by sin 7rth,
Ao x HpP? = gh; X ¢h, = 6éh, = 0.0572 cos wth, [n]
so that we find
8 m
AaB = — - sin 7rth; + 0.0572 cos wth, [o]

The expression for the acceleration then becomes

4ap = %ag + 2af X rpp + 20f X A0? X rpp + 280f XBvp + Bap el

The term Bap = 0, as Bv, is constant in the B frame. We find the absolute acceleration of

point B using

A, _ A

ap af x gy + Aw? X Aw® x ra/H [q]

so that the first three terms on the right in Eq. [p] can be expressed as
AaB +4af x rpp + Af X Awf x Ipp = Aa® x rppy + Aw® X Aw? X | §174 [

Evaluating the individual terms, we have

3

Aol Xrpy = [— WT sin7rtb; + 0.057%(sin ¢b; + cos ¢b3)] X (0.6 + 0.030)b,

3
= (0.6 + 0.037) [—0.05772 cos¢b; — WT sin mb3] m/s?

A0® X 4 X rpy = (¢b) — 0 cos db, + 0 sindbs) X (db; — O cos ¢b, + 0 sin ¢bs)
X (0.6 + 0.030)b,
= (0.6 + 0.031)[— 6 cos pb; — (¢ + 62 sin® ¢)b, — 62 cos P sin Pbs]

24w? X Byp = 2(¢b; — 0 cos pb, + 6 sin pbs) X 0.03b, = 0.06¢b; — 0.066 sin b m/s?
[s]

so that the acceleration of the tip of the robot becomes

Aap = —[(0.6 + 0.03£)(0.057 cos ¢ + B cos ) + 0.06 0 sin ]b;

— [(0.6 + 0.03£)(¢* + 62 sin® ¢)]b,

3 . .
+ [—(0.6 +0.031) (WT sin 77t + 62 cos ¢ sin ¢)+ 0.06¢] bsmy/s?
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2.8 OBSERVATIONS FROM A MOVING FRAME

In many cases, either by choice or by necessity, one observes motion from a mov-
ing reference frame and manipulates the equations of motion within that reference
frame. Typical examples are motion with respect to the earth and measurement taken
from a moving platform. When one cannot measure absolute velocities and accel-
erations, one has to take relative measurements and to use the relative velocity and
acceleration equations to find the actual accelerations. Similarly, when analyzing or
integrating the equations of motion, one has to use the variables associated with the
relative motion.

We first apply the relative motion equations to Newton’s second law, which is
valid for inertial frames. Given the inertial and relative coordinates from the preced-
ing section, we write the equations of motion for P as

F = map = m(ap + apg, +a Xrpp+ X wXrpp+ 2 X VP/B,,])
[2.8.1]

where F is the sum of all external forces acting on the particle. We can rewrite the
above equation as

map/g , = F+F* [2.8.2]

where F* = —m(apg+a Xrpp+ @ X Xrpp+2mXvpp_ ), which is the resultant
of all forces that need to be considered due to the motion of the moving reference
frame. In general, it is preferable to write the equations of motion by placing on the
left side every term that includes variables associated with the relative frame. Doing
so, we obtain for Newton’s second law

m(ap,Bm +a Xrpg+®XowXrpg+2m X VpB,) = F — mag [2.8.3]

A word of caution is in order. Often, we analyze motion with respect to a moving
frame by assuming that the motion characteristics of the moving frame are known
and that the motion of the body with respect to the relative frame does not affect the
motion characteristics of that frame. For example, for a car traveling on the earth,
we can safely assume that the motion of the car does not affect the rotation of the
earth. While this assumption is valid where the mass of the body to which the relative
frame is attached is much larger than the mass of the body whose motion is analyzed,
the assumption begins to lose its validity as the bodies involved become comparable
in mass. Be cautious when assuming that the motion observed from a relative frame
does not change the characteristics of that frame.

One of the most common applications of analyzing motion from a moving frame
is motion with respect to the rotating earth. As stated earlier, motion over short dis-
tances or with small velocities and involving short time periods can be analyzed rel-
atively accurately without considering the motion of the earth. Otherwise, the earth’s
rotation needs to be included in calculations.

Consider a particle near the surface of the earth, as shown in Fig. 2.35, and attach
the moving frame B to the surface of the earth using an xyz coordinate system. The
z direction is the vertical, the x direction is toward the north, and the y direction is
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North pole

x (North)
z (Vertical)

z (Vertical)

Qsin A

Figure 2.35 Figure 2.36

toward the west. We assume that the earth is rotating about its own axis with constant
angular velocity €. Fig. 2.36 shows the coordinate system from the side view. To
calculate the spin rate of the earth, we note that it takes the earth about 365.25 days to
orbit the sun, and that the earth rotates about its own axis at the rate of one revolution
per day.* Both rotations are counterclockwise, which leads to

277 1 -5
- — =17 X 8.
Q (24(60)60)(1 + 365.25) 7.2921 X 107 rad/s [2.8.4]

so that, considering Fig. 2.36, one can describe the angular velocity of the earth in
vector form as

Q = Q(sin Ak + cos Ai) [2.8.5]

where A is the latitude. We ignore the angular acceleration of the earth and seta = 0.
This assumption and the assumption that the rotation rate of the earth are constant
are not exactly true. The earth’s rotation about itself is not along a fixed axis. The
axis about which the earth rotates exhibits a small wobbling motion with a period
of 433 days, primarily because the earth is not totally rigid and not totally spherical.
The rate of the earth’s rotation is not constant; it is slowing down at an extremely low
rate. In addition, we ignore the inclination between the equatorial plane (the plane
generated by the equator) and the ecliptic plane (the plane generated by the orbit of
the earth around the sun). We also ignore any subsequent relative motion of the sun
with respect to the fixed stars.

4The measured orbital period of the earth is 365.256 360 5 days. The difference in the third decimal place from
the commonly used value of 365.25 days leads to a difference cc:(one day about every 150 years. The Gregorian
calendar was adopted to compensate for this difference. In this system, in a 400-year period, three years that
normally should be leap years are not considered as leap years. These years are selected at the beginning of
centuries. For example, rKe year 2000 C.E. is a leap year, while the years 2100, 2200, 2300 will not be
considered as leap years. The year 2400 will be a leap year.
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Using these assumptions, we calculate acceleration of a point on the surface of
the earth (origin of the relative frame) as

ag = ) X (2 Xrp) [2.8.6]

where rg = r.K, denoting the vector from the center of the earth to the surface of
the earth. Using Newton’s second law, the absolute acceleration of point P is written
as

map = F + F; [2.8.7]

where F,, is the gravitational force and F denotes the sum of all other external forces
acting on the particle. Introducing Egs. [2.8.6] and [2.8.7] into Eq. [2.8.3], we obtain
the equations of motion in terms of the relative coordinates as

mapp, +2m&) X vpp  + m X ( Xrpp) = F + F; —mQ X () Xrp)
[2.8.8]

As discussed in Chapter 1, we include the centrifugal force —m{2 X (2 Xrp) in
the gravitational force and define the term F, as the augmented gravitational force
and approximate it as

F, = F;, - mQ X ( Xrp) = —mgk [2.8.9]

This simplification is possible because the radius of the earth is almost a constant,
making the term X ( X rg) = Q2r,(— cos? Ak + sin A cos Ai) nearly constant
in magnitude. The component along the vertical (z direction) is used to augment
the gravitational force. The component in the x direction (North) is usually ignored.
The maximum value of the centripetal acceleration is 02?r, = 3.39 cm/s2, which is
achieved at the equator.

The effect of the centripetal acceleration is to make the earth more squat. How-
ever, because the earth is not made up of fluid only, the flattening occurs mostly
around the equator. Around the equator, the combined effects of flattening and cen-
tripetal acceleration make the value of g about 0.53% less than its value at the poles.

One can then write the equations of motion of a particle in the vicinity of the
earth as

mapyp, + 2m&} X VPiBy T me) X (2 X rp;g) = F — mgk [2.8.10]

Writing the equations of motion in terms of relative quantities is mathematically
equivalent to applying a different force than the external forces. The equations of
motion can be written as

map;p . = Fegr + Fg [2.8.11]

rel

where the effective force F.¢r denotes the force felt on the surface of the earth. It has
the form

Fef = F — mo X (@ X rpp) — 2mew X vpjp [2.8.12]
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After all the simplifications have been made with regard to the nature of the
angular velocity of the earth and with regard to gravity, the difference between the
actual and effective forces consists of a centrifugal force, —mo X (» Xrp;g), and the
Coriolis force, —2m&} X vp;g . The centrifugal force is very small: it is a function
of the square of the earth’s rotational rate, and rp/p is usually very small compared
to the radius of the earth.

The Coriolis force has a distinctively more pronounced effect. The magnitude of
the Coriolis force is dependent on both the velocity of the particle and on the latitude.
Considering Eq. [2.8.5], for a particle moving in the east-west direction, maximum
values of the Coriolis force are observed at the North and South Poles. The maximum
value of the Coriolis force per unit mass is 2Q0v =~ 1.5 X 10™%v, where v is the speed
with respect to the earth.

While the magnitude of the Coriolis force is very small, its direction is always
perpendicular to the velocity; thus, this force causes a change in direction. If there
are no significant forces acting perpendicular to the velocity, the effect of the Coriolis
force builds over time. The Coriolis force for the Northern Hemisphere is depicted
in Fig. 2.37. It causes a patticle to veer to the right. Note that this analysis ignores
the vertical component of the Coriolis force, as this component is much less than the
effect of gravity.

The Coriolis effect is used to account for several kinds of natural and physical
phenomena. Pertinent to weather analysis, the motion of air masses in the atmo-
sphere is affected by the Coriolis force. For example, in the Northern Hemisphere,
the spin of the air masses in cyclones and hurricanes is counterclockwise as shown in
Fig. 2.38. A hurricane occurs when a low pressure center attracts air particles inward
with large speeds. In the Southern Hemisphere, the spin of a cyclone is clockwise.
Rossby waves, which include the Coriolis effect, are widely used to predict wave
motion in the oceans as well as for weather analysis. The motion of projectiles such
as missiles is affected substantially by Coriolis forces. And the Coriolis effect influ-
ences the whirl of water as it goes down the sink.

l z (Height)
8

plane of v, ®

Low pressure

Northern Hemisphere

Figure 2.37  Coriolis force Figure 2.38 Hurricane formation
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We next consider the motion of a particle of mass m acted upon by an external
force F = F,i + F,j + F_ k. Writing the position vector as rp/z = xi + yj + zk and
introducing these terms into Eq. [2.8.10], and separating into components in the x,
¥, and z directions, we obtain

¥ —2QysinA — Q*(xsin? A — zsinAcosA) = [2.8.13a]

¥+ 2Q(xsinA — zcosA) — 0%y = [2.8.13b]

3> 3|

F
7+ 2Qycos A + Q%(—zcos’ A + xsinAcosA) = —-g+ ;"’ [2.8.13¢]

We can perform a qualitative analysis to investigate the magnitudes of the com-
ponents of the motion with respect to the rotating earth. Consider, for example, the
case of free motion, F; = F, = F, = 0 and a particle thrown upward, with ini-
tial conditions in the z direction only. Because () is a small quantity, terms of order
), namely the Coriolis terms, will dominate terms of order Q2. We thus ignore the
centrifugal terms. In Eq. {2.8.13c], the gravitational acceleration g will dominate
the response. We conclude that the component of the motion in the z direction is of
order 1.

From Eq. [2.8.13b], the response in the y direction will be influenced by the
motion in the x and z directions. That is,

O(y) = O(QQ0(2) + 0(x)) = O + QO(x) [2.8.14]

Investigation of Eq. [2.8.13a] shows that the component of the motion in the
x direction is influenced by the motion in the y direction and can be considered as
being of order O(x) = O(£2O(y)). This implies that motion in the x direction will be
much smaller than the motion in the y direction. Hence, from Eq. [2.8.14], motion
in the y direction will be dominated by the motion in the z direction and it will be of
order (). It follows that the motion in the x direction will be of order Q2. Because
the y axis denotes the west and the x direction denotes the north, for a freely moving
particle the Coriolis effect will be much more significant in the east-west direction,
and much less along the north-south direction.

The results of the above dimensional analysis will be different when there are
external forces in the x, y, or z directions and for initial conditions.
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Find the equation of motion of the mass sliding in the tube in Example 2.11.
Solution
We will make use of Eq. [2.8.3]. We introduce the acceleration expression from Eq. [h] of
Example 2.11 into Eq. [2.8.3], which yields
[(mQ2wlysd — 2wdych)i + m(j — 62y — w2yc?0)j + m(250 + w?ysdch + Gy)k] = F
[a]

To find the forces acting on the mass, we draw a free-body diagram (Fig. 2.39). The
forces acting on the particle can be classified into three groups:

l Example
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Figure 2.39
1. Gravity: —mgK = —mgsin8j — mgcos 6k
2. Normal reaction forces that the tube exerts on the particle: F,i + F;k
3. Spring and dashpot: —(ky + cy)j
The total force thus becomes
F = F,i+ (—mgsin@ — ky — cy)j + (F, — mgcos @)k [b]
The reaction forces arise from the fact that the particle is constrained to move inside the tube.
Introducing Eq. [b] into Eq. [a] and separating into the components along the x, y, and z
directions, we find the force balances to be
In x direction: mQwlysin@ — 2wbycos8) = F, [l
In y direction: m(y — 0%y — w?ycos’0) = —mgsin@ — ky—cy  [d]
In z direction: m(270 + w?ysin@cos@ + 6y) = F, — mgcos 0 [el
Of the three force balances, Eq. [d] represents the equation of motion and Eqgs. [c] and
[e] give expressions for the reaction forces F» and F,, that is, the constraint forces. Note that
we have a single degree of freedom, because the motion of the platform and tube are defined
as known quantities. The only variable is the motion of the particle inside the tube, described
by y. In essence, Eqgs. [c]-{e] represent an equation of motion and two constraint equations.
As stated earlier, it is customary to write the equation of motion by placing all of the
dependent variables on the left side of the equation. Doing so, we rewrite Eq. [d] as
my + cy + (k — mb* — mw? cos® @)y = —mgsin6 f
Example | MOTION ANALYSIS USING PERTURBATION THEORY Equations [2.8.13]
2.15 are a set of nonlinear equations, which cannot be integrated analytically. If quadratic terms in

the angular velocity {) are neglected, these equations become linear. Their qualitative anal-
ysis requires solution of an eigenvalue problem, and their integration requires simultaneous
integration of three equations. The integrals of the motion for this set of equations do not give
much additional insight. One can conduct a numerical integration of the equations of motion,
but doing so gives answers for the particular set of forcing and initial conditions. It turns out
that there is yet another analytical approach to analyzing the equations of motion. Because {}
is a very small quantity, Egs. [2.8.13] can be analyzed by means of a perturbation approach
by treating () as the perturbation parameter.
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Here, we carry out what is known as a straightforward expansion and demonstrate per-
turbation analysis.> We assume that the solutions in x, y, and z can be expressed in a pertur-
bation series in terms of the perturbation parameter () as

x() = x0+Qx; + Q%x + ... &) = yo+ Qy + Q%y, + ...
() = 720+ Oz + Q222 + ... [al
where the subscripts indicate the order of the solution (zeroth, first, second, . ..). Given the
initial conditions x(0), x(0), y(0), (0), z(0), 2(0), we consider them as the initial conditions

associated with the zeroth-order problem. All initial conditions associated with the higher-

order solutions are zero. Substituting Eqs. [a] into Eqgs. [2.8.13] and neglecting terms of order
higher than ()2, we obtain

Jo+ Qi + Q% + ... = 2Qsin Ao + Oy +..)
~ O%(xosin> A — zgSinACOSA +...) = %

Yo + Q31 + Q% + ... + 2Q(xsin A + Q1

2.
>

n

3|

—zpcosA — QzcosA+...)—Q%(yo +...)
20+ Q75+ Q% + ... +2QcosA(Go + Qyy +...)

+ Q%(—z0cos® A + xpsinAcosA +...) = —g + % [b]

Collecting terms of like orders in (), we obtain a set of linear differential equations in
the form

Order (10
. Fy . .
Xo = — x0(0) = x(0) x0(0) = x(0)
.. F, ) .
Yo=—- yo(0) = y(0) y0(0) = y(0)
. F, . .
=g+ o 20(0) = z(0) 20(0) = z(0) Lc]
Order {2
X = 2sin /\yo
¥1 = —2(xpsin A — zgcos A)
7y = —2cosAyg [d}
Order )2

¥, = 2sinAy; + xg sin® A — zo sin Acos A

J2 = —2(x;sinA — z1c0s A) + yo
7 = —2cos Ay + zocos® A — xgsin Acos A fe]

5The field of perturbation analysis is very broad and several perturbation techniques exist. An in-depth treatment
of the subject is beyond the scope of this text. The straightforward expansion we use here is the simplest form of
perturbation expansions.



140 CHAPTER 2 ® RELATIVE MOTION

We observe that xo and y, depend on the external force, and zp depends on both the external
force and gravity. The first- and second-order equations indicate which terms dominate the
motion. The order { equations are due to the Coriolis effect, and the order {22 equations are
due to both Coriolis and centrifugal effects.

Let us select the case of projectile motion, and consider a projectile launched in the
Northern Hemisphere with speed v toward the west and at an angle of 8 with the vertical. We
have the following initial conditions:

x0) =y0)=20)=0 x(0) =0, y(0) = vsinf z2(0) = vcosé [f]

We assume that the external force consists of gravity only, neglecting the effects of wind
resistance. The zeroth-order problem yields

¥ =0 x(0)=0 x0) =0 > xo(t) =0
Jo=0  y(0) =0  y(0) = vsin@ > yo(t) = vsin(6)t
fo=-g 20)=0  2(0) = vcosd > 20(t) = vcos(9) — g2 gl

Recalling that the higher-order solutions all have zero initial conditions, substitution of the
zeroth-order solution into the first-order equations yields

# = 2sinAyy = 2usinAsin@ > x(f) = vsin Asin(9)?
¥ = —2(xpsin A — Zpcos A) = 2cos A(vcosf — gt) > yi(t) = cos A(v cos(0)r® — gr*/3)

71 = —2cosAyg = —2vcosAsind > z1(t) = —vcos Asin(@)r?
[h]
Combining Egs. [g] and [h], we obtain the first-order approximation to the solution as
x(t) = Qusin Asin(@)#

gt
y(&) = vsin(@)r +  cos A {v cos(8)r* — 3
g’ . 2

z2(t) = vcos(@)r — 5 Quvcos Asin(8)t n

This above solution is valid for 0 < ¢t = ¢, with ¢, denoting the time at which the projectile
falls to the ground. The first-order approximation to ¢; can be found by setting z(t) = 0 in
the above equation, which gives

2
0 = z(ty) = vcos(0)ts — ng - chosz\sin(e)tﬁ > vcosf — (g + chos)\sina)tf =0
Il

which yields the final time as

- vcos@
/= 42+ Qucos Asin6

Note that in the absence of the Coriolis effect, the final time becomes the well-known re-
sultof £, = 2vcos 8/g. The Coriolis effect, for this particular set of initial conditions, reduces
the time the projectile stays in the air.

The Coriolis deflection in the x direction can be found by introducing the expression for
the final time to the response, with the result

0 2
_ v 02 = Qosi . vCos
x(ts) vs1nAs1n0tf vsm)\sm()(g/2 T Ovcos Asing
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As expected, the magnitude of x(¢y) is dictated by the latitude angle A. In the Northern Hemi-
sphere, where A is greater than zero, x(¢¢) is positive, indicating a Coriolis deflection to the
right. By contrast, in the Southern Hemisphere, where A is negative, x(¢) is less than zero,
indicating a deflection to the left. These results agree with the discussion on the Coriolis
deflection in the previous section.
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FOUCAULT’S PENDULUM  Another interesting application of motion with respect
to the rotating earth is the Foucault pendulum (Fig. 2.40). This pendulum consists of a large
concentrated mass, usually in the form of a sphere, suspended from a very high ceiling by a
thin wire.> As the pendulum swings, its swing plane rotates slowly in the clockwise direction.
This rotating motion may seem hard to explain, because the motion of a pendulum is expected
to be along a fixed plane or a fixed elliptical path. (The initial conditions dictate whether the
swing motion is along a plane or an ellipse.)

We see the swing plane of the pendulum rotate because of the rotation of the earth and
the resulting Coriolis acceleration. To an observer in an inertial frame, the pendulum executes
swing motion along a fixed plane or a fixed elliptical path.

From the free-body diagram in Fig. 2.41, the external forces F, F, and F, are due to
the tension in the wire. Denoting the tension in the wire by 7, and its components by T, Ty,
and T,, we have

x L—-z
Fr=~Tc=~3T Fy=—Ty=—%T Fo=T,= =7
where x, y, and z denote the coordinates of the pendulum. We next make use of the great
length of the pendulum and assume that (L — z)/L = 1. We hence treat the amplitude of the
motion in the z direction as negligible, and write z/L = 0, z = 0, 7 = 0. In essence, we are
assuming that the pendulum is moving on the xy plane only. In addition, we assume that

T [a]

Figure 2.40 Figure 2.41

5In the United States, there is a Foucault pendulum in the United Nations building in New York City, at the American
Museum of Natural History in Washington, D.C., at the Franklin Institute in Philadelphia, and at the Museum of
Science and Industry in Chicago.

l Example
2.16
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because the wire is very thin, its mass is negligible compared to the mass of the sphere,
and that air resistance is negligible. Using these assumptions, introducing Eqgs. {a] into Eqs.
[2.8.13], and neglecting terms quadratic in {), we obtain

% —2QsinAy = —;nf‘ZT §+2Qsin Ak = —ﬁT [b]

T
2Q0ycosA+ g = P [e]

Rewriting Eq. [c] as T = m(g + 2Q)y cos A), introducing it into Eq. [b] and ignoring terms
quadratic in x and y, we obtain the linearized equations of motion as

X—ZQsinAy+%x=0 ji+20sin)u'c+%y=0 [dl

Equations [d] represent a gyroscopic system where the rate of rotation is governed by
) sin A. We note that € sin A is the component of the angular velocity of the earth in the
vertical direction. To analyze the nature of the response, we assume a solution in the form

x(t) = X' y(t) = Ye'' [e]

where X and Y are amplitudes. Introducing Eqs. [e] into Egs. [d] and collecting powers of

"' we obtain
—w? + .f: —i20Q sin A [x] _ [o] f
20wsinA —w?+ % Y 0

In order for Eq. [f] to hold, the determinant of the coefficient matrix must vanish. Setting
the determinant equal to zero leads to the characteristic equation

2
(—w2 + %) ~ QosinA)? =0 [9]

Solving the characteristic equation for w, we obtain four values as

o = +Qsin\ + /% +Q2sin? A [h]

The response x(t) and y(¢) is harmonic with frequency w. The quantity inside the radical in
Eq. [h] is always positive. It follows that all values of w are real and very close to each other.
After carrying out the algebra, the response can be expressed in the general form

x(t) = C;cos(w;t + ¢1) + C; cos(wyt + d)g)
y(t) = —-C sin(wlt + d)]) + C, Sin((x)zt + ¢2) il

where C; and ¢; (i = 1, 2) depend on the initial conditions, and

W) = /%+0.2sin2)\ +Qsind wp = /%+Q2sin2/\—ﬂsinA Il

are the frequencies. Because the angular velocity of the earth is much smaller compared to
g/L, g/L dominates the roots of the characteristic equation. Indeed, approximating v, and w,
using a Taylor series expansion, we get

w = /%+stin2)x + QsinA =~ /% +Qsin)\+%ﬂzsin2)t
wy = /%+stin2/\—ﬂsin)\z /% —Qsin)\+%02sin2)\

k]

T e



2.8 OBSERVATIONS FROM A MOVING FRAME

If we ignore the rotation of the earth and set 0 = 0, then w; = », and it becomes clear
from Egqs. [i] that the motion of the pendulum is an ellipse or a straight line.

We next examine the effects of the rotating earth. We concluded earlier that the two
roots w; and w, are very close to each other. The type of motion of a system when two of
its frequencies are very close to each other is the classical case of the beat phenomenon. We
introduce the expressions
g (1 N LO%sin’ A

wg = ) +w) =[5 72

1 .
L ) wp = E(wl —wy) =sin) 1]

where w, is the average frequency and w,, the beat frequency. The average frequency is the
frequency of the pendulum as observed from an inertial reference frame (of order 1) plus a
very small change (of order {22) due to the rotation of the earth. The beat frequency is of
order (2, the same as the coefficient of the middle terms in Eqgs. [d] and the component of the
angular velocity of the earth in the z direction. One can express w| and w; in terms of the
average and beat frequencies as
W =0, twy, @ =0, W [m]
Without loss of generality, we consider the case where the local motion of the pendulum
is on a swing plane. For this, we specify the initial conditions on the velocity as
x=0 y=0 at r=0 [n]
Furthermore, at # = 0O only one of x or y has to be nonzero. We select the swing plane as the
xz plane, so that the remaining initial conditions are
x=C y=0 [o]
Introducing these initial conditions into Egs. [i] and solving, we obtain

b1 =¢=0

Cow;  Clw, — wp) _ Cow;p Clwg + wp) Ir]

Cr = (w; + w7) - 2w, G = (wy + wy) B 2w,

Using Eqgs. [1] and [m], the constants [p], as well as the trigonometric identities cos(a + b) =
cosacosb — sinasinb, sin(a + b) = sinacos b + cos asin b, we can express Egs. [i] as

Clwg, — w Clw, +w
x([) = Mcosw]t + Mcoswzt =
2w, 2w,
wp . .
C(cos w,t cos wpt + — sin w,t sin wpt)
Wq
Clwg —wyp) . Clw, + wp) .
)= —— sinw |t + —————sinwyt =
y(®) 20, 1 20, 2
. wp .
—C(cosw,t sinwpt — — SiN W, COS Wpt) [q]
(OF]

To get a feel for the motion, we note that @), is an order of magnitude smaller than w,, and
we ignore the terms with the coefficient w/w, from the right side of the above equations. This
simplification leads to an interesting explanation of the motion to a first-order approximation:
The motion of the Foucault pendulum can be explained as an amplitude modulated swing
motion for both x and y where the amplitude of the swing varies with the rate w, = (1 sin A.
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Swing plane of pendulum

Figure 2.42  Rotation of Foucault's
pendulum

Furthermore, if we take the ratio of y(z) over x(¢), we obtain

M ==
x(¢)

which indicates that the plane of the pendulum rotates at the angular rate w, = {1 sinA, as
depicted in Fig. 2.42. Because of the negative sign, the direction of rotation in the Northern
Hemisphere is clockwise and opposite to the rotation of the earth, a conclusion we can visu-
alize easily. One intuitively expects the pendulum to rotate in the opposite direction of the
rotation of the earth. While the terms that were ignored in Eq. {r] change this interpretation
slightly, the main result is the same.

At the North Pole, as A becomes 90°, the Coriolis effect is the most pronounced. At the
equator, the Coriolis effect disappears.

—tan(wpt) = — tan({) sin Af) Irl
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HOMEWORK EXERCISES

SECTION 2.2

1. A coordinate system XYZ is transformed into a coordinate system xyz by the
following series of transformations: First, a counterclockwise rotation of 45°
about the Y axis, resulting in the x'y'z’ coordinate system, and then a clockwise
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rotation of 30° about the x’ axis, resulting in the xyz coordinate system. Find
the coordinates in the inertial frame of a vector which originally is r = 2I + 3]
and moves with the transformed coordinate system. Then, find the components
of a vector p = —3i + 4k in terms of the inertial system and the components of
the vector v = —4j + 1.2K in both the XYZ and xyz coordinate systems.

2. A coordinate system XYZ is transformed into an x yz coordinate system, first by
a rotation of 6, about the Z axis, which gives the x'y’'z’ coordinates, and then
by a rotation 8, about the y' axis. Express the unit vectors i, j, and k and their
derivatives in terms of the unit vectors of the XY Z coordinates.

SECTION 2.3

3. Given the column vector {g} = [q; g2 ¢3 g4]”, the matrix [D] as

51 0 -1
14 1 o0
DI=1 6 1 6 -1

-1 0 -1 3

and the quadratic form S = {g}? [D]{g}, evaluate S. Then, calculate dS/d{q} and
show that the value you obtain is identical to what would be obtained using Eq.
[2.3.20].

4. The motion of the double pendulum in Fig. 2.43 is described by the angles 8,
and 6,. Find expressions for the position vector r associated with the motion of
the tip of the pendulum, as well as the velocity v and acceleration a of the tip,
using Eqgs. [2.3.23]-[2.3.28], and verify Eq. [2.3.29].

5. Given the column vector {g} = [q; g,]7, the matrix [D] is

_| 492 2q

Figure 2.43
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and the quadratic form S = {gq}" [D{g}, evaluate S. Then calculate dS/d{q} and
show that the value you obtain is identical to what would be obtained using Eq.
[2.3.21].

SECTION 2.4

6.

10.

11.

Show (independently of the arguments in this chapter) that the determinant of
the direction cosine matrix [c] between two coordinate systems is always equal
to 1.

Two coordinate systems XYZ and xyz are related to each other as shown in
Fig. 2.44. Find the direction cosine matrix between the two coordinate systems.

The direction cosine matrix resulting from a 3-1-3 body fixed transformation (6,
about x3, 8, about y;, and 63 about z3) is given below. Find the values of the
rotation angles 81, 6,, and 0;.

—-0.1768 —0.9186 —0.3536
[c]=| 0.8839 -03062 0.3536
—0.4330 —-0.2500  0.8660

The rectangular box in Fig. 2.14 is first rotated clockwise by 15° about the line
OA and then by 45° counterclockwise about line OB. Find the coordinates of
point C after this rotation sequence.

The rectangular box in Fig. 2.14 is rotated counterclockwise by 45° about a line
passing through points A and B (viewed from B). Find the coordinates of point
C after this rotation sequence.

The rectangular box shown in Fig. 2.45 is rotated counterclockwise by an angle

of 30° about the axis passing through points O and B. Find the coordinates of
point A after this rotation in terms of the inertial coordinates.

Y
Y Y
40°
3
) /
90° 43.96° 25
X / 2 X
A Tl
$ B
1
}
z z

Figure 2.44 Figure 2.45
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HOMEWORK EXERCISES

Consider the double-link robot mounted on a rotating base shown in Fig. 2.46,
with the angles 6, and 6, measured from the vertical. Find the position of the
tip of the robot arm in terms of inertial coordinates when ¢ = 30°, 6, = 60°,
and 8, = —15°. The XY Z coordinates are inertial.

SECTIONS 2.5 AND 2.6

13.

14.

15.

16.

17.

A robotic sander shown in Fig. 2.47 has a sanding disk that spins at the constant
rate of 1500 rpm. The arms AD and DB, which are used to position the sander,
make angles of ¢ and ¢ with the vertical. At the instant shown, their values
are ¢ = 90°, ¢ = 60°, and they are moving with the constant angular speeds
of ¢ = 0.2 rad/s and y = —0.3 rad/s. Find the angular velocity and angular
acceleration of the sanding disk in terms of inertial coordinates.

Consider the airplane in Fig. 2.31. The airplane is moving with speed of 600
mph in a curved trajectory p = 3000 ft. At the same time, the airplane is pitch-
ing upwards at the rate of 0.1 rad/s (constant). The propeller is spinning with
the constant counterclockwise angular rate of 4000 rpm. Find the total angular
acceleration of the propeller.

The disk shown in Fig. 2.48 rotates with angular velocity 6, = @y = 15rad/s
and angular acceleration @, = 1.2 rad/s? about a rotating shaft. The shaft is
bent, and it rotates with angular velocity w; = 4 rad/s and angular accelera-
tion @, = —3 rad/s. At this instant, the center of the disk coincides with its
undeformed position. Find the angular acceleration of the disk.

Find a general expression for the angular acceleration AaB, given the relation
Awf = At + Rt + .+ Wb,

A single gimbal gyroscope (inner gimbal not moving), such as the one shown in
Fig. 2.49, is used to measure the angular motion of vehicles. The spin rate of the

Figure 2.46 Figure 2.47
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18.

19.

20.

Figure 2.49

Figure 2.48

rotor is denoted by c/; while the gimbal makes an angle of 6 with the platform.
The angular velocities of the platform are wy, wy, and wz. Find expressions for
the angular velocity and angular acceleration of the rotor using a set of relative
coordinates attached to the outer gimbal.

Find the angular acceleration of the momentum wheel in Example 2.6, given
that all angular velocities are constant.

Consider Problem 2 and solve for the angular velocity and angular acceleration
of the moving frame using the transport theorem.

The flywheel of the gyroscope shown in Fig. 2.50 has a constant angular velocity
of w3 = 5000 rpm about its axis. The outer gimbal has an angular velocity of
w1 = 3 rad/s, which is decreasing at the rate of 1.8 rad/s?. The inner gimbal
is at a position such that the angle between the outer gimbal axis and flywheel
axisis @ = 75°, with® = 0,6 = 3 rad/s2. Find the angular acceleration of the
flywheel.

Yy Y
(l)y>
9,
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SECTION 2.7

21.

22.

23.

24.

25.

26.

A bead of mass m is free to slide on a hoop of radius R (Fig. 2.51). The hoop spins
with a constant angular velocity {) about the vertical axis. Find the acceleration
of the bead.

Consider Example 2.1, and using the relative velocity and acceleration relations
find the velocity and acceleration of a water particle as it exits the rotating sprin-
kler.

Consider Example 2.3. This time, the ant has started moving from point C along
a circular path with point D as the center of the circle with constant speed v.
Find the acceleration of the ant.

A spring pendulum is attached to a rotating shaft by an arm of distance d, as
shown in Fig. 2.52. At the instant shown, the shaft is rotating with the constant
angular velocity ) = 0.4 rad/s, 8 = 30°, 8 = 0.3 rad/s, 6 = 2 rad/s?. The
length of the pendulumis L = 1.3 m and it is getting shorter at the constant rate
of 0.1 m/s. Given also is that d = 0.8 m. Find the acceleration of the tip of the
pendulum.

Consider the bent shaft in problem 17. Now, the shaft is bent such that its defor-
mation can be expressed by the relation d(x) = 0.18 sin(7rx/2) m, as shown in
Fig. 2.53. The disk is located at x = 0.9 m. Find the velocity and acceleration
of point B. Then derive an expression for the acceleration of an arbitrary point
on the edge of the disk. Assume the angular velocity of w; is constant and the
disk is of radius R.

A hunter shown in Fig. 2.54 is aiming at a moving target with her rifie. The
hunter is moving the rifle upwards with a constant angular velocity of 8 =
10°/sec and pulls the trigger when & = 105°. The bullet, which weighs 1/8 1b,

leaves the barrel with a constant speed of 900 mph relative to the rifie. Find the
total velocity and acceleration of the bullet.

Figure 2.51 Figure 2.52
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Figure 2.53 Figure 2.54

27

28.

29.

30.

31.

. Consider the previous problem and find the average force exerted by the rifle on
the hunter as the hunter pulls the trigger, assuming that it takes the bullet 0.01
seconds to reach its speed of 900 mph.

Consider the hunter in Problem 26 and find the velocity and acceleration of the

bullet if the hunter is also turning at the constant angular speed of ¢ = 15°/s at
the instant the bullet is about to leave the rifle.

Consider the two-link robot mounted on a rotating base in Fig. 2.46. Given that
the base and arm angles vary with the relationships ¢(f) = 0.1sinzrad, 8,(t) =
0.3t rad, 6,(t) = —0.1#? rad, find the angular velocity and angular acceleration
of the robot arms and the velocity of the tip at ¢ = 2 seconds.

A disk of radius R shown in Fig. 2.55 spins at the constant rate of w, = 6 about
an axle held by a fork-ended horizontal rod that rotates itself at the rate w, = d)
An ant is walking toward the center of the disk with constant speed v with respect
to the disk. Find the acceleration of the ant as a function of the angle 6 and when
the ant is at the edge of the disk (at point P).

An airplane, shown in Fig. 2.56, is flying at a speed of 500 km/h. The airplane
has a constant pitch rate (w,) of 0.05 rad/s and a constant roll rate (w) of 0.01
rad/s with no yaw, w, = 0. The trailing edge flaps are being extended to give
the airplane more lift at the constant rate of 0.04 m/s. Find the velocity and
acceleration of point C on the flap.
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Figure 2.56

32. An airplane, shown in Fig. 2.56, is executing a circular turn with a radius of
4000 m, while flying at a speed of 600 km/h. The airplane has a constant pitch
rate of w, = 0.04 rad/s and a constant roll rate of w, = 0.01 rad/s. The trailing
edge flaps are being extended to give the airplane more lift at the constant rate
of 0.05 my/s. Find the velocity and acceleration of point C on the flap.

SECTION 2.8

33. Find the equation of motion of the bead in Problem 21 using Newton’s second
law.

34. Figure 2.57 shows a bead of mass m sliding without friction over a thin wire
shaped in the form of a parabola governed by the equation z = x%/2. The thin
wire is rotating about the z axis with the constant angular velocity (). There is a
spring acting on the bead of constant k that deforms only in the vertical direction.
Derive the equation of motion of the bead using Newton’s second law.

Figure 2.57
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35.

36.

37.

z (Vertical)

60 mph

.......... y (West)

®) x (North)

Figure 2.59

A satellite in space has angular velocities w,, ®y, and w, about the x, y, and z
axes, which are attached to the satellite at point O, as shown in Fig 2.58. On
the xy plane, making an angle of 30° with the x axis and going through O, is a
tube, inside which a particle slides without friction. The particle is attached by a
spring and a dashpot to each end of the tube. The spring is unstretched when the
particle is at point O. Find the equation of motion of the particle, using Newton’s
second law.

Consider a 90-ft-long bowling alley in Rio de Janeiro, Brazil. A bowler releases
the ball with a constant velocity of 20 ft/sec, aimed directly at the pocket. What
is the Coriolis deflection, and in which direction is it?

Integrate the perturbation expressions to find the deflection of a stone thrown in
the air vertically with speed v as it falls to the ground. Then compare this result
with the exact solution.



3

DYNAMICS OF A SYSTEM
OF PARTICLES

3.1 INTRODUCTION

This chapter serves three purposes. First, it extends the developments of Chapter 1 to
systems with more than one particle. Second, it prepares the reader for the analysis
of rigid bodies, addressing the most basic form of rigid body motion, that is, plane
kinetics of a rigid body. Third, it introduces basic concepts in orbital mechanics.

Analysis of systems of particles and rigid bodies is greatly simplified when the
concept of center of mass is introduced. Newton’s laws of translational motion and
Euler’s law of rotational motion for a single particle can be expressed in the same
form for a system of particles as well as for rigid bodies in terms of the center of
mass.

This chapter is written such that one can skip it and go directly into analytical
mechanics or into rigid body dynamics. This chapter actually belongs with Chapter
1, as it is an extension of the basic concepts studied in that chapter. For pedagogical
considerations the developments here are presented separately.

The sections in this chapter on plane kinetics are intended to serve as a review
of this special case of rigid body motion. This review is essential, especially for
those who have not studied the plane kinetics of rigid bodies for a long time. Plane
kinetics is relevant to Chapter 4, where we carry out the developments in analytical
mechanics for particle motion or rigid body motion on a plane.

3.2 EQUATIONS OF MOTION

In this section, we extend the developments in Newtonian particle mechanics to sys-
tems consisting of several particles. Consider a system of N particles, as shown in
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Figure 3.1

Fig. 3.1. Each particle is of mass m; (i = 1,2,..., N) and is located by the displace-
ment vector r;. The motion of the individual particles is not necessarily independent
of each other, as there may be forces that relate the behavior of some of the particles
to each other.

We next introduce the concept of center of mass. Denoting by m the total mass
of the system

N
m = E m; [3.2.1]1
i=1

Denoting the center of mass by the point G and locating it by the vector rg, it is
defined as

1 N
Ic = - E m;r; [3.2.2]
i=1

We can express the position of the ith particle relative to the center of mass as
ri =rc+pi [3.2.3]

in which p; is the vector connecting the center of mass with the ith particle. Intro-
ducing Eq. [3.2.3] into Eq. [3.2.2], we obtain

N N
1
rg = E mi(rg + pi) = rg + - E m;p; [3.2.4]
i=1

i=1

B

which leads to the conclusion

N
> mipi =0 [3.2.5]

i=1

One can differentiate the above equations to find expressions for the velocity and
acceleration of the center of mass, which we will denote by v and ag, respectively.



3.2 EquaTions oF MOTION

Differentiating Eq. [3.2.2] with respect to time, we obtain
| X
=rg = — Vi 3.2.6
VG ¢ = ;mz i [ 1

which leads to the relation for the relative velocity

N
> mipi =0 [3.2.7]

i=1

From this we find the linear momentum p of a system of particles to have the
form

N N
p= Zpi = Zmiv; = mvg [3.2.8]
i=1 i=1
where p; = m;v; (i = 1,2,..., N) is the linear momentum of the ith particle.

In a similar fashion, we find the acceleration of the center of mass as

. 1
ag = g = ;Zmiai [3.2.9]

i=1

leading to the relation for the relative acceleration terms

N
Z mip; = 0 [3.2.10]
i=1
Next, we apply Newton’s second law to a system of particles. We separate the
total force acting on the ith particle into two parts:! (1) forces acting on the ith par-
ticle from outside the system of particles, referred to as the external or impressed
forces and denoted by F; (i = 1,2,..., N), and (2) forces exerted on m; by the other
particles within the system, referred to as internal or constraint forces, and denoted
by F;. Newton’s second law for each particle is

m;a; = F; + F; i=12...,N [3.2.11]

The N equations above are usually not independent of each other, so that it is not
possible to analyze the motion of each particle individually. The number of degrees
of freedom, denoted by n, is in general smaller than the number of coordinates (for the
case here 3N). The reduction is due to the action of one particle on the other and from
the restrictions in the motion of the particles that they cause. These actions constrain
the motion of the particles within the system. The internal forcesF;(i = 1,2,...,N)
are the forces associated with the constraints.

Considering the system as a whole, we sum the force balances for all of the
particles, thus

N N
> ma; = > (Fi +F) [3.2.12]

i=1 i=1

| "We will see this separation also in Chapter 4, when we study the principle of virtual work.
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Substitution of Eq. [3.2.3] to the left side of this equation yields
N N N d
; m;a; = ; mi(ag + p;) = ; m;ag = mag = Ep [3.2.13]
Now evaluating the right side of Eq. [3.2.12], because F} (i = 1,2,..., N) rep-
resents the forces that one particle exerts on another, their sum over all particles must
be zero, by virtue of Newton’s third law. Defining by F the sum of all external forces
over all particles,
N N
F=>F+F)=>F [3.2.14]
i=1 i=1
we obtain Newton’s second law for a system of particles as
mag = 4= F [3.2.15]
G dtp v
Another way of writing Newton’s second law for a system of particles is to com-
bine Egs. [3.2.13] and [3.2.15] to yield
N
> ma; =F [3.2.16]
i=1
Depending on the need and on the problem, one can use Egs. [3.2.11], [3.2.15], or
[3.2.16] to describe the force balance of a system of particles.
Example The two masses m; and m, are connected by a massless rod, and they are acted upon by a
3.1 force P, as shown in Fig. 3.2. Write Newton’s second law using Egs. [3.2.11], [3.2.15], and

[3.2.16], and evaluate if these equations qualify as equations of motion.

We first separate the two masses and draw free-body diagrams, shown in Fig. 3.3. We denote
the displacements of the masses by x; and y; (i = 1,2). F, and F. y are internal reaction forces.
Using Egs. [3.2.11] we obtain the four equations

mi =F, mpi, = —F, my, = F,+ P myj, = —F, [a)

in terms of the reaction forces.

y
2 A

(a) b) ©

tp\,Ll/'\‘/

Figure 3.2 Figure 3.3  Free body diagrams



3.3 LINEAR AND ANGULAR MOMENTUM

To use Eq. [3.2.15], we first need to locate the center of mass G. It is easy to show that
the distance from m; to the center of mass is L, = myL/(m; + m;,). Considering the system
as a whole, the only external force is P. Denoting the displacements of the center of mass by
x¢ and yg, Newton’s second law becomes

(my + m)¥cg =0  (m +m)je = P [b]

Finally, we add the first two of Eqgs. [a] and the last two, to obtain Newton’s second law
in the form of Eq. [3.2.16] as

m¥; + mi; =0 m ¥ +myy, = P [e]

Let us now investigate the nature of these equations. Egs. [a] have four equations and
each of Egs. [b] and [c] have two. To find if any of these equations qualify as equations of
motion we calculate the number of degrees of freedom, which can be shown to be 3. Hence, we
need three differential equations, void of internal forces, to describe the system. We conclude
that Egs. [b] represent two of the equations of motion, in terms of x; and yg, associated with
the translation of the center of mass. Similarly, Egs. [c] represent the same, but in terms of x;
and y; (i = 1,2). We still need a third equation.

To find the equations of motion, we need to find expressions for F, and F, in Eq. [a]
and write one of xj, x2, y1, or y; in terms of the other three variables. The procedure is
tedious at best, especially if one realizes that this problem is ideally suited for treatment with
angular coordinates and angular momentum balances. We discuss this approach in the next
section.
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3.3 LINEAR AND ANGULAR MOMENTUM

The linear momentum of a system of particles is defined in Eq. [3.2.8] and, as
discussed in Chapter 1, it is an absolute quantity. We can integrate the equa-
tions of motion for a system of particles over time to obtain impulse-momentum
relationships. Indeed, following the approach in Section 1.6, we can integrate
Egs. [3.2.11], [3.2.15], and [3.2.16] over a time period (t1, £;) to obtain the linear
impulse-momentum relationships, writing

m;vi(t) + J 2(Fi(t) + F:(t))dt = m;vi(ty) i=1.,2,...,N

I

I

N
> mivi(ty)

i=1

N 2
> mvih) + J " ot

i=1

mvg(t) + le F(t)d:

h

mvg(t) [3.3.1a, b, <]

In order to solve for the individual velocities of each particle, one has to integrate
all of Egs. [3.3.1b]. One may not be able to eliminate the F;(¢) terms directly; hence,
a number of constraint forces may have to be solved for.

When the sum of all external forces acting on a system of particles is zero or
its integral over a time period is zero, the linear momentum of the system remains
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unchanged, which is the statement of the principle of conservation of linear momen-
tum for a system of particles. The principle can be written as

p(t1) = p(r2) [3.3.2]

or

N N
mvg(t) = mvg(tz) Zmivi(tl) = Zmivi(tz) [3.3.3]

i=1 i=1
These equations are vector relationships. If the sum of forces or their integral
over a time period is zero along a certain direction, the linear momentum is conserved
only along that particular direction. For example, if linear momentum is conserved
along a certain direction, and we express the unit vector in that direction by e, the

conservation of linear momentum equations become

N N
mvg(ti)ee = mvg(tr) e Z mvi(t)*e = Z m;vi(tz)*e [3.3.4]
i=1 i=1
Impulsive forces are treated the same way as in Chapter 1.
We next define the angular momentum, or moment of the linear momentum, of
a particle m; about a point B by

Hp; = rp; X m;v; = rp; X p; i=12...,.N [3.3.5]

where rp; is the vector connecting point B and the ith particle (Fig. 3.1). Unlike linear
momentum, which is an absolute quantity, angular momentum is relative: its value
depends on the point about which it is calculated. The total angular momentum of a
system of particles about point B is denoted by Hp and is expressed as

N N
Hp = ZHB,' = Zl‘gi X m;v; [3.3.6]
i=1 i=1

‘We next relate the angular momentum of a system of particles to the center of
mass motion. From Fig. 3.1, we write rp; in terms of the center of mass as rz; =
rgis + p:i (i = 1,2,..., N). For the ith particle, we write the angular momentum
expressions as

Hp; = (rgiz + pi) X mi(vg + pi) [3.3.7]

We sum the individual angular momenta about point B and obtain the angular mo-
mentum of the system of particles about point B as

N N
Hp = ZHBi = Z(rG/B + pi) X mi(vg + pi) [3.3.8]
i=1

i=1

Considering the definition of the center of mass, this equation reduces to

N
Hp = rg;p X mvg + Z Pi X m;p; [3.3.9]

i=1
where the first term on the right is associated with the motion of the center of mass,
and the second is due to motion with respect to the center of mass. The second term
is also referred to as the apparent angular momentum. Differentiation of Eq. [3.3.9]
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yields

N
Hp = rg/p X mag + Vo X myg + > [p X mip; + pi X mip;]

i=1

N
rg/p X mag + Vgip X mvg + Z P X m;p; [3.3.10]

i=1

The moment about point B of all the forces acting on the ith particle is defined
by

MBieriXF,-=rB,-Xm,-a,- i=12...,N [3.3.11]

The total of all of the moments acting on the system of particles can be obtained by
summing the individual moments, which yields

N N N
M; = Z rg; X F; = Z g X m;a; = Z(rG/B + p;) X my(ag + p) [3.3.12]
i=1 i=1 i

i=1

Invoking the definition of the center of mass, Eq. [3.3.12] reduces to

N
M; = rg3 X mag + zp, X m;f; [3.3.13]

i=1
The second term on the right side of Eq. [3.3.10] can be written as
Vo8 X mvg = (Vg — Vg) X mvg = mvg X v [3.3.14]

so that introducing Egs. [3.3.13] and [3.3.14] into Eq. [3.3.10], we obtain the angular
momentum balance for a system of particles as

HB = Mg + mvg X vg [3.3.15]

Equation [3.3.15] is a general relation describing the angular momentum bal-
ance about a point B, whether B is fixed or moving. Under certain circumstances,
and depending on the choice of point B, the equation can be further simplified:

1. When the point B is selected as the center of mass, B = G, then v, vanishes
and we have

HG = Mg [3.3.16]

2.  When the point B s fixed in an inertial coordinate frame, then vy = 0, the second
term in Eq. [3.3.15] vanishes, and we get

Hp = Mg [3.3.17]

3. When vgp is parallel to v (for any reason), the cross product in Eq. [3.3.15]
vanishes. This mathematical possibility is not of any physical significance.

Integration of the moment balance over time yields the angular impulse-
momentum relationships. For each particle m; and considering a fixed point B
or about the center of mass (denoting such a point by D),

1]
Hp;(#;) + f Mpi(t)dt = Hp;(ty) i=1,2...,N [3.3.18]

nh
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Evaluation of this equation for each mass m; (i = 1,2,..., N) requires that the in-
ternal forces acting on the particles be calculated, reducing its usefulness. When
we consider the entire system and either a fixed point B or the center of mass G,
summation of Eq. [3.3.18] over all particles yields

Hp(t) + jtz Mp(@®)dt = Hp(ty) [3.3.19]
141

If the applied moment about the fixed point B or center of mass is zero. or the
integral of Mp(¢) over the interval (¢, t;) vanishes, we have

Hp(t1) = Hp(ry) [3.3.20]

which is the principle of conservation of angular momentum for a system of parti-
cles.

Example
3.2

Consider Example 3.1. The system is initially at rest with 6 = 30° when it is hit by the
impulsive force P. Find the velocities of the two masses immediately after the impulsive
force acts.

Solution

It is more convenient to use center of mass coordinates x¢ and yg. Hence, Egs. [b] in Example
3.1 become two of the equations of motion. To find the third equation, we make use of the
angle 9. We write the displacements of the two masses in terms of the coordinates of the
center of mass as

x1 = xg — Licos@ y1 = Y6 — Lisin@
x3 = xg + Lpcos@ y2 = yg + Ly sin@ [a]
where
myL miL
L= ———— Ly= —— b
! m + m; 2 m; + my [b]

so that the velocities of the masses can be written as
Vi = (fg + L18sin0)i + (3¢ — L10 cos 0)j
v, = (ig — L20sin0)i + (g + L0 cos 0)j [c]
The position vectors from the center of mass to the individual masses are
r1 = —L,cosfi — L;sinfj r; = L,cos@i + L;sin0j [dl

so that the angular momentum about G becomes (after a few manipulations)

Hg =i Xmv) +1r Xmv, = (mlL% + M2L%)ék [e]
The moment generated about the center of mass is simply Mg = —PL, cos 6k, so we
can say that the impulsive moment due to the impulsive force is Mg = —PL; cos 6.

From the linear impulse-momentum theorem applied to Eqgs. [b] of Example 3.1, we
obtain immediately after the impulse

~

. . P
ic =0 yczm f
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The angular impulse-momentum problem yields the third equation

ﬁLlcoso _ \/§}A’L1
mlLf + mzL% 2(m|Lf + mzL%)

0=- [l

Substituting Egs. [f] and [g] into Egs. [c] yields the velocities of the individual masses
right after the impulse, thus

v J3PL? Y S 3PL2 .
VT amLP+ mll)  \mi+m; " 4mL? + myLd)
J3PL L, P 3PL,L, .
Vv, = 5 5oi + - 3 > |3 [h]
4(m1L1 + m2L2) m; +m 4(m1L] + msz)

This example illustrates the considerable advantage of using the center of mass. If we
wanted to solve this problem using Egs. [a] in Example 3.1, we would have to first solve for
the impulsive reaction forces and substitute into the impulse-momentumn relations, which is
a tedious procedure.

3.4 WORK AND ENERGY

From Chapter 1, the incremental work done by all forces acting on the ith particle is
denoted by dW; (i = 1,2,..., N) and has the form

dW; = (F; + F))«dr; i=12...,N [3.4.1]
From the work-energy theorem, we write for the ith particle
dW; = dT; [3.4.2]
where T; is the kinetic energy associated with the ith particle
1
T; = Em,-vi *V; [3.4.3]

To express the work done by all forces on the system of particles, write dr; in
terms of the center of mass as

dr; = drg + dp; [3.4.4]

Introducing this expression into Eq. [3.4.1] and separating the total force into its
internal and external components, we obtain

dW; = (F; + )« (drg + dp;) [3.4.5]

We find the total work done by all forces acting on the system by summing the
individual incremental work for each particle and integrating over the displacement
of each particle. Denoting by r;; and r;, the initial and final locations of the ith
particle, the total work is
N N rrp
Win, = deW, = j F; + Fl{)'(dl'c +dp;) [3.4.6]
i=1 =1

i T
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Using Eq. [3.2.14], we can simplify the expression for work to

rG
Wis, = J' F‘dl‘(; + ZJ (F; + F,f)'dp,- [3.4.7]

TGl Tl

The first term on the right in this equation describes the work done due to the
motion of the center of mass. The second term includes the contribution due to
the motion with respect to the center of mass. Note that this second term contains
F/ (= ., N), indicating that the constraint forces between the particles may
contnbute to the work done. Although these internal forces cancel each other when
we are summing forces to get the equations of motion, they do not necessarily vanish
when the work is calculated.

As we did for a single particle, we can write the expression for work as an inte-
gral over time. Multiplying and dividing each term in Eq. [3.4.7] by dt, we obtain

t N
4 =j F'det+ZI (F; + F)) pudt [3.4.8]
t :

where t; and #, denote the times at which the particles are at positions r;; and r;,
respectively.

We next evaluate the expression for kinetic energy by summing the individual
kinetic energies

N
= Z T; [3.4.9]
i=1

in which 7 is defined in Eq. [3.4.3]. Substituting the expression v; = Vg + ; in the
above equation, we obtain

N
Z (VG * VG + 2pi* VG + Pi* i)

NI

T = Zm,(vc + pi)* (vg + Pi)

= —(va-vG) + = Zm,p, pi = Tuan + Trot [3.4.10]
i=1

The first term, Tean = MVG*Vg/2, is due to the translation of the center of mass, and
the second term, T, is due to the motion of the individual particles with respect to
the center of mass.

The potential energy of a system of particles does not lend itself to a special
formulation, and we use the expressions in Chapter 1. In general, the potential energy
is due to elastic forces between particles, such as interconnecting springs, and due to
gravity. The gravitational potential energy for a system of particles can be expressed
in terms of the potential energy of each particle,

V: = mgh; i=1,2...,N [3.4.11]

in which #; is the height of each particle from a common datum. One can show that
the potential energy of a system of particles can also be written in terms of the height



3.4 WORK AND ENERGY

hg of its center of mass as
N
V="V = mghg [3.4.12]

The work-energy theorem for a system of particles can be expressed in terms of
each particle as

Ty +Va+ Winei., = Tnn + Vi i=12...,N [3.4.13]
or in terms of the system of particles as
T, +V + W,,CH2 =T, +V, [3.4.14]

where W, ., denotes the work done by all nonconservative forces and the sub-
scripts denote the initial and final stages of the motion. When all the forces acting
on a system of particles are conservative, the total energy of a system of particles is
conserved, and we write

E =T + V = constant [3.4.15]
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A bullet of mass 0.05 kg is shot with speed 400 m/s at a target on wheels of mass 3 kg, shown
in Fig. 3.4, which has a plate in it that is attached to a spring of constant ¥ = 80,000 N/m.
The target is initially at rest and it can slide without friction. Find the maximum compression
of the spring, after the bullet hits the target.

Solution

The motion takes place as follows. The bullet hits the target and begins to compress the spring.
The maximum compression of the spring is reached when the target and bullet are moving
with the same speed. Because there are no forces external to the bullet-target system, linear
momentum is conserved along the horizontal. At the point of maximum compression

mpvy = (my + mv [a]

where the subscripts b and ¢ correspond to the bullet and target, respectively, and v is the com-
mon velocity at the instant of maximum deflection of the spring. Substituting in the values,
we obtain

_ mpup, 0.05 x 400 .
v= ——tm 305 = 6.557 m/s [bl

3kg

Massless

e

Figure 3.4

I Example
3.3
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There is no loss of energy, as the energy transfer between the bullet and the target in-
volves the spring and the bullet does not get lodged in the target. We thus invoke the conser-
vation of energy between the initial state and the maximum deformation of the spring as

T, =T +V; L]

in which

1 1 1
T, = Embvﬁ T, = E(mb + m,)v2 V, = EkAz [‘]

so that the deflection of the spring is found as

‘/ mypv2 — (mp + mv?
A= X

Substituting in the values, we obtain

= 03136 m fl

Ao (0.05 X 4002) — (3.05 X 6.5572)
- 80,000

3.5 IMPACT OF PARTICLES

There are many ways two bodies come in contact with each other. The contact may
take place at an isolated point, over a line, or over a surface. The contact between
two bodies generates a constraint or reaction force on both bodies. From Newton’s
third law, the constraint force on each body is equal in magnitude and opposite in
direction. In this section, we consider the special case of collision of two particles,
that of impact. Chapter 8 conducts a general study of impact of rigid bodies.

In order to have a better understanding of impact, we initially assume that each
particle is a solid sphere. We consider two spheres of masses m; and m; that have
velocities (of their centers of mass) of v; and v, before impact and u; and u; after
impact, as shown in Fig. 3.5. The changes in velocity, as they occur in a very short
period of time, must be caused by impulsive forces, from which we conclude that
impact generates an impulsive reaction (or impulsive constraint force) ¥ on each of
the two spheres. This impulsive constraint lies along the line connecting the center
points of the spheres and the point of contact; it is illustrated in Fig. 3.6. The line
joining the two centers is commonly referred to as the line of impact and its direc-
tion the normal direction. The normal direction here should not be confused with
the normal direction associated with normal and tangential coordinates. Because the
impulsive constraint force is along the center of each sphere, there is no change in
the linear momentum about the centers of mass of both spheres.

The impulsive force F can be expressed as

=Fn [3.5.1]

where n is the unit vector along the line of impact.
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(@ ®)

Figure 3.5  Colliding particles

The linear impulse-momentum relation for the two masses can be written as
mv; — F = mu myvy, + F = mowy [3.5.2]

We add the two equations above to obtain the conservation of linear momentum
relationship for the system of the colliding particles as

mvy + myvy = ma; + mouy [3.5.3]

Equation [3.5.3] can also be written directly by using the impulse-momentum re-
lationship for a system of particles, Eq. {3.3.1b]. Noting that during impact there
is no impulse external to the system of the two spheres, the linear momentum
of the system of two particles is conserved. Equation [3.5.3] indicates that the
center of mass of the system of two spheres does not change position during the
impact. Because the impulse is only in the normal direction, the components of
the velocities of both masses in the plane perpendicular to the normal direction do
not change, either. We separate the components of the velocities along the line of
impactas v; = vin + V;p, W; = u;n + w;p (i = 1,2), in which v; and u; denote the
components of v and u along the line of impact. From Eqgs. [3.5.2] and [3.5.3], we
write for the velocities perpendicular to the line of impact

Vip = Ujp V2p = Uyp [3.5.4]
and along the line of impact, the linear momentum expression becomes
mv; + mpUy = myup + mouy [3.5.5]

Equation [3.5.5] is a relation in terms of two unknowns, u; and u,. To solve
for the two unknowns, we need another relation. This relation is derived from Pois-
son’s hypothesis. Poisson’s hypothesis is based on the assumption that the contacting
bodies are not exactly rigid, and it states that the impact takes place in two stages.
In the first stage, called the period of compression, the bodies compress each other
until the relative velocity between the colliding particles becomes zero along the

~
13

3
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Figure 3.7  The stages of impact

line of impact. In the next stage, called the period of restitution, the bodies regain
their original shapes, as shown in Fig. 3.7. The ratio of the strength of the two im-
pulses is denoted by the coefficient of restitution e. We separate the impulsive force
F into two parts associated with the compression and restitution periods as

F. during the compression stage
F, during the restitution stage [3.5.6]
Because the entire impact is in one direction, the absolute values of the strengths can

be expressed as F,F,, and F,.
The coefficient of restitution is defined as

F
e = L [3.5.7]
F.
which leads to the relations
A FA‘ A P"“e
F, = = .5.
¢ 1+4+e Fr 1+e [3.5.81

in which ¥ = F_ + F, is the total strength of the impact. To find the velocities of the
colliding bodies along the line of impact, we integrate the equations of motion for
the two stages of impact. Denoting the velocity at the end of the compression period
by v, the linear momentum balances along the line of impact become

Mass 1 Compression: m;v; — E. = mu. Restitution: myv, — F, = miu

Mass 2 Compression: myv; + F. = myu, Restitution: myv, + F, = myup

[3.5.9]

Introducing Egs. [3.5.8] to these equations and eliminating the total force F,we
obtain

up — uy = e(vy —vy) [3.5.10]

which is the commonly seen relation. The interpretation of this equation is that the
coefficient of restitution represents the ratio of the relative velocity after impact to the
relative velocity before impact. The relation [3.5.10] was first observed by Newton.
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Poisson generalized Newton’s result to bodies of any shape. We will make use of
Eqgs. [3.5.8] in Chapter 8, when dealing with the impact of rigid bodies.
Solving Egs. [3.5.5] and [3.5.10] simultaneously yields the results

1
up = E[(ml — em)vy + (1 + e)myv;]

uy = %[(mz —em)vy + (1 + e)myv] [3.5.11]

where m = m; + mj is the total mass of the colliding particles.

The coefficient of restitution e is a quantity in the range 0 < ¢ < 1 that is
dependent on the material properties of the colliding particles, as well as on the
relative speed of the colliding masses. The coefficient of restitution decreases in
value as the relative speed of impact gets higher. The special case of ¢ = 1 is known
as perfectly elastic impact. In this case, the strength of the impact is the same in the
compression and restitution stages, and there is no energy loss. The case of e = O is
referred to as plastic impact. Setting e = 0 in Eq. [3.5.11], we obtain

1 1
up = —(mv; + muy) wp = E(mzvz + myvy) [3.5.12]
m

leading to the conclusion that in this case u; = u,. After impact, the colliding par-
ticles have the same velocity along the line of impact.

We next examine the energy loss associated with impact. The energy loss oc-
curs because the strength of the impact diminishes in the restitution phase. The lost
energy gets transferred to the colliding bodies through internal vibrations as well as
a temperature increase.

One can show that the energy loss is due to the change in the relative velocities
of the colliding particles. For perfectly elastic impact there is no energy loss. On the
other hand, when there is plastic impact, e = 0, all of the kinetic energy associated
with the relative motion of the colliding masses is lost.

Be aware that the above derivation of impact relations represents a gross sim-
plification of what actually happens when two bodies collide. First, we assume that
the collision takes place in a very short period of time. This is possible if the speeds
associated with the impact are large. Then, we implicitly assume that there is no
material damage due to impact. For this to hold, the speeds involved should not be
large. In realistic impact situations, the impact takes place over a finite time period,
albeit small. As we discussed in Chapter 1, one should always check the validity of
the assumptions used during impact. The coefficient of restitution itself is an approx-
imation, as it is determined experimentally. As discussed earlier, its value depends
on a variety of factors.

Another assumption whose validity comes into question is regarding the compo-
nent of the motion orthogonal to the line of impact, especially when frictional forces
are involved. For example, consider a ball thrown from a certain height with a hor-
izontal velocity, as shown in Fig. 3.8. As the ball collides with the ground, it has
both a horizontal as well as a vertical velocity. The line of impact is perpendicular
to the ground. The impact results in an impulsive normal force. The impulsive nor-
mal force leads to an impulsive friction force. In this section, we assume that the
impulsive friction force is zero. This assumption may not be valid in all cases.

167
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Figure 3.8
Example A sphere of mass m and radius R is dropped from a height / onto another sphere of mass 2m
3.4 and radius 1.5R, which is at the bottom of an inextensible cord, as shown in Fig. 3.9. Find the

velocities of the spheres immediately after impact, given that the coefficient of restitution is
e = 0.9.
Solution

Figure 3.10 shows the geometry of the impact and the free body diagram. Denoting the
spheres by A and B, the angle ¢ with which impact takes place is

R
¢ = sin”! <—) = sin"'(0.4) = 23.58° [a]
R+

The line of impact joins the centers of the spheres, and the components of velocities before
and after impact are

—vsing = —04v vp =0

veos¢d = 091650 vp, = 0 Ib]

Var

VUAn

where the subscripts n and ¢ denote the components along the line of impact and perpendicular
to it. After impact, the velocity of B is in the horizontal direction.

@ ®
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Consider the free-body dlagrams of spheres A and B. Of the two forces acting on A,
only one force is impulsive, ¥, and of the three forces acting on B, two are impulsive, £
and the impulsive tension in the string, denoted by 7. Hence, there is no conservation of
linear momentum for the two spheres. We need to write the impulse-momentum relationships
individually for each sphere.

We denote the components of the velocity after impact by us and up. Because up is
horizontal, it can be expressed in terms of its components as

up, = ugcosd = 0.9165up up, = ugsing = 0.4ug [e]

We can write the total impulsive force as

Fn — Tcos¢n + T sinpt [dl
Considering the linear momentum balances in the » and ¢ directions, we have
Sphere A, n direction moa, — F = mua, [e]
Sphere A, ¢ direction mvs, = My, fl
Sphere B, n direction 2mugn + F — fcos¢ = 2mug, = 2mugsin¢ Ig]
Sphere B, ¢t direction 2mug, + T sing = 2mupg, = 2mug cos ¢ [h]

The components of the velocities along the line of impact are related by
Upn — Uan = €(Uan — Upn) = €Uan [il

We then solve equations [e]-[i] for the unknowns, ug, ua,, ua;, F, and T. Equation [f]
gives uy, directly. Multiplying Eq. [g] by sin¢ and Eq. [h] by cos ¢ and adding the two
equations, we obtain

A  2mug

F ==

S {1}
which, when introduced into Eq. [e] yields

. — k]

sin ¢

Equations [k] and [i] can be solved together for up as

_va(1+e)  vcosd(l +e) m

T T D
where D = 2/sin¢ + sin¢ = 5.4, so that the velocity of sphere B immediately after impact
is

up = v0.9165 (54) = 0.3225v [m]

The value of v can be obtained using the work-energy relationship of
= J2gh In]
To find u4, we make use of Eq. {i]

Upn = Upp, — €Ua, = Ugsing — evcosd = 0.3225(0.4)v — 0.9(0.9165)v = —0.695%
[o]
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Hence, the velocity of sphere A immediately after the impact is

up = Jud, + 12, = vJ/0.42 + 0.69592 = 0.8027v Ip]

3.6 VARIABLE Mass AND MAsS FLOW SYSTEMS

Two interesting applications of impulse-momentum principles are variable mass and
mass flow systems. In such systems, either the mass of the bodies involved changes
or mass flows in and it flows out of a body at a certain rate. A typical application
of variable mass systems is the rocket problem, depicted in Fig. 3.11. A rocket
gains speed not only because of the thrust generated but also because the thrust
results in loss of mass. In mass flow systems, air enters the system in a certain di-
rection with a certain speed and comes out in a different direction with a different
speed.

To analyze variable mass systems, we use the linear impulse-momentum rela-
tionship in its general form

17}
p(t1) +j F()dr = p(t2) [3.6.11

n

Consider a single particle of mass m(t), acted upon by an external force F(¢), as
shown in Fig. 3.11. The initial mass of the particle at t = #; is m(t), and its initial
velocity is v(#1). The initial linear momentum is p(t;) = m(t1)v(#;). The velocity
of the particle at time ¢, is denoted by v(#) and its mass by m(t,). The relationship
between the mass at ¢ and the mass at 7, can be written as m(¢;) + Am = m(t;). Note
from the figure that Am is defined as a negative quantity and that we are treating
the body and the lost mass as one system. The linear momentum of the system at
I =118

p(t2) = m(t)v(t2) — Amv,(t3) [3.6.2]

Tv(t,) tv(lz)

m(ty)

Figure 3.11
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where v, is the exit velocity of the mass that has left the particle. We can write the
linear momentum balance as

m(t)v(ty) + JQ F(0)dt = m(t)v(2) — Amv.(12)

I
= m(t))v(t2) — Am[v.(tz) — v(t2)]
m(t)v(ty) + Amv(th) [3.6.3]

with vei(f) = v(f) — v.(¢) denoting the relative velocity of the exiting mass.

To solve the above equation, we need to know how the change in mass takes
place and the exit velocity of the mass leaving the system. This requirement of
knowledge about the characteristics of the separation is analogous to the need to
know the coefficient of restitution of colliding bodies. We need to have information
on how the separation takes place. Now, assume that the time interval is small and in-
troduce the notation Ar = #, —t;, and approximate the integral in the above equation
by F(#;)At. This approximation is valid as long as F is not impulsive. Introducing
next the notation Av = v(t;) — v(#;) into Eq. [3.6.3] and dropping the subscripts 1
and 2, we obtain

F(t)At = m(t)Av + Amv, [3.6.4]

Dividing both sides of this equation by At and taking the limit as Az approaches
zero gives

m()v(t) + m(t)ve(t) = F(@) [3.6.5]

This is the general equation of motion for a variable mass system. Note that this
equation is different than F(¢) = d[m(¢)v(¢)]/dt. This is because the body which is
losing mass and the lost mass are considered together as one system.

Next, consider mass flow systems. We restrict our analysis to steady mass flow
systems, such that the rate of mass flowing into the system is the same as the rate
of mass flowing out. Consider, for example, the air-blowing machine shown in
Fig. 3.12. Air enters the container through a duct of cross-sectional area A; with
speed v; and density p;. It leaves through a duct of cross-sectional area A, with
speed v, and density p;. We denote the mass flow rate by m’, recognizing that m’

Figure 3.12
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is not the rate of change of mass, but it is the rate of mass flow in and out of the
system. The mass flow rate can be expressed as

m' = Ai1p1v; = Arpats [3.6.6]

The external forces acting on the system are the reaction and support forces
that hold the container in its place. These forces counteract the change in linear and
angular momentum due to the flow of mass. We denote the resultant of all forces
by F and the resultant of all moments through a fixed point O by Mo (or about the
center of mass). The change in linear momentum is due to the change in speed and
direction of the mass flow. Denote the amount of mass that flows in and out of the
system in a time period At by Am, such that

' = lim A™
Ar—0 At

The change in linear momentum during Az can be expressed as

m [3.6.7]

Ap = Amv, — Amv, [3.6.8]

Dividing the above equation by At, taking the limit as At approaches zero, and equat-
ing the change in linear momentum to the resultant force yields

F=p=m(v;—v)) [3.6.9]

We relate the resultant moment about a fixed point O (or center of mass) to
the change in angular momentum in a similar fashion. Denoting by €; and ¢, the
vectors from O to the centers of the entry and exit ducts, the sum of moments about
O becomes

My = Ho =m'(€, X vy — €1 X V1) [3.6.10]

Example
3.5

U Vrel

Figure 3.13

Find an expression for the speed of the rocket fired vertically shown in Fig. 3.13.

Solution

We assume that the motion takes place along a straight line and drop the vector notation. We
recognize the term r(t)vy as the thrust. The external force F acting on the rocket is mainly
due to three sources: the pressure differential between the exit nozzle and air, friction due to
air resistance, and gravity. The force due to the pressure differential can be expressed as

F =pA [a]

where p, is the pressure difference at the exit nozzle and A is the cross-sectional area of the
exit nozzle. It is customary to assume that the rate of change of mass is constant and that
therefore the mass of the rocket can be written as

m(t) = mp — bt {b]

where my is the initial mass and b is the mass loss rate. It follows that riww, = —bvy . The
force of gravity is simply —m(#)g. Introducing this and Egs. [a] and [b] into Eq. [3.6.5], we
obtain, for a rocket moving vertically,

m@®o(t) + m()g = F;, = p.A + buyy [c]

The term F; is referred to as the static thrust.
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We next calculate the velocity of the rocket when all the fuel is expended (burnout).
Denoting the mass of the propellant by m,, and using the constant mass loss rate n = b, it
takes the rocket a time of 1, = m,/b to use up all its fuel. We write Eq. [c] in terms of ri(f)
and divide by m(r), which yields

du(t) . dm U PeA

a T drmn T84T m [d]

Multiplying both sides by d¢ and noting from Eq. [b] that dr = —dm/b we obtain

peA\dm | gdm
b | m b

dv = — (vrel + [e]

Both sides in the above equation are expressed in differential form, so that Eq. [e] can be
integrated to yield

A
v = v0—<vrel+p87)lnmﬂ0+g

m-—my

b

[f]

where vy is the initial velocity. Substituting the expression for m(¢) in the above equation
gives

A —
Pe )m mo — bt — ot [g]

v=vo—(vre|+ b p
0

and the final velocity is found by substituting #, = m,/b into this equation.

Equation [g] may look misleading at first, because of the two negative terms. However,
m/my is always less than unity and its natural logarithm is a negative quantity, thus giving the
rocket its upward velocity. It should also be noted that Egs. [f] and [g] are derived by assuming
that the gravitational constant remains the same during ascent of the rocket. A more accurate
expression for the velocity should include the change in the gravitational attraction as a result
of increased altitude, as well as the air resistance.
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3.7 CONCEPTS FROM ORBITAL MECHANICS:
THE Two Bopy PROBLEM

A key problem in mechanics is that of the motion of two celestial bodies moving
under the gravitational attraction of each other. The class of problems is referred to
as the rtwo body problem. The two bodies are depicted in Fig. 3.14. Typical exam-
ples include the earth-moon, the earth—satellite, and the sun—planet pairs. For our
purposes we assume that the only force acting on each body is the gravitational at-
traction due to the other. We ignore the gravitational force exerted by other bodies.
For example, if we are considering the earth—satellite problem, we ignore the effects
of the moon and the sun. This assumption is valid only as long as the distance be-
tween the satellite and earth is much smaller than the distance between the earth and
moon, or any other planet, or the sun.

The only force acting on the particles is the gravitational attraction in the form

Gmym
F ="
r

[3.7.1]
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o

Figure 3.14

where r = r, — ry is the vector connecting the two masses. Newton’s second law
for each particle is

Gm1 my
r3

r [3.7.2a,b]

To manipulate the equations of motion, consider the center of mass of the two
particle system. From Eq. [3.2.2] we have that

mr; + mry; = (m + my)rg [3.7.3]

Adding Egs. [3.7.2] and differentiating Eq. [3.7.3] with respect to time, we conclude
that

mif) + mpt, = (mp + mp)ig = 0 [3.7.4]

We can see that the center of mass of the system of two particles does not have
an acceleration, an expected result because we originally assumed that there are no
forces acting externally on the system of two particles.

Equation [3.7.4] hints that one may simplify the governing equations, by con-
sidering the motion of the two masses relative to each other. Actually, we are more
interested in this relative motion of the masses than the absolute motion of each body.
Let us express the equations of motion in terms of the vector r connecting the two
bodies.

Dividing Egs. [3.7.2a] and [3.7.2b] by m; and m;, respectively, and subtracting
Eq. [3.7.2a] from [3.7.2b], we obtain

Gmy szr - _G(m1 + m2)r

i) — i) =F=———'r—
3 73 3

[3.7.5]

If we introduce the gravitational parameter u. = G(m; + my), we can express the
relative motion as the differential equation
Fr=0

F+ Sr = [3.7.6]
r
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The question may be asked as to what information was given up when we re-
duced the two equations of motion into a single equation. The answer is: the location
and the motion of the center of mass of the two body system. Using Eq. [3.7.6]
alone, one cannot analyze the motion of the center of mass. In many orbital me-
chanics problems, one is not interested in the location of the center of mass but in
the relative motions of the two masses. Also, in several celestial mechanics applica-
tions, the mass of one body is much smaller than the mass of the other, and one can
safely ignore the mass of the smaller body when calculating the center of mass. The
center of the larger body is assumed to be the center of mass of the two body system.
Kepler made this assumption when he stated his laws of planetary motion.

Equation [3.7.6] represents a central force problem, as discussed in Chapter 1.
It is conveniently analyzed by polar coordinates. Attaching a set of polar coordinates
to the center of mass and separating the motion into the radial and transverse com-
ponents, we write the radial and transverse components of the equation of motion
as

i—r? = —r—lé ro +21 =0 [3.7.7a,b]

Example 1.12 showed that the angular momentum associated with a central

force is conserved and that ¥ = h is constant. That is, the angular momentum
about the center of mass is conserved. As we will see later, this is the mathematical
statement of Kepler’s second law. Note that the angular momentum considered here
is actually the apparent angular momentum. Because the acting force is conserva-
tive, the energy of this system is also conserved. Indeed, introducing the expression
6 = h/r? into Eq. [3.7.7a] we obtain

P==—-= [3.7.8]

which can be integrated to yield the energy integral

1, 1K 1
2 ~ B~ FE = constant or zv?-%

= = E = constant [3.7.9
2 2r2  r 2 r : !

where v? = 7 + h?/r? is recognized as the square of the total velocity. This expres-
sion of the energy integral is for the relative motion with respect to the center of
mass. However, because the center of mass executes motion with constant velocity,
the energy associated with the center of mass motion can be absorbed in the constant
on the right side of Eq. [3.7.9]. (This is entirely analogous to Eq. [3.4.10], which
gives the kinetic energy for a system of particles.) It should also be noted that the
energy and momentum expressions are per unit mass.

We can calculate the energy integral from the expressions for the kinetic and
potential energies. The kinetic energy has the form

1 mm, v 1 mm 1 mmp
[P G, . = e — — ——e

T:
2m +my

2
(P + %) = (? + h—z)
p

[3.7.10]

§m1+m2 —§m1+m2

1753
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The potential energy is obtained by integrating Eq. [3.7.1]. The gravitational force is
in the radial direction and r = re,, so that dr = dre, + r dfey. We select the datum
position for the potential energy as the distant stars, rg = , so that

r r
V= —JF-dr - _J _Gmmy =j Gz, . Gruma
rog=® r r

[3.7.11]

Adding Eqs. [3.7.10] and [3.7.11], and dividing by mymy/(m; + my) yields
Eq. [3.7.9].

As Chapter 1 mentions, many celestial mechanics problems require higher ac-
curacy than most engineering problems. Many times one manipulates very large
numbers and obtains a very small number as a result. For this reason, it may be
necessary to use more than four significant figures. Here are pertinent celestial data:

ry=w r3

Universal gravitational constant: 6.668462(10~11) m’/kg s?
Mass of earth: 5.977414(10**) kg, Average radius of earth: 6,378.1 km
For earth, i = 3.986(10'%) m3/s2, Mass of sun: 1.987323(10 30) kg

Example
3.6

| A particle is thrown from the surface of the earth with a very large initial velocity, as shown

in Fig. 3.15. Calculate the maximum height reached by the particle.

Solvtion

Because the initial velocity is very high, we will dispense with standard projectile motion
equations, and we will use concepts from celestial mechanics. We denote the initial com-
ponents of the velocity by v, and v,. Actually, at the onset of motion the x and z axes are
basically the radial and transverse directions. When the particle reaches its maximum height,
the component of the velocity in the vertical direction is zero. The velocity now is purely in
the transverse direction. We denote its vertical velocity by w.

We have conservation of energy as well as conservation of angular momentum about the
center of the earth. Denoting the maximum altitude reached by L, we describe the conserva-
tion of angular momentum by

mRv, = m(R + L)w [a]l

Figure 3.15
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where R is the radius of the earth. This yields an expression for the velocity at maximum
altitude by

Ru,

YT RYL [b]

The components of the kinetic and potential energy are

1 Gmem
T, = Em(vi +v?) Vi =~ Re
_1 5, 1 (R Y,  Gmm [<]
T2 = gmw = E”‘(m) AR ¥4

The work-energy theorem gives

1 5, 5 Gmm 1 R 22 Gm.m
X iy S L Vol K )
which represents a nonlinear equation for L. To obtain an approximate, but still meaningful,
solution, we note that L is much less than R. Defining by e = L/R, we linearize the terms
involving L as

R ¥ 1 ¥ 1 1
(m) - (m) -2 TR0 fe
Introducing Egs. [e] into Eq. [d] and solving for e we obtain
2
e = Yz 1
5 (Gme B vz)
R X
so the maximum height reached is
2R
L = Tvz_ Il
22 _ 2
(%% -4)

It is interesting to note that if v, is set to zero, that is, if the particle is launched vertically,
the height it reaches becomes

_ vk _J [h]
2Gm, 2g

which is the same equation obtained from projectile motion analysis. The value for the height
L in Eq. [g] is higher than the value for L in Eq. [h], an expected result.

When we consider the total motion of the body, we see that it has some sort of orbital
motion, although the particle cannot complete an orbit but falls to the earth. This situation is
sometimes encountered in the launching of spacecraft, when the booster rockets malfunction
and fail to place the spacecraft into a sufficiently high orbit.
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We now wish to determine what kind of motion the masses execute with respect to
each other. We will accomplish this by solving the equations of motion, Eqs. [3.7.7],
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and by making use of the energy and momentum integrals. Consider the equation of
motion in the radial direction, Eq. [3.7.7a]. This equation is nonlinear. It turns out
that Eq. [3.7.7] can be put in a simpler form if we introduce the transformation

u= [3.8.1]

~ | =

and replace differentiation with respect to time with differentiation with respect to
the transverse variable 6. Noting that the rate of change of the transverse angle can
be written as 8 = h/r2, we express the time derivative of r as

dr do dr h
= ZIEE = Zigﬁ [3.'.2]
Taking the derivative of u with respect to 6
du d (1 1dr
a6 - 35(;)— T [3.8.31
so that
dr h dr h du du
di " Pde ﬁ( r2d0) s [3.8.4]

In a similar fashion, we write the second derivative of r with respect to time as

du d*udé d*u h 2 2d
F=h (do> wa - tamp T Mg 1388
The remaining terms in Eq. [3.7.7a] can be expressed in terms of u as
: h
0= a = hu? % = uu? [3.8.6]
which, when introduced together with Eq. [3.8.5] in Eq. {3.7.7a], yield
d’u n
202 +u h2 [3.8.7]

This relationship is in the form of a second-order differential equation with con-
stant coefficients. It is considerably simpler to solve than Eq. [3.7.7a]. The solution
of Eq. [3.8.7] can be written as

u(@) = + acos(f — 0;) [3.8.8]

where a and 6; depend on the initial conditions. This solution is used to find r(0).
We are interested in the value of the magnitude of the radial distance r as a function
of the transverse angle 8, as well as r as a function of time.

The energy integral in Eq. [3.7.9] can be expressed in terms of u as

d
2h2 (d;) %h2u2 ~—pu=EFE [3.8.9]
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This expression can also be obtained by integrating Eq. [3.8.7] over 6. Recall
that the energy expressions here have units of energy per unit mass. We explore the
relationship between the energy E and the amplitude «. Introducing Eq. [3.8.8] into
Eq. [3.8.9] and carrying out the algebra, we obtain

2
%hz[a sin(@ — 6,1 + %hz [% + o cos( — 0,-)] —_— [ﬂ + acos(d — ;)

%3
i 2.2 n?
which we can rewrite as
T [3.8.11]
% e .8.
Introducing the variable e = /1 + %’3 the above equation can be expressed
as
a= %e [3.8.12]

and substituting Eq. [3.8.12] into Eq. [3.8.8], we write the solution for «,
w(§) = %[1 + ecos(d — ;)] [3.8.13]

It follows that the solution for r is
1R 1 ]
u(9) m i1+ ecos(@—6))

Equation [3.8.14] represents the equation of a conic section, with the value of
g, referred to as the eccentricity of the section, determining its shape, with the val-
ues of ¢ = 0 and £ = 1 being the critical values. If ¢ < 1, the conic section is a
closed one, in the form of an ellipse, as the values for r(#) remain finite. The conic
section becomes a circle when ¢ = 0. When € = 1, r(6) assumes infinite values,
as in a parabola or hyperbola. The term 4%/ is called the semilatus rectum; it de-
fines the size of the conic section. The semilatus rectum is a function of the angular
momentum. The initial condition 6; is usually selected as zero.

Using Eq. [3.8.12], we can write the energy as

(&2 - Dp?
- 2hn2

or, we can make use of the nondimensional ratio E* = 2Eh2/ ,u,2 =g —1.

We next consider the different types of conic sections. When ¢ < 1, the tra-
jectory is an ellipse, with the center of mass as a focus of the ellipse, as shown in
Fig. 3.16, and the motion is periodic with a closed orbit. An ellipse is defined by its
two foci, its semimajor axis a and semiminor axis b. The point on the ellipse closest
to a focus is called pericenter, and the point farthest away, apocenter. The pericenter
and apocenter are known as the apsides (plural of apsis) of the ellipse. An apsis is
defined as the point where dr/d@ = 0. This definition of apsis is valid for any conic

r@) =

[3.8.14]

E [3.8.15]
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Flight path angle

Apocenter

Figure 3.16 Elliptic orbit

section and is not limited to ellipses. Considering the motion of the body on the orbit,
the angle -y between the transverse and tangential directions is referred to as the flight
path angle. This angle is easier to measure than other orbital quantities and, hence,
is useful in determining the nature of an orbit.

When dealing with two masses of comparable magnitude, the focus of the el-
lipse is the center of mass of the two body system; the ellipse describes the trajectory
of the distance between the two masses. For sun—planet or earth—satellite type prob-
lems, because of the very large difference in the mass ratios, one can assume that the
larger mass is located on a focus. The situation is different when the earth—moon pair
is considered. The mass ratio between the earth and moon is 81.30, and the mean
distance between the two bodies is 384,400 km. The center of mass of the earth—
moon system lies 4670 km from the center of the earth, roughly 2/3 the mean radius
of the earth.

It has become customary to use different names for the apsides when motion
about the earth and sun are considered. Table 3.1 gives the names used for the apsides
and the names of commonly used coordinate systems when the earth and sun are
assumed to be on a focus.

Denoting the distances from the focus to the pericenter and apocenter by r,
and r,, respectively, and without loss of generality selecting the initial condition as
0 — 6; = 0, so that @ is measured from the pericenter, we obtain

[ 1 R 1
= — = — 3.8.16a,b
g u[1+e] e #[1—8] . obl
Table 3.1 Nomenclature for celestial motion problems

Types of Orbit Apsis Near Apsis Far Away Coordinate System

Generic ellipse Pericenter Apocenter

Earth as focus Perigee Apogee Geocentric-equatorial or perifocal
Sun as focus Perihelion Aphelion Heliocentric-ecliptic
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From these equations, and noting from simple geometry that a = (rp +13)/2, we
obtain for the semimajor axis

a—lﬁz—[—l—]+lh—2[ ! ]—E ! [3.8.17]
T 2ull+el 2n T opll-g2 o

If we consider Eqs. [3.7.9] and [3.8.15), we can express the energy as

E=lv2—’u'— [

3 ; ~ 2 [3.8.18]

so that the semimajor axis is a measure of the energy in the system. In a similar

fashion, one can show that the semiminor axis is of length b = a+/1 — &2. Also,
using Eqgs. [3.8.16] and [3.8.17], we obtain

rp=a(l—¢€) r,=a(l+¢) [3.8.19]
We can then write the equation for the ellipse as
_ el =) [3.8.20]
" 1+ecosf -

At this point, we consider Kepler’s laws of planetary motion. The astronomer
Johannes Kepler, after studying the observations of Galileo and Tyco Brahe and the
motion of planets, developed the following laws for the motion of planets (his cal-
culations were based on the motion of Mars) in the solar system.

Law 1: Each planet revolves in an elliptic orbit about the sun, with the sun at
one focus of the ellipse.

Law 2: Equal areas are swept per unit time by the line joining the sun to the
planet.

Law 3: The squares of the periods of the planets are proportional to the cubes
of the semimajor axes of the ellipses.

The first two laws of Kepler were published in 1609 and the third in 1619. These
laws predate Newton’s laws, (first published in 1687) by over 70 years. Kepler did
not know about Newton’s laws of motion when he formulated his laws. Newton’s
three laws of motion and his law of gravitation are based in part on Kepler’s laws. It
is interesting that we traditionally study Newton’s laws first and then Kepler’s laws,
in more natural order but in reverse historical order.

Kepler’s first law becomes correct when the mass of the smaller second body
(e.g., planet in sun—planet, moon in earth-moon, satellite in earth—satellite) is ne-
glected from .

To demonstrate Kepler’s second law, consider Fig. 3.17 and write an expression
for the area swept by the position vector r as

Area A = fdA = f %rrd@ = %fﬁdo = %fﬁéd: [3.8.21]

The areal rate—the area swept per unit time—is found by differentiating the area
with respect to time. Noting from earlier that 7’ = h = constant, we obtain the
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Figure 3.17

areal rate

A = = = constant [3.8.22]

[N

which is proof of Kepler’s second law.

The period of the orbit can be obtained from Kepler’s second law by noting that
the period 7 is equal to the area of the elliptic orbit divided by the areal rate,

A mab
= —_ = — - 12
T i W [3.8.23]

where mab is the area of the ellipse. Introducing b = a+/1 — & into the above equa-
tion and noting from Eq. [3.8.17] that

h = Jpa(l —&?) [3.8.24]

we obtain

2\/1—.'5 03

[3.8.25]
p,a(l - 52

This is the mathematical statement of Kepler’s third law.

The special case of ¢ = 0 corresponds to a circular orbit. Circular orbits became
very important in the second half of the 20th century, as satellites were placed into
circular orbits around the earth. A circular orbit in which the relative position of the
satellite with respect to the earth does not change is called geosynchronous. As of
this writing there were several communications satellites in geosynchronous orbit
about the equator.

In a circular orbit, the body has constant velocity, which can easily be obtained
from the energy expression. From Eq. [3.8.15] for a circular orbit, E = — u?/2h%.
We verify this by writing the energy expression as

? u ® ol u?
E=5-C=2 "%~ [3.8.26]

so that we obtain the velocity in circular orbit, v., as

U = ” [3.8.271]

We next consider the case when the eccentricity is greater than or equal to 1, re-
sulting in an open orbit. When ¢ = 1 the orbit is parabolic, and when & > 1 the orbit
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is hyperbolic. Parabolic orbits rarely exist, as they describe a limiting case between
an open and closed orbit. Fig. 3.18 depicts a parabolic orbit. From Egs. [3.8.16], as
& approaches 1, the semimajor axis becomes longer. When ¢ = 1, the orbit becomes
an open one. The orbit equation, setting ¢ = 1 in Eq. [3.8.14], becomes

m

r= —— 3.8.28
1+ cosé [ ]

The expression for energy for a parabolic orbit gives insight into the nature of
the orbit. Setting € = 1 in Eq. [3.8.15] yields, for the energy, E = 0, so that we can
write

)

E=2-%_9p [3.8.29]
2 r

The velocity required to achieve a parabolic orbit and escape the gravitational -

attraction of the large mass is called the escape velocity. From the above equation,
for a spacecraft to transfer from an elliptic to a parabolic orbit it must have the escape
velocity, denoted by v,, as

ve = |2 [3.8.30]

Lad
r
The minimum value of the escape velocity is at the perigee. Many orbital maneuvers
that involve a change of orbits are carried out at the perigee. It is interesting to note
what happens as the satellite keeps moving in a parabolic orbit. As r approaches
infinity, from Eq. [3.8.30] the velocity approaches zero. This implies that if a body
can achieve a true parabolic orbit and there are no other disturbances acting on it,
that body would eventually come to a rest. Physically this never happens.

When the eccentricity is greater than 1, the resulting orbit is hyperbolic. Space-
craft launched on interplanetary missions are given hyperbolic orbits. Fig. 3.19
shows a hyperbolic orbit. From Eq. [3.8.15], the energy for a hyperbolic orbit is

) Asymptotes

F' rplrp Directrix

Figure 3.18 Parabolic orbit Figure 3.19 Hyperbolic orbit
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Table 3.2  Types of orbits and associated
eccentricities
Type of Orbit  Eccentricity ¢ Energy Ratio E*
Circular 0 -1
Elliptic O<e<l -1<E' <0
Parabolic 1 0
Hyperbolic e>1 E*>0
positive, and the energy expression can be written as
2
v
E=2-E5p [3.8.31]
2 r
implying that as r approaches infinity, the speed of the body is not zero, but ap-
proaches a finite value. This value is called the hyperbolic excess speed. Table 3.2
summarizes the relation between orbits and eccentricity.
Two essential problems in space mechanics are
1. To place a satellite in a desired orbit and to change the path of the satellite from
one orbit to another.
2. To determine the orbit of a satellite or a planet from measurements of its location
and motion.
Analysis of both subjects is very lengthy and beyond the scope of this text. For more
details on these subjects, the reader is referred to texts on orbital mechanics. In the
following examples we illustrate two simple approaches.
Example At the burnout of a rocket, the following data are given: r = 6500 km, v = 9750 m/s, flight
3.7 path angle y = 16.4°. Has the rocket achieved an earth orbit or will it crash into the earth?

Solution

The orbit of the rocket is shown in Fig. 3.20. We need to find the properties of the orbit
and determine if the distance to the perigee is less than the radius of the earth. The angular
momentum and energy per unit mass are

h = rvcosy = (6.5 X 108)(9.75 X 10%)(cos 16.4°) = 6.0797 X 10'° m%/s [al

v o (975X 10°?  3.986 X 101 ara
- ; oG = ~L3792x107mYs  [b]

E =

We next calculate the eccentricity. We have

2ER? _ 2(—1.3792 X 107)(6.0797 X 10192
w2 (3.986 x 1014)2 B

so that from Eq. [3.8.15]

—0.64172 e}l

e = +1-0.64172 = 0.59857 Idl
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Figure 3.20

From Eq. [3.8.18], the semimajor axis is

_ K —3986X 1014 6
a= E - —2(_1'3972 X109 14.450 X 10°m [e]
and from Eq. [3.8.19b], the distance to perigee is
rp = a(l — g) = 14.45 X 10%(1 — 0.59857) = 5.8008 X 10°m Ifl

which, unfortunately, is smaller than the radius of the earth. The rocket crashes into the earth
on its way back.

HOHMANN TRANSFER A Hohmann transfer is a common way of moving a space-
craft in a circular orbit to another circular orbit that lies on the same plane. The transfer
involves applying two impulses to the spacecraft. Denote the radii of the first and second or-
bits by r; and r,, as shown in Fig 3.21. The first impulse changes the initial orbit to an elliptic
orbit, called the transfer orbit, whose semimajor axis is of length (r; + rp)/2.

Consider the case when r, > r;. The location of the first impulse becomes the perigee of
the transfer orbit (apogee when r, < ry). The second impulse, applied at the apogee (perigee
when r, < r)) of the transfer orbit, moves the spacecraft to the desired circular orbit.

The velocity in the first circular orbit, denoted by vy, is found noting that @ = ry, with
the result
2
1 _ M [ [l [a]

U
-——=——-— -y = -

El - ? r 27‘1 r

Immediately after the impulse is applied to move the spacecraft into the transfer orbit,
r = r, = ry and 2a = r{ + r,, so that denoting the velocity at perigee by v,, the energy
integral becomes

Erans =

2
v

I Example
3.8
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Final orbit
()

Initial orbit

(rp)

Figure 3.21 Hohmann transfer

which can be solved for v, as

o = [P _ 2 [B [ 2 [e]
4 r rn+n rnvr+n

so that the impulse needed at the first step is

_ /ﬂ 2 _
mAv, = m(v, —v)) = m . ( - 1) [d}

The second impulse is applied at the apogee of the transfer orbit. The velocity at apogee
before the impulse can be found from the angular momentum conservation

rUp = v, [e]

where v, denotes the velocity at apogee and has the form

v,,— - \f\’rp}-rz \/‘Vr1+r2 i

Because the desired final orbit is circular, the velocity in orbit should be

m
v = [— [’]
r

so that the second impulse is of magnitude

mAv, = m(vy —vg) = m | & (1 - L) [h]

r n+nr

Consider the issue of what happens when the impulses are not applied at the proper
places in the orbit. For the first impulse, the location of the impulse defines the perigee
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of the transfer orbit. This location is not critical. The critical impulse is the second. If the
second impulse is not applied at apogee, the resulting orbit will not be circular.
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In the previous section, we showed that the general solution of the orbital problem
is a conic section. Based on the two integrals of the motion, angular momentum and
energy, we developed two quantities, semimajor axis a and eccentricity &. Given
initial conditions, one can determine the nature of the orbit by calculating a and e.
The orbital problem as given in Eq. [3.7.6] requires six initial conditions or constants
of integration, as it is a second-order differential equation in three dimensions.

Given a set of initial conditions, one can solve Eq. [3.7.6] and obtain a solution.
This solution, while being a mathematical answer, does not describe the properties
of the orbit. It is desirable to express the position and velocity of the body in orbit in
terms of parameters that lend themselves to a physical explanation. It turns out that
we can find four parameters in addition to a and & that orient the orbit in space and
the body on the orbit. Of these four parameters, two describe the orientation of the
orbital plane, one describes the orientation of the orbit on the orbital plane, and the
last one locates the body on the orbit and introduces time. The six parameters are
referred to as the orbital parameters or orbital elements.

We begin by describing the position of the body on the orbit. Our primary in-
terest is in closed orbits. The angle 6, referred to as the true anomaly, is measured
from one of the foci of the ellipse. It is the angle between the line joining the focus
to the body and the semimajor axis, relative to the pericenter. A more convenient
way of measuring the orientation of the particle is to introduce the variable eccentric
anomaly, denoted by € and shown in Fig. 3.22. We draw a circle of radius a with
the same center as the ellipse. The eccentric anomaly is measured positive counter-
clockwise from the semimajor axis. It is the angle between the semimajor axis and
the line that connects point P’ and the center of the ellipse, in which point P’ is the
intersection between the circle and the vertical line perpendicular to the semimajor
axis. This line goes through point P, with P denoting the position of the mass.

Orbit

Figure 3.22
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Denoting the coordinates of P by x and y, from Fig. 3.22 we can write

y=rsinf x = acos€ acos$é = ae+rcosf [3.9.1a,b,cl

Recalling the equation of the ellipse x2/a? + y2/b? = 1,and thatb = a/1 — &2,
and introducing Eq. [3.9.1a] into the ellipse equation, we obtain

rsin@ = av1—£2sin% [3.9.2]
Combining Egs. [3.9.1c] and [3.9.2] gives

r = Vr2sin?0 + r2cos? = a(l — ecos®) [3.9.3]

which is a simpler equation to deal with than Eq. [3.8.20]. In a similar fashion, we
relate the true and eccentric anomalies. Introducing Eq. [3.9.3] into Eq. [3.9.1c], we
obtain

a(cosé —e)  (cos€ —¢)

cosf = p = T —ccos®) [3.9.4]
Using Eq. [3.9.4] with the trigonometric identity tan?(6/2) = (1 —cos 8)/(1 +cos ),
we write
7} 1+¢ é
2({9) _ 2(e
tan (2> l—etan (2) [3.9.5]

from which we conclude that

an(8)= [1Ete (2 [3.9.6]
2) Vi-¢g \2 e
We now introduce time into the formulation. Differentiating the two expressions
for r in Egs. [3.9.3] and [3.8.20] and using the expression for the momentum integral

h = r?’8, we obtain

F = aesin€é

ae(l — ?)sinf0 _ r2Gssin® _ hesind
 (I+ecos8?  a(l—¢2) a(l —¢2) [3.9.7a,b]
We rewrite Eq. [3.9.2] as
— o2l — 02 Qi
sinf = a1 — g%?sin€ _ V1 —¢g2sin€ [3.9.8]

r "~ (1 - ecos é)
introduce it into Eq. [3.9.7b], and equate the result with Eq. [3.9.7a]. We express €
as dé/dt and collect all the terms involving d€ on one side, with the result
bk dt
a> /1 -2

Define by n = 27/ the mean angular velocity, in which 7 is the period of the
orbit given by Eq. [3.8.25], 7 = 27a¥?/u'2. Recalling that h = /ua(l — €2), we

(1 —ecosé)d€ = [3.9.9]
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can express the right side of Eq. [3.9.9] as
h dt
a? /1 — g2

It remains to integrate Eq. [3.9.9]. To this end, we select the initial conditions
to coincide with the position of the body at the pericenter. At that location € = 0,
and the time is selected as 7, defined as the time of pericenter passage. We then
have

= ndt [3.9.10]

K3 t
J (1 —ecos€)dé€ = J ndt [3.9.11]
0 T
with the result
nt—J) =% —esiné [3.9.12]

This is known as Kepler’s equation. We define the mean anomaly M by
M=nt—9) [3.9.13]
so that Kepler’s equation becomes
M=¢—¢esing [3.9.14]

The mean anomaly basically describes the angle that would have been described
by the position of the particle if the motion was uniform, as in a circular orbit
with mean angular velocity n. Using Kepler’s equation, one can calculate the mean
anomaly M if the eccentric anomaly € and the eccentricity € are given. Often, one
knows & and can measure M more easily than the other parameters, so one needs
to calculate € and 6. This requires the solution of Eq. [3.9.14], which usually is
accomplished numerically.

We have defined a constant of integration that permits us to find the exact loca-
tion of a mass on the ellipse. We have yet to locate the ellipse on the orbital plane.
Denoting the plane of the orbit as the x'y’ plane, the xy axes, which are along the
semimajor and semiminor axes of the ellipse, are obtained by a counterclockwise
rotation about the z' axis. The angle of rotation is denoted by w (not to be confused
with angular velocity) and is called argument of the pericenter.

Next, we orient the orbital plane with respect to an inertial frame. We need to
define both the origin and orientation of the inertial frame. There are several choices,
depending on the bodies being analyzed:

1. For planetary motion, the sun is selected as the origin and the reference frame
is called heliocentric-ecliptic. The coordinate axes, denoted by XYZ, are selected
such that the XY plane coincides with the plane of the orbit of the earth around the
sun (the ecliptic plane), shown in Fig. 3.23. The XY plane is also referred to as the
Sfundamental plane, and the positive Z axis is referred to as the north polar axis. The
X axis is selected as being toward the vernal equinox, also called the first point of
Aries. On the first day of autumn, the line joining the centers of the sun and earth
points toward the vernal equinox.
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First day
of summer

First day

First day

First day of winter
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¥ (Seasons are for Northern Hemisphere)

Vernal equinox
direction

Figure 3.23 Heliocentric-ecliptic coordinate system

Because the XY Z plane is assumed to be inertial, the vernal equinox is assumed
to be fixed as well, even though it is actually precessing very slowly. The causes of
the precession are the disturbing effects of the moon, as well as the fact that the earth
is not a perfect sphere, both of which add terms to the equations of motion describing
the motion of the earth with respect to the sun. The period of precession can be shown
to be, and has been observed as, about 26,000 years. When the vernal equinox was
first defined, it was pointing toward the constellation Aries. At the writing of this
text, it was pointing toward Pisces.

2. For satellite motion, a geocentric-equatorial or a perifocal coordinate system
is often used. We describe here the geocentric-equatorial system. The origin of the
coordinate system is selected as the center of the earth. The Z axis is selected toward
the North Pole. The XY plane is the equatorial plane, and the X direction is selected
toward the vernal equinox.

We are ready to orient the orbit. It turns out that this orientation is accom-
plished by a 3-1-3 coordinate transformation. Consider an inertial frame as shown
in Fig. 3.24 and a sphere. The first rotation is about the Z axis. The rotation angle is
called the longitude of the ascending node and is denoted by ). The ascending node
is defined as the point at which the orbital plane crosses the fundamental plane with
a northerly velocity, that is, moving in the positive Z direction. The descending node
is defined as the point at which the orbital plane crosses the fundamental plane, mov-
ing in the negative Z direction. The line joining the ascending and descending nodes
is called the line of nodes. Denoting the rotated coordinates by X'Y’Z’, the line of
nodes is the X' axis, and it describes the intersection of the orbital plane and the fun-
damental plane. Historically, the term line of nodes originated from this coordinate
transformation sequence.

The second rotation is about the X' axis. The rotation angle, denoted by i, is

[ -

called the orbital inclination. The resulting coordinate axes are denoted by x'y'z’,
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Figure 3.24  Orbital parameters

with the x'y’ plane describing the orbital plane. The angle i hence describes the
inclination between the fundamental plane and the orbital plane (or the angle be-
tween the Z and 7’ axes). The angular momentum is in the z’ direction. Finally, the
x'y'z' axes are rotated about the z' axis by the argument of the pericenter, denoted
by w to orient the orbit on the orbital plane.

The remaining three orbital parameters are the semimajor axis a, eccentricity &,
and perigee passage J. In many cases, and especially in problems involving orbits
about the sun, the mean anomaly M is used instead of 7.

The transformation from the three displacement and three velocity coordinates
of the body on the orbit to the orbital parameters is a unique transformation. That
is, given all three displacement and velocity components at a certain instant, one
can determine the orbital parameters, and vice versa. For the ideal two body prob-
lem, where there are no disturbing effects of other bodies, the orbital plane as well
as the size and orientation of the orbit are all constants. However, when there are
disturbing functions, such as gravitational forces of other bodies and atmospheric
drag, the right side of Eq. [3.7.6] is no longer zero. In addition, the equations
derived in this section assume that the bodies involved are perfect and homoge-
neous spheres. Any deviation in geometry from a homogeneous sphere results in
additional gravitational terms. Furthermore, the rotational motion of the bodies in-
volved also must be considered. The analysis of these effects is beyond the scope of
this text.



192 CHAPTER 3 ® DYNAMICS OF A SYSTEM OF PARTICLES
Example Consider Example 3.7 and calculate the time elapsed after burnout until the rocket crashes.
3.9

Solvtion

We will make use of the eccentric anomaly to solve this problem. First, we find the transverse
angle @ the rocket makes at burnout. Denoting this angle by 6;, we use Eq. [3.8.20] to find it
as

a(l —e?)—r _ 14450(1 — 0.59857%) — 6500
e = 6500(0.59857)

cosf, = = 0.71266 [a]

from which we get
61 = cos™'(0.71266) = 0.77751rad = 44.548° [b]

From Eq. [3.9.6] we have the eccentric anomaly at burnout as

&\  [1-=_ (6 0.40143 o ~
tan(—z—) -Ji= tan( - ) <505 tan(22.274 ) = 0.50112(0.40962) = 0.20527
[e]

so that
é = 2tan_1(0.20527) = 0.40492rad = 23.200° idl

We now make use of Kepler’s equation, Eq. [3.9.12]. Setting the initial time as 7 = 0, and
using Eq. [3.8.24], we can solve for time as

e 3
t = €—esin€ _ a_(cg — £sin®) [e]
n Vo

/ 3 (1.445 X 107)3 \/*6 _ 3 . .
and 3986 X 1014 7.5695 X 106 = 2.7513 X 10° s. Denoting by #, the time

at bumout and using Eq. [e], we obtain

a3
Hh = —((81 —SSin(é])
1

= 2.7513 X 10°(0.40492 — 0.59857 5in(0.40492)) = 465.3 seconds fl

We next find the above parameters at impact, and denote them with the subscript 2. To
find the angle 8, we make use of Eq. [a], with r replaced by R = 6378.1 km

a(l - %) — R _ 14450(1 - 0.598572) — 6378.1
Re B 6378.1(0.59857)

Noting that the rocket crashes in the fourth quadrant, we can find the angle 8, from

cosf, = = 0.75821 Igl

6, = cos~1(0.75821) + 37” = 5.4226rad = 310.69° [hl

The corresponding eccentric anomaly is found from

1—¢ 6
= -1 _2
€, = 2tan ( 1+£tan<2))

= 2tan"'((0.50112)(—0.45900)) = —0.45216rad = —25.910° (U]
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or, by adding 27 to the value we obtain
%, = —0.45216 + 27 = 5.8310rad = —25.910° + 360° = 334.09° [l

Introducing the mean anomaly to Kepler’s equation, we obtain for the time

a .
= ;(‘62 — &esiné,)

Subtracting ¢, from t,, we obtain the time the rocket stays in orbit before it crashes as

2.7513 X 10%(5.8310 — 0.59857 sin 5.8310) k]

16,762 seconds

I

th —t = 16,762 — 465s = 16,297s = 4.527hr m
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In this section we analyze the kinetics of rigid bodies that move on a plane. In
essence, this section and the ones following it constitute a review of sophomore-
level dynamics. This review is primarily aimed at refamiliarizing the reader with
some basic concepts, as the developments in the following chapter are described
in terms of particles or plane motion of rigid bodies. A detailed analysis of the
kinematics and kinetics of three-dimensional rigid body motion is carried out in
Chapters 7 and 8.

We denote the inertial frame by XYZ and consider the XY plane as the plane of
motion. The moving reference frame xyz, obtained by rotating the XY Z frame about
the Z axis by 0, is attached to the body. The angular velocity and angular acceleration
have one component each:

w=0K=0K «a=aedK-=60K [3.10.11

We begin with defining the center of mass. Consider a system of N particles,
as shown in Fig. 3.1. The center of mass is denoted by the point G and defined by
Eq. [3.2.2]. A rigid body can be considered as a collection of particles in which the
number of particles approaches infinity and in which the distance between the indi-
vidual masses remains the same. As N approaches infinity, each particle is treated as
a differential mass element, m; — dm, and the summation in Eq. [3.2.2] is replaced
by integration over the body. We then define the center of mass G as

1

rg = —j rdm [3.10.2]
m Jbody

where r is the vector from the origin O to differential element dm and
m= J dm [3.10.3]
body

is the mass of the body. Considering Figs. 3.1 and 3.25, for a system of particles
we write r; = rg + p;, and for a rigid body, r = r¢ + p. Introducing this term in
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zZ
Y dF

X

Figure 3.25

Eq. [3.10.2], we obtain

1
rg = lf rdm = —j (rg + p)dm = rg + lj pdm [3.10.4]
m Jbody m Joody m Jbody

leading to the conclusion that
J pdm =0 [3.10.5]
body

This equation indicates that the weighted average of the displacement vector about
the center of mass is zero.

The center of mass is a very important quantity, as its use simplifies the analysis
of rigid bodies considerably. To see this, let us write the rigid body equivalent of the
combined equations of motion. Considering the differential element and its equation
of motion

adm = dF [3.10.6]

where dF is the total force acting on the differential element. We write for the entire
body,

J adm = J dF =F [3.10.7]
body body

in which F is the resultant of all forces. This resultant contains contributions
only from the external forces, as the internal forces cancel each other. Introducing
Eq. [3.10.4] into Eq. [3.10.7] gives the translational equations of motion of a rigid
body, that is, Newton’s second law for a rigid body, as

mag = F [3.10.8]

The derivation of the translational equations of motion above is valid for the
general motion of a rigid body. For plane motion, we define the moment of all forces
acting on the body about the center of mass as

N
Mg = > pi X Fi = L()dyp x dF = MK [3.10.9]

i=1
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where Mg is the resultant moment about the center of mass. Next, introduce
Eq. [3.10.6] to the above equation. Before doing that, we express the velocity and
acceleration of the differential element as

V=vg+oXp a=az+aXp—wp [3.10.10]

and proceed, so that

It

MG:J deF=J pXadm J pX(ag +a Xp—wp)dm
body body body

[3.10.11]

The first term inside the brackets vanishes because of the definition of the center of
mass and the third term vanishes because of the cross product. To evaluate the middle
term, consider that the cross product & X p is on the plane of motion, perpendicular
to p, and it has the magnitude |a p|. Hence, the cross product between p and a X p is
perpendicular to the plane of motion, parallel to e, and with magnitude ap?. Thus,
Eq. [3.10.11] can be written as

Mg = J pX(aXp)dm = J ap*dmK = aj p*dmK [3.10.12]
body b

ody body

The integral on the right side of this equation is not dependent on time or any
displacement variable, so that it can be evaluated independently of the angular ac-
celeration. We define it as the mass moment of inertia of the body about the center
of mass, and denote it by I, so that

I = J p*dm [3.10.13]
body

The mass moment of inertia is a property of the body itself; it is a measure of
how the mass of the body is distributed about an axis passing through the center of
mass and perpendicular to the plane of motion. We discuss ways of calculating the
mass moment of inertia in Chapter 6. Figure 3.26 gives the centroidal mass moment
of inertia for two common shapes. Appendix C gives a more comprehensive list.

Combining Eqgs. [3.10.12] and [3.10.13], we obtain the rotational equation of
motion

IGa = MG [3.10.14]

2 2
Thin disk: I = % Slender rod: I;; = %

Figure 3.26
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This equation, together with the two equations in Eq. [3.10.8], gives the three equa-
tions of motion for the plane motion of a rigid body. The rotational equation of motion
can also be represented in terms of the angular momentum. Indeed, we define the
angular momentum about the center of mass as

HG=J vadm=f pX(vG+pr)dm=J pX(wXp)dm
body body body
[3.10.15]

For plane motion, considering the integral in Eq. [3.10.12] and the definition of the
mass moment of inertia, we can write

H; = J wp*dmK = IgwK [3.10.16]
body

and the rotational equation of motion can be written as
Hg = Mg or Hg = Mg [3.10.17]
just as the translational equations of motion can be written as
p=F [3.10.18]

in which p = mvg is the linear momentum of the body. It should be noted that while
we derived Eq. [3.10.17] for plane motion, this relationship in vector form holds for
the general three-dimensional rotational motion of a body. As discussed in Chapter
1, there is debate about whether Eq. [3.10.17] is a derived relationship, or a stated
law of motion.

The equations of motion can be illustrated by means of equivalent free-body
and resultant force diagrams, as shown in Fig. 3.27. The sum of the external forces
is equal to the resultant, which is equal to the rates of change of the linear and angular
momentum.

Up to now, we considered the angular momentum and sum of moments about
the center of mass. It turns out that under certain circumstances, it becomes more
convenient to write the rotational equations of motion about another point. For ex-
ample, such a case arises when motion about a fixed point is considered. To analyze
the moment equation about an arbitrary point, consider the third part of Fig. 3.27 and
sum moments about an arbitrary point D. We have

Mp = Iga + magd or Mp = IgaK + rgp X mag [3.10.19]

Fy F

G

F,

External input Resultant Accelerations

Figure 3.27



3.10 PLANE KINETICS OF RIGID BODIES

Figure 3.28  Rotation about a
fixed point

in which d is the perpendicular distance from D to the acceleration vector for the
center of mass G.

A special application of the above equation is for rotation about a fixed point.
Consider Fig. 3.28, where the rigid body rotates about point O. It follows that the
acceleration of the center of mass can be expressed in terms of the distance between
points O and G, which we denote by b, as

ag = ag, + ag, = bw?e, + bae, [3.10.20]

The component of ag in the normal direction does not affect the moment about
O. Hence, we can write the sum of moments about O as

My = Iga + mbPa = (Ig + mb¥a = Ipa [3.10.211]

1o is the mass moment of inertia about point O, and we have written the parallel axis
theorem, described in detail in Chapter 6. This theorem essentially relates the mass
moments of inertia of a body about the center of mass G and another point D by

Ip = I + md? [3.10.22]

where d is the distance between the two points. Another way of describing the inertia
properties of a body is by means of the radius of gyration, denoted by «, such that
I = mx?. The radius of gyration is often used when dealing with complex bodies,
and it is usually listed as a property of a body.

When solving plane kinetics problems, one should select the moment center
such that the number of reactions to be solved and the total number of calculations
become a minimum. The procedure in solving plane kinetics problems is the same
as the procedure outlined in Chapter 1 for particle motion. The only difference is that
one must invoke the rotational equations of motion.

197

Rod OA is of length 0.4 m and has a mass of 3 kg, while rod AB is of mass 12 kg and length
1 m. The two rods are released from rest from the configuration shown in Fig. 3.29. Find the
angular accelerations of both rods at this instant. There is no friction at point B.
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F— 04m —
l 7 3kg A
& )
0.8 m
12kg,/ 1m
| B
/ 7

Figure 3.29

We first isolate the two bodies and draw free-body diagrams, shown in Fig. 3.30. Note that
triangle DBA is a 3-4-5 triangle. The next task is to write the force and moment balances.
For rod OA it is convenient to write the sum of moments about point O as (counterclockwise
positive)

> Mo = lpay = —0.2(3g) + 0.44, [al

The force balance equations merely give relations for the reactions for O, and O,, so

they are not of much use, unless one wishes to calculate those reactions. Introducing the

expressions Ip = I + m(5)? = &mL? + ImL? = mL?/3 = 3(0.4%)/3 = 0.16 kg-m? into
Eq. [a]

0.16a; = 0.44, — 0.6g Ib]

Oy Ay

0, —-é L—» A,
0 3g A -
—02m—
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For rod AB, there are three unknown reactions, A, A,, and N. Considering that the
sum of forces in the horizontal and vertical directions and the sum of moments about the
center of mass involve all three unknowns, we prefer writing the moment balance about
point D, a point about which N and A, do not exert a moment. To do this, we need an
expression for the acceleration of point G. We will obtain the acceleration of point G by
first writing a relative acceleration relation between points A and B and then a relation
between B and G.

Consider points A and B first. Because motion is just being initiated, the angular veloci-
ties of OA and AB are both zero. Also, point B moves in the horizontal plane. We hence write
the accelerations of points A and B as

as = aAj = 0.4a1j ag = aBi [C]

and the relative acceleration relation becomes

a, = ag + oy X Typ — asj = api + axk X (0.6i + 0.8j) = (ap — 0.8a)i + 0.6a,j [d]
from which we conclude that
as = 0.4a, = 0.6a; ap = 0.8a» [e]
Next, write the relative acceleration relation between points B and G
ag = ag + oy X rgp = 0.8asi + axk X (0.3i + 0.4j) = 0.4a,i + 0.3asj Ifl

We are now in a position to write the moment equation about point D. Because ap has
components in both x and y directions, we write Eq. [3.10.21] in vector form as

> Mpk = Igak +rgip X mag = (—0.3 X 128 — 0.6 Ak [l

in which Ig is the mass moment of inertia of rod AB, having the value of 12 X 1%/12 =
1 kg-m? and rg;p = 0.3i — 0.4j m. Substituting in these values to the above equation,

lask + (0.3 — 0.4§) X 12(0.4azi + 0.3c2j) = (—3.6g — 0.6A,)k [hl
which reduces to
(1+ 1.08 + 1.92)a; = 4, = ~3.6g — 0.6A, It

Equations [b] and [i] are two equations with the unknowns a}, a3, and A,. From the first
part of Eq. [e] we have

a) = 1.5(12 “]
so that Eq. [b] can be written as
0.24a, = 0.4A, — 0.68 [k}

Multiplying Eq. (k] by 1.5 and adding it to Eq. {i], we obtain for a,

—-4.5g  4.5x9.807
436 4.36

Using Eq. [j] we obtain a; as @y = 1.5a, = 15.18 rad/s.

= 10.12 rad/s m

ary =
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3.11 INSTANT CENTERS AND ROLLING

An important concept associated with the plane motion of rigid bodies is that of an
instant center. At any instant of the motion, there exists an axis perpendicular to the
plane of motion, called the instantaneous axis of zero velocity, such that the body
can be viewed as rotating about that axis at that instant. The intersection of this axis
and the plane of motion is called the instantaneous center of zero velocity, or instant
center. In general, the instant center of a rigid body is located by visual inspection.
To establish the location of the instant center, one needs to know the velocities of
two points on the body. If the velocities are not in the same direction, one draws two
lines, beginning at the points at which the velocities are known and perpendicular to
the velocities. Their intersection is the instant center. Figure 3.31 illustrates. If the
velocities of the two points are in the same direction, one again draws two lines: one
joining the points at which the velocities are known and the other joining the tips
of the velocity vectors (drawn to scale). Their intersection gives the instant center,
as shown in Fig. 3.32. In Chapter 7, we prove the existence of the instant center for
plane motion.

It should be noted that while the instant center has zero velocity, its location at
every time instant is different, and its acceleration is not zero. Hence, Eq. [3.10.21],
the moment equation about a fixed point, cannot be written about an instant center.

An interesting case of motion is that of a body rolling over another body or over a
fixed surface. For rolling to take place between two bodies, a continuous sequence of
points on one of the bodies must be in continuous contact with a continuous sequence
of points on the other body. For continuous contact to take place, the contacting bod-
ies must have smooth contours, with no jumps.

Rolling can occur in a variety of ways, as Chapter 7 will show in detail. In this
section we consider roll of a circular body over a fixed surface. The surface can be
planar or curved. Consider Fig. 3.33. We denote by @ = —wk the angular velocity.
The contact point is denoted by C, with velocity of v¢. Let n denote the unit vector
perpendicular to the plane of contact. The kinematic relation describing rolling is

veen =0 [3.11.1]

Figure 3.32 Figure 3.33
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If the contact point has a finite velocity along the plane of contact, the motion
is referred to as roll with slip. If the contact point has zero velocity, the motion is
referred to as roll without slip. Whether slipping exists or not depends on the forces
acting on the rolling bodies, as well as the friction between the rolling bodies. Math-
ematically, the no slip condition is represented as

ve =0 [3.11.2]

Because the velocity of the contact point is zero, the contact point can be treated
as an instant center. However, the acceleration of the contact point is not zero,
whether there is slipping or not. The contact point approaches the plane of contact,
it has contact, and then it moves away. The constraint associated with the contact is
applied to the contacting points only during the instant of contact.

Consider rolling without slipping and a point P on the body. The velocity of a
point P on the body can be expressed as

Vp = Vg + ® X rpg [3.11.3]
We write the above equation for the point of contact C, with the result
ve =0 =vg+ o Xreg [3.11.4])
which we can use to express the velocity of the center of mass as
V6 = ® X rgc = ~wk X Rj = Roi = ROi [3.11.5]

This equation can be physically explained by noting that the point of contact C is the
instant center.

A sphere of mass m and radius r rolls without slip inside a circular curved surface with radius
R, as shown in Fig. 3.34. Obtain the equation of motion as a function of 6.
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+Q

Figure 3.35

Solution

The free-body diagram of the sphere is given in Fig. 3.35. We write the force balance using
normal and tangential coordinates, thus

mag, = mgsinf — Fy [a]

2

mag, = N — mgcos@ = % [b]

where p is the radius of curvature for point G and Fy is the friction force. The center of
curvature is the center O of the curved surface and the radius of curvature is constant and
has the value p = R — r. The moment balance about the center of mass is (counterclockwise
positive)

Iga = Fyr el

Because we assume rolling without slipping, the speed and tangential acceleration of the
center of the sphere are

VG = ro ag = ra [dl

where w is the angular speed of the sphere and @ = @. Solving for Fy in Eq. [a] and using
the expression for ag, in Eq. [d], we obtain

F; = mgsin6 — mra (o}
which, when introduced into Eq. [c], yields
U + mr)a = mgrsiné il

To obtain the equation of motion, we need to express the angular acceleration of the
sphere in terms of 8. We make use of the property that the center of mass of the sphere can
also be considered as moving about the center of curvature of the surface, so that we can write

vg =rw =—(R—r)d Igl
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from which we obtain

a=— ] [h]

And introducing Eq. [h] into Eq. [f], we write the equation of motion as

g + mr*)R - )8 + mgr’sinf = 0 [il
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Note that whenever one assumes roll without slip, one must check the validity of
the assumption. This can be done by calculating the magnitude of the friction force
and comparing it with the maximum value of the friction force. If this maximum is
exceeded, one must redefine the problem as a roll with slip problem.

3.12 ENERGY AND MOMENTUM

The kinetic energy of a rigid body is defined as

T = % J vevdm [3.12.1]

body

If we introduce the expression of the velocity in terms of the center of mass to this
equation, we obtain

T

% j (Vg +t @ Xp)e(vg + @ X p)dm [3.12.2]

body
1

= 5 J (VG'VG+2vG'(pr)+(pr)°(pr)) dm

body

The first term on the right side of this equation gives mvg * v5/2. The second
term vanishes due to the definition of the center of mass. To evaluate the third term,
we note that the cross product of w and p is a vector of magnitude pw, so that

J (wXp)e(wXp)dm = J pzw2 dm = I(;w2 [3.12.3]
body body

and the kinetic energy of a rigid body undergoing plane motion can be written as

1 1
T = - mvgevg + -IGw2

3 3 [3.12.4]

When the rigid body is rotating about a fixed point C, its kinetic energy becomes

T = %Icaﬂ [3.12.5]
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The kinetic energy can be written in this form about the instant center, as the instant
center has zero velocity. When the body is rotating about a point C that is moving,
Eq. [3.12.5] is not valid.

The gravitational potential energy for a rigid body is

V = mghg [3.12.6]

in which A is the perpendicular distance between the center of mass and the datum
line. All the other potential energy expressions are the same as we have seen them
before for particles. The work-energy theorem discussed in Chapter 1 is valid for all
types of bodies.

An interesting property of bodies undergoing rolling without slipping is that the
friction force does no work. This can be easily shown using the definition of work
as a time integral. Because the friction force is always applied to a point with zero
velocity, the power of the force P = Fy < v is zero. Hence, the work done, which is
the integral of power over time, is zero.

We obtain the impulse-momentum relations the same way we did for particles,
by integrating the equations of motion over time. Doing so between two time points
t; and #, gives

7}
mvg(ty) + J F dt = mvg(ty) [3.12.7]
n
1
Icw(t) + J Mg dt = Igw(t) [3.12.8]
h
The integrals in Eqs. {3.12.7] and [3.12.8] are known as the impulse and
the angular impulse, respectively. A very interesting application of the impulse-
momentum relationships is in cases where the integral of the sum of moments or the

sum of forces vanishes. In such cases, we have conservation of linear momentum or
conservation of angular momentum.

Example
3.12

| A solid uniform sphere of mass m and radius R is placed on top of a fixed sphere of the same
radius, and it is slightly tipped (Fig. 3.36). Find the value of the angle  at which sliding
begins as a function of the coefficient of friction pt.
Solution
The displaced position of the sphere and its free-body diagram are depicted in Fig. 3.37. We
denote by 6 the angle made by the line joining the centers of the spheres and the vertical. By
¢ we denote the angular displacement of the top sphere. The friction force F is less than uN
for no slipping, where N is the normal force. When there is slipping, F = wN. The speed of
the center of the sphere is given by

Ug = 2R0 [.]
and for no slip

v = R [b]
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7

n

Figure 3.36 Figure 3.37

so that for the no-slip case the two angles are related to each other by
b =20 [c]
Continuing to consider no slip, and noting from Appendix C that the centroidal mass moment

of inertia of a sphere is Ic = 2mR?/5, we can write the kinetic energy about the point of
rolling contact

—1qu2 = gk = T [d
where Iy = I + mR? is the mass moment of inertia about the point of contact. Considering
the center of the lower sphere as the datum, the potential energy has the form

V = 2mgRcos 8 [e]
The sum of forces in the normal direction is

mvZ  m(2R6)?

= 2mR@? f
2R mR6 [f1

> Fn = ma, > mgcos§ — N =
The sum of the kinetit and potential energies is constant. Therefore,
14 :
?mR2t92 +2mgRcosf = E [gl

and noting that when § = 0, 6 is also equal to zero, we can evaluate E as
E = 2mgR {h]
Now using Eqgs. [g] and [h], the relation between 6 and 6 can be expressed as

62 = ;—Ige(l — cos 8) i

Substituting Eq. [i] into Eq. [f] we obtain an expression for the normal force N in terms of §
as

N = mgcosf — 2mR6? = mgcosf — 2mR-7§%(l —cosf) = g(”cos() -10) Il
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Summing moments about the center of mass of the sphere we obtain

> Mg =1Ig$ > FR = ngzdi [kl

which relates the friction force F to ¢. We sum forces in the tangential direction, thus
ma, = —F + mgsin@ m
Noting that a, = 2R6 and introducing Eq. [k] into Eq. [1] we obtain

. 4 .. . . 5¢ .
2mR6 = ngO + mgsing — 0 = msme [m]

Combining Egs. [k] and [m] we write an expression for the friction force in terms of 6 as

2 .4 . 4 5¢ ., 2 .
F = ngd) = ngO = ngm sinf = 7mgsm0 [n]

The instant slipping begins, F = uN. Hence, considering Eqgs. [j] and [n], we obtain a
relation for @ at the instant slip begins,

%mgsino = p,ng(17cos0 - 10) [o]

This can be solved for 6 given a value of u.

It should be noted that the solution is independent of the mass and radius of the sphere.
For very small values of i , we can solve Eq. [0] using a small angles assumption of sin 6 ~ 0,
cos @ = 1, which yields the result § = 7u/2. For larger values of the coefficient of friction,
one can use a numerical approach. For example, when p = 0.5, 8 can be found to be 6 =
41.5°. The case of having a rough contact between the spheres, that is, when the coefficient
of friction is g = o, is of interest. Dividing both sides of Eq. [o] by u and setting u = ,
we obtain

%“’1(17 cosf — 10) = 0 pl

which has the answer cos@ = 10/17, or 6 = 53.97°. We observe from Egs. [j} and [o] that
Eq. [0] basically implies that the normal force is zero. Therefore, at @ = 53.97°, the top sphere
loses contact with the lower sphere and goes into a free-fall mode.
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HOMEWORK EXERCISES

SECTION 3.2

1.

The blocks shown in Fig. 3.38 are released from rest. Find the acceleration of
each block. The pulleys are massless.

A chain of length 0.7 m is at rest over two slopes, as shown in Fig. 3.39. First,
assume there is no friction between the chain and slopes. If the chain is released
from rest, which end of it will rise, and what will its speed be when it reaches
the top? Then, assume that there is friction and calculate the minimum amount
of friction necessary to prevent the chain from moving.

The pulley system in Fig. 3.40 is released from rest with the spring unstretched.
Find the acceleration of each block. The pulleys and the cord are massless and
frictionless.

IS
Figure 3.38 Figure 3.39
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SECTION 3.3

4. The three masses in Fig. 3.41 are connected by links of negligible mass. A force
of magnitude F is applied as shown. Find the acceleration of the center of mass,
as well as the acceleration of the individual masses.

SECTION 3.4

5. Find the direction of sliding in Problem 2 using energy methods for the (case of
no friction).

SECTION 3.5

6. A ball is released from a height 4 from a plane. The coefficient of restitution
between the ball and the plane is e. Show that the time it takes for the ball to
stop bouncing is t = /2h/g(1 + e)/(1 — e).

7. Two spheres, made of the same material, the lower with radius 2b and upper
of radius b, are dropped from a height k, as shown in Fig. 3.42. Assuming the
centers of the spheres lie on a vertical line and all collisions between the spheres
and the ground are elastic, find the maximum height the upper sphere reaches
after impact. Assume that the lower sphere collides with the ground first and it
then collides with the second sphere.

8. Four small spheres of equal size and weight are aligned in a straight line and are
spaced equally (L), as shown in Fig. 3.43. Sphere A is given an initial velocity
v along the line. The coefficient of restitution e = 0.8 is the same for all the
spheres. Find the velocities of the spheres after 5 collisions have taken place,
and the position of sphere A.

Figure 3.41 Figure 3.42
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1.

Figure 3.43 Figure 3.44 Figure 3.45

Figure 3.44 shows five pendulums of equal mass and length arranged so that
they touch each other when they are at rest. If someone takes the pendulum at
the very left, swings it, and lets it go, only one pendulum at the very right will
swing out. If one takes N pendulums and swings them, N pendulums swing out.
Explain why. Also, explain why, if two of the pendulums are glued together and
then released, the above phenomenon is not observed.

In a pool game, a player must hit the cue ball and bounce it from a wall (e = 0.9),
so that the cue ball hits the 8 ball head on and the 8 ball falls into the pocket, as
illustrated in Fig. 3.45. Find the direction in which the player must hit the cue
ball and location of cue ball on the table.

A mass m is attached to a massless rod. The mass is at rest in the position shown
in Fig. 3.46 when it is hit by another body of mass 2m and velocity v (e = 0.8).
Find the angular velocity of the rod immediately after impact.

SECTION 3.6

12.

13.

14.

15.

Using the results of Example 3.5, calculate the altitude reached by a vertically
fired rocket at burnout. Half of the rocket’s weight is its propellant. Assume that
PeA/b = 0.1 v, = constant.

A rocket is fired vertically such that dm/dt and v, are both constant. Derive
expressions for the velocity and position as functions of time given that initial
value of the acceleration is zero.

A bucket of mass 1.5 kg is filled with 3 kg of water and is being pulled up a
well. The tension T in the rope is kept constant at 7 = 30 N. The bucket has a
hole in it which lets the water leak out at a steady rate, and the bucket becomes
empty in 38 seconds. Find the speed of the bucket at this instant.

A spacecraft of mass my and cross-sectional area A is moving with speed vy,
as it encounters a dust cloud, as shown in Fig. 3.47. The dust cloud has density
of p. As the spacecraft moves inside the cloud, dust begins to stick on its cross
section. Derive an expression for the speed of the spacecraft as a function of
time. Assume the dust offers no resistance to the spacecraft.

2m

Figure 3.46
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16.

17.

Oball
/dustcloud \g
SERREEE _
A i /)
(@ ) h
Figure 3.47 Figure 3.48

A performer wants to keep a ping pong ball afloat by blowing on it, as shown in
Fig. 3.48. Given is that when he blows on the ball, the opening of his mouth is
of area A, the speed is v, and the density of the air is p. Find the largest mass of
the ball that he can keep afloat.

The cart in Fig. 3.49 is of mass 1250 kg and is moved by the action of a water
jet. The water jet is of radius 0.08 m, and it squirts water with the speed of 200
m/s. Find the speed of the cart 3 seconds after the water jet is turned on. The
cart has a coefficient of friction of u = 0.08. Hinz: First develop an expression
for the force acting on the cart as a function of the flow rate.

SECTION 3.7

18.

19.

{

can [

!l § A-[.'.
30°

u

Calculate the gravitational potential energy of a small mass inside a uniform
sphere of mass m and radius R (Fig. 3.50). The distance of the mass from the
center of the sphere is &, with k < R. Hint: Consider the sphere as consisting of
an infinite number of thin spherical shells and calculate the potential energy of
each shell.

A tube of length 500 km is dug inside the earth from one city to another, as
shown in Fig. 3.51 (not drawn to scale). The inside of the tube is frictionless. A
mass is released from rest from one end of the tube. Find the maximum speed
the mass attains in the tube.

Figure 3.49 Figure 3.50 Figure 3.51
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SECTION 3.8

20.

21.

22.

23.

24.

25.

26.

Calculate the period of the earth’s rotation around the sun using Kepler’s third
law and Eq. {3.8.25] and compare with the value given in Chapter 2.

Calculate the altitude of a satellite in geosynchronous orbit (geo) about the equa-
tor. Then, calculate how much time it takes for an electrical signal to travel be-
tween the equator and the satellite. Determine the minimum number of satellites
in geo required to make it possible for any two people on earth to have a tele-
phone conversation via satellite.

A satellite is launched into earth orbit. Burnout is at the perigee at an altitude of
2.2(10°) m, at which point the satellite is parallel to the earth’s surface and has
a speed of v = 9000 n/s. Find the properties of the orbit.

A satellite of mass 800 kg is to be placed at circular orbit around the earth of
altitude 400 km. Find the energy required, as well as the period of the orbit.

A spacecraft is in elliptic orbit with e = 0.5 and r, = 2R, where R is the radius
of the earth. It is desired to change this orbit into a circular one with radius
ra. Find the impulse required to accomplish this maneuver. Then, calculate the
properties of the resulting orbit if the impulse is applied incorrectly at§ = 185°.

Calculate the speed and flight path angle a rocket must have at burnout at altitude
200 km so that it can achieve an orbit with , = 5400 km and ¢ = 0.7.

A meteorite is at a circular orbit around the earth with an altitude of 3500
km. The meteorite collides with another meteorite, and in doing so loses 3
percent of its kinetic energy. Find the properties of the orbit after this col-
lision.

SECTION 3.9

27.

28.

A satellite is in orbit and its position and velocity at a certain instant are measured
to be r = 30001 + 2000J + 6500K km and v = 52221 — 4000J + 6000K m/s
where the origin is at a focus. Find the orbital parameters associated with this
orbit.

A satellite is in an elliptic earth orbit with € = 0.6 and r, = 8R, where R is
the radius of the earth. Calculate how long it takes for the satellite to go from
6 = 15° to @ = 135°. Compare your answer with the period of the orbit.

SECTION 3.10

29.

Consider the mechanism shown in Fig. 3.52, consisting of a rod of mass m and
length L and disk of mass m and radius R = L/4. The mechanism is held in
place with the pin joint at O and the string. Suddenly, the string breaks. Find the
angular acceleration of the rod at that instant if

a. The disk is welded to the rod.

b. The disk is attached to the rod with a pin joint.
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Figure 3.52 Figure 3.53

30.

31

32.

The two bars of equal length and mass are connected by pin joints and they
are supported by a string at point B, as shown in Fig. 3.53. Find the angular
acceleration of each bar when the string breaks.

Figure 3.54 shows the schematic of a car. Explain why the body of the car rotates
counterclockwise when the car is accelerated.

The disk in Fig. 3.55 rotates with constant angular velocity @ = 5 rad/s. The
pin attached to it moves in the slotted bar OA. Bar OA has a mass of 10 kg and
centroidal mass moment of inertia of 1.4 kg m”. Determine magnitude of the
force exerted by the pin on rod OA when rod OA makes an angle of 10° with the
horizontal. The coefficient of friction between the pin and the slotis u = 0.15.

SEcTION 3.11

33.

34.

35.

A bar of mass m and length L (Fig. 3.56) is connected to a disk of mass 2m and
radius R = L/2. The assembly is released from rest with & = 30°. Given that
friction between the disk and the surface is sufficient to prevent slipping, find
the angular acceleration of the disk at this instant.

Consider Fig. 3.53. Let the string be broken and the following parameters ap-
ply: L = 0.6 m, vg = 0.1 m/s downwards. Find the instant center and angular
velocity of the link AB.

The arm AOC rotates with angular velocity 3 rad/s ccw, with point O stationary,
as shown in Fig. 3.57. Gears A, B, and C are of the same radius R. Use instant
centers to find the angular velocity of gear B if (a) gear D is fixed, and (b) gear
D is not fixed but is rotating clockwise with wp = 2.5 rad/s.

V4

Rear wheel drive

Figure 3.34 Figure 3.55
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Figure 3.56 Figure 3.57 Figure 3.58

36. Consider Example 3.11. Find the minimum value of the coefficient of friction
that will prevent slipping as a function of 6.

SECTION 3.12

37. Consider the bar attached to a disk in Problem 35, which is released from rest
at @ = 30°. Find the velocity of the center of the disk when the rod becomes
horizontal.

38. Two rods of equal length and mass are connected by a pin joint and they are at
rest, as shown in Fig. 3.58. An impulsive force F is applied at point A perpen-
dicular to the line AB. Find the angular velocities of the rods immediately after
the impulse.

39. Consider Example 3.12, and assume that friction is sufficient to prevent slip at
all times.
a. If the spheres involved were of different diameter, would the angle at
which the spheres lose contact be different than in Example 3.12?
b. Consider now that the cylinder is rolling over a cylinder. How would the
final results change if (a) the sphere and cylinder have the same radius and
(b) the sphere and cylinder have different radii?
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ANALYTICAL MECHANICS:
BAsic CONCEPTS

4.1 INTRODUCTION

This chapter and Chapter 5 introduce analytical techniques for describing the motion
of dynamical systems. The dynamical system is considered as a whole and scalar
quantities such as energy and work are used. Constraint forces and moments are
treated differently than in Newtonian mechanics. Constraint forces that do no work
do not appear in the formulation, and they are accounted for by appropriately se-
lecting the variables used to describe the motion. Sometimes, one may need to find
out the magnitudes of the constraint forces. This can be accomplished by calculating
the magnitudes of the constraint forces after the problem is solved, or by leaving
the constraints in the system formulation by means of Lagrange multipliers. The
approaches described in this chapter are analytical approaches and they are based
on the principles of variational calculus. Appendix B provides a more detailed look
at variational principles. Generalized coordinates, which do not necessarily have to
be physical coordinates, are used as motion variables. This makes the analytical ap-
proach more flexible than the Newtonian, as the Newtonian approach is implemented
using physical coordinates.

We derive the analytical equations of motion in this chapter for particles
and for plane motion of rigid bodies, though these equations are valid for three-
dimensional rigid body motion and deformable bodies as well. Chapter 8 will
deal with D’ Alembert’s principle and Lagrange’s equations for the general three-
dimensional motion of rigid bodies.

One question often asked is whether it is more convenient to use a Newtonian
technique or an analytical one when obtaining the equations of motion. There is no set
answer to this question, with the possible exception of dynamical systems consisting
of several interconnected components. When the number of coordinates needed to

2158
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describe the system is much less than the number of components, it is usually prefer-
able to use analytical techniques. When amplitudes of reaction forces are sought, it
is usually better to use a Newtonian analysis. Looking at the problem from both the
Newtonian and analytical points of view gives one more insight and a better under-
standing.

Analytical techniques use scalar functions like work and energy in the formu-
lation, rather than vector quantities. While this approach makes a lot of sense, the
experiences of dynamicists in recent years have shown that vector approaches com-
bined with analytical techniques are more desirable when modeling complex sys-
tems. One advantage of a vector approach is that it can be implemented on a digital
computer more readily.

4.2 GENERALIZED COORDINATES

A system of N particles requires 3N physical coordinates to specify the system’s po-
sition. Consider an inertial coordinate system and let the vector r; = r;(x;, y;, z;) be
the mapping of the ith particle in this coordinate system.! We express r; as (Fig. 4.1)

r,-=x,-i+y,~j+z,-k i=12...,N [4.2.1]

The 3N coordinates required to represent the system span a 3N-dimensional space,
which is called the configuration space of dimension n = 3N. In many cases, as
we will soon see, it is more advantageous to use a different set of variables than the
physical coordinates to describe the motion. This approach is analogous to that of
using different coordinate systems that we saw in Chapter 1. We introduce a set of
variables q1, g2, . . ., gn, related to the physical coordinates by

x1 = x1(q1, 92, - - -, qn)
1 =y1(q1,92 ..., 49n)
21 = 21091, 92, - - ., Gn)
x2 = x(q1, 92, - -+, qn)

Zn = za(q1, 92, ..., Gn) [4.2.2]

We will refer to a set of variables that can completely describe the position of
a dynamical system as generalized coordinates. The space spanned by the general-
ized coordinates is the configuration space. As an illustration, consider the spherical
pendulum in Fig. 4.2, whose length can change. The motion of the pendulum can be
described by the Cartesian coordinates x, y, and z, or by g1, ¢2, and g3, where g; = L
describes the length of the pendulum, and g, = 6 and g3 = ¢ describe the angular

1If a noninertial coordinate system is used, one has to include the variables describing the motion of the reference
frame in the set of coordinates that describe the motion, unless the characteristics of the reference frame are treated
as known.
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T, my

Iy

Figure 4.1 A system of N particles Figure 4.2 A spherical pendulum
whose length changes

displacement. The choice of L, 6, and ¢ as generalized coordinates is equivalent to
using spherical coordinates. The two sets of coordinates are related by

x = gicosqysings = Lcos@sing y = q1singy sings = Lsin@sin¢
Z= —qicosqz3 = —Lcos¢ [4.2.3]

If the length of the pendulum is constant, g; = L = constant, we do not need
to use it as a variable; ¢, = 6 and g3 = ¢ are sufficient. If we use the coordinates
x, y, and z to describe the motion, we have to relate them employing the constraint
relation

x? + y? + 722 = L? = constant [4.2.4]

Constraint relations, such as the one in this equation, indicate that the generalized
coordinates are related to each other, and that the system can be analyzed by a smaller
number of coordinates. The double link in Fig. 4.3, where the lengths of the rods are
constant, requires at least two generalized coordinates to describe the configuration
of the two rods. One can conveniently select them as the angles 6; and 6,.

Figure 4.3 A double link
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We hence need to distinguish between sets of generalized coordinates where
each coordinate is independent of the others and where these variables are not inde-
pendent.? In general, if a system of N particles has m constraint equations acting on
it, we can describe the system uniquely by p independent generalized coordinates
qr, (k = 1,2,..., p), where

p=3N-m=n—-m [4.2.5]

in which p is called the number of degrees of freedom of the system. The term de-
gree of freedom can be defined as the minimum number of independent coordinates
necessary to describe a system uniquely. Sets of generalized coordinates where each
coordinate is not independent of the others are called constrained generalized coor-
dinates or dependent generalized coordinates. The number of degrees of freedom is
a characteristic of the dynamical system and is independent of the coordinates used
to describe the motion. While one can select the number and types of generalized
coordinates and associated constraints in more than one way, p = n— m is invariant.

The rate of change of a generalized coordinate with respect to time is called the
generalized velocity and is denoted by ¢.(¢) (k = 1,2, ..., n). The 2n-dimensional
space spanned by the generalized coordinates and generalized velocities is called the
state space.

For the pendulum in Fig. 4.2 we generated two sets of generalized coordinates.
We could select other sets of generalized coordinates as well. For example, we could
select the generalized coordinates as L, ¢, and x. However, this would introduce some
ambiguity into the description of the pendulum, as x has the same value when the
angle 6 is positive or negative. Such coordinates are known as ambiguous general-
ized coordinates. Another example of ambiguous generalized coordinates would be
to use the coordinates xp and yp of the endpoint P of the double link in Fig. 4.3. One
can easily show that a given coordinate of the endpoint can be reached by two dif-
ferent configurations of the links, the two being mirror images about the line joining
points O and P, as shown in Fig. 4.4.

First configuration

T e

Second configuration

Figure 4.4

2In this regard, the definition of generalized coordinate here is slight{l{ different than the traditional definition in
older texts, which often restrict the term’s meaning to only an independent set.
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We draw two conclusions from the above. First, the generalized coordinates,
whether they are independent or not, do not constitute a unique set. This actually is a
tremendous advantage, as it gives a lot of flexibility. Second, one must exercise care
when selecting generalized coordinates, especially independent generalized coordi-
nates, to avoid redundancies and ambiguities. A poor choice of generalized coordi-
nates can make the problem formulation and solution unnecessarily difficult.

The discussion here with regards to generalized coordinates is similar to the
analysis of coordinate systems in Chapter 1. When we go from Cartesian to cylin-
drical or spherical coordinates, all we are doing is going from one set of generalized
coordinates to another. We choose the coordinate system so that it simplifies the for-
mulation.

4.3 CONSTRAINTS

In this section we analyze constraints that act on dynamical systems. We describe
the constraints in terms of physical as well as generalized coordinates. The interest
is primarily in equality constraints.

In dynamical systems, constraints are usually encountered as a result of contact
between two (or more) bodies. Constraints restrict the motion of the bodies on which
they act. Associated with a constraint are a constraint equation and a constraint
Jforce. The constraint equation describes the geometry and/or kinematics of the con-
tact. The constraint force is the contact force, also called the reaction. (Constraint
equations can also be written when the motion is viewed from a moving reference
frame and there is no contact. The relative motion equation becomes the constraint
equation.)

Consider Fig. 4.5 and a particle moving on a smooth surface whose shape is
described by

fx,y,z)=0 [4.3.1]

where f has continuous second derivatives in all its variables. The motion of the par-
ticle over the surface can be viewed as the motion of an otherwise free particle sub-
jected to the constraint of moving on that particular surface. Hence, f(x, y, z,¢) =
0 represents a constraint equation. The constraint equation [4.3.1] is referred to
as a configuration constraint. For a system described in terms of n generalized

Z
f&,y,2,=0

x Figure 4.5 A particle moving on a smooth surface
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coordinates, we can express a configuration constraint as
fquq2 .., qn8) =0 [4.3.2]

The differential of the constraint f (in terms of physical and generalized coordinates)
is

df = ﬂ x + gj_’dy + %dz + &fdt =0 [4.3.3al

of

df = dq +adat 5 dqn + ﬁd: =0 [4.3.3b]

9qn

The expressions [4.3.3] are said to be constraint relations in Pfaffian form. (A
constraint in Pfaffian form is one that is expressed in the form of differentials.) Di-
viding these equations by dt, we write the constraint equations in velocity form (also
called velocity constraints or motion constraints) as

d_f_a"_f_}.c+ﬁ-+i-+ﬂ=

= 4.3.4
dt oJx ayy o"zz at [ ol
af _ of . df . af . df
- = g1+ grt+...+ —gn+—=— =0 4.3.4b

The general form of a velocity constraint can be written in terms of physical coordi-
nates as

axx +ayy+az+ay=0 [4.3.5]

and, in terms of a system with n generalized coordinates subjected to m constraints,

n
Zajqu+ajo =90 =12 ....m [4.3.6]
k=1
where ay, ay,a;,ap,andajrandajo (j = 1,2,...,m;k = 1,2,..., n) are functions
of the generalized coordinates and time, for example, ajx = a;i(q1, 92, - - ., Gn D).

Note that once the constraints are imposed to a set of independent generalized coor-
dinates, these coordinates are no longer independent.

A constraint that can be expressed as both a configuration constraint as well as
in velocity form is called holonomic. Constraints that do not have this property are
called nonholonomic. In other words, nonholonomic constraints cannot be expressed
as configuration constraints.

4.3.1 HoLONOMIC CONSTRAINTS

An unconstrained dynamical system or one subjected to a holonomic constraint that
is not an explicit function of time, for example, fi(q1, 42, ...,9x) = 0, is called a
scleronomic system. If the holonomic constraint is an explicit function of time, the
system is called rheonomic. Throughout this text we will deal mostly with sclero-
nomic systems, as they constitute the majority of situations encountered in engineer-
ing applications.
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Consider the single particle discussed above and the case when the holonomic
constraint f is not an explicit function of time. That is, the plane defined by the
constraint is fixed. Elimination of the df/dt term from Eq. [4.3.4a] yields

af _df . of . o,
y+ =z=0 4.3.7
dar  ax” 8y 61 [4.3.7]
Denote the position and velocity of the particle by r(r) = x(0)i + y()j + z(Ok
and v(2) = r(t) = x(Di + ¥(1)j + z(1)k. The gradient of the constraint is
5f o i 9\
= i+ Zj+ = 4.3.8
V= St gt ok [4.3.8]

Taking the dot product between the gradient of the constraint and velocity v(¢)
gives
af i+ af . of

+ =z [4.3.9]

Vfev =
fev dx (9yy 9z

which, when compared with Eq. [4.3.4a], yields

w9 _

Vfev = i [4.3.10]
with the expected result that the particle velocity is always tangent to the surface.?
The same relation can be derived for generalized coordinates.

Given the holonomic constraint of a particle moving on a surface, the question
then arises as to what keeps the particle on the surface. The answer is a constraint
force normal to the surface, as shown in Fig. 4.6. To every constraint relation corre-
sponds a constraint force. Considering a single particle and denoting the constraint
force by F’, one can express it as

F, = F’n [‘03.' ']

where n is a unit vector representing the direction perpendicular to the surface, usu-
ally referred to as the normal direction. (This direction is similar to the normal direc-
tion in normal-tangential coordinates, but here it can be taken as in either direction
perpendicular to the surface.) Since F' is perpendicular to the surface, it must be per-
pendicular to the velocity. It follows from Eq. [4.3.9] that the unit vector n, which is

t Figure 4.6 Constraint force for a holonomic constraint

3Recall the derivation in Chapter 1 when analyzing path variables that the particle velocity is always tangent to
the path.
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normal to the surface, should be parallel to Vf. One can define n as

+vf %i * %j + Z_j;k
n= —_ = * [4.3.12])
M

BEEEE

Since the constraint force is expressed as

F' = Fii+Fj+Fk [4.3.13]

when we compare Egs. [4.3.12] and [4.3.13] we conclude that the components of
the constraint force must be proportional to the partial derivatives of the constraint,
or

FI F;, Fr

EAEANEY

Now, consider the work done by the constraint force as the particle moves
from position r to r + dr. Denoting this incremental work by dW and considering
Egs. [4.3.11] and [4.3.12], we obtain

[4.3.14]

L
IVf]

This relation indicates that the work done by a holonomic constraint force which is
independent of time in any possible displacement is zero. Such constraints are re-
ferred to as workless constraints. This result is to be expected, because the constraint
force is always perpendicular to the velocity.

Note that, while the total work done by the constraint forces that are independent
of time is zero, the individual constraint forces are doing work themselves. This work
is in the form of transferring energy from one component of the system to the other.
The sum of the transferred energies is zero. To visualize this, consider the double link
in Fig. 4.3, whose free-body diagram is given in Fig. 4.7. If the first link is given an
initial motion, the second link will begin moving, and vice versa. The motion of the
second link is initiated by the constraint forces acting at point B.

dW = F'+dr = F'nedr = Vfedr =0 [4.3.15]

@ ()

Figure 4.7 Free-body diagram of double link
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Considering Fig. 4.7, reaction forces, such as the forces at the pin at O and at
point B, are holonomic constraint forces. Normal forces are also holonomic constraint
forces. However, friction forces are not constraint forces, even though their magni-
tude is directly dependent on a constraint force. Nevertheless, for static problems one
can treat friction as a reaction force, because in such cases friction prevents motion.

Next consider a holonomic constraint that is an explicit function of time. For the
particle considered earlier, this implies that the surface is moving and the constraint
isin the form f = f(x, y, z, t). Using Egs. [4.3.4a] and [4.3.9] we obtain

w9 df. odf. _of
Vfev = axx+ayy+azz— " [4.3.16]
which implies that Vf «dr # 0. It follows that the incremental work d W, which now
is not a perfect differential as time is explicitly involved, is not zero. The incremental
work has the form

dW = F'+dr = F'ne+dr = %Vf-dr#() [4.3.17]

When the holonomic constraint is time dependent, the work performed by the

corresponding constraint force is not zero. The path followed by the particle can no

longer be described by the path variables associated with the surface. The vector n

describes the normal to the surface, but it is not the normal to the path followed by
the particle.

4.3.2 NONHOLONOMIC CONSTRAINTS

When the constraint is nonholonomic, it can only be expressed in the form of
Eqgs. [4.3.5] or [4.3.6], as an integrating factor does not exist to permit expres-
sion in the form of Eqs. [4.3.1] or [4.3.2]. Consequently, none of the preceding
results we obtained regarding the work done by the constraint force are valid for
nonholonomic constraints. The constraint force associated with a nonholonomic
constraint cannot be expressed as a force normal to a surface, as the nonholonomic
constraint does not define a surface. One can go into the space spanned by ¢;(¢) and
gi(®) (i = 1,2,..., n) and define a surface there, but this does not give any physical
insight or significant results. Hence, there is no general expression for the constraint
force when the constraint is nonholonomic.

A common example of a nonholonomic constraint is the rolling without slipping
of a body with no sharp corners or edges, such as a disk or a sphere.

In general, constraint equations in terms of relative velocities and especially
those involving angular velocities that are not *“‘simple” turn out to be nonholonomic.
Recall the discussion of angular velocity in Chapter 2. When a reference frame is de-
scribed by successive rotations about nonparallel axes, the resulting angular velocity
cannot be described as the derivative of a vector.

Other examples of nonholonomic systems are from vehicle dynamics. Included
in this category are the motions of ships, missiles, airplanes, automobiles, wheel-
barrows, shopping carts, and sleds. Figure 4.8 is a simplified illustration of such
a vehicle undergoing plane motion, such as a sled. Vehicles usually have a plane
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Figure 4.8 Generic model of a vehicle

of symmetry, and they are propelled in a way that the guiding forces act primarily
along the symmetry plane, with a very small component of the force used to change
direction. A steering mechanism usually accomplishes the change in direction.

One then makes the assumption that there is a point along the plane of symmetry,
denoted by A, such that the velocity of point A is always along the plane of symmetry.
The location of this point depends on the vehicle and the types of forces that prevent
point A from having a velocity component perpendicular to the plane of symmetry.
In a tricycle or automobile, the point A is in the middle between the rear wheels. In
a boat, the hydrodynamic forces determine the location of A.

Consider the vehicle in Fig. 4.8. The configuration of this system can be de-
scribed by the coordinates of point A, X4 and Y4, and by the angle the body makes
with the inertial X axis, denoted by 6. The nonholonomic constraint is associated
with the translational velocity of point A. Denoting this velocity by v4, we write it as

D AEDN | [4.3.18]
The constraint is written as
v4j=0 [4.3.19]
where j = cos 8] — sin 1. Introducing Eq. [4.3.19] into Eq. [4.3.18], we obtain

(XAL + YoJ) * (—sin 61 + cos 6])
= —X'A sin@ + YA cosf =0 [4.3.20]

\/83 |

This equation can conveniently be expressed as

& =0 [4.3.21]

%, - YA _
A" tan@

It is clear that this constraint is nonholonomic. The associated constraint force
is basically the resistance of point A to have any motion perpendicular to the line
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of motion. In an automobile, for example, this force would be the friction force be-
tween the rear tires and the road surface in the direction perpendicular to the velocity
of the tires. A very strong wind in the lateral direction, collision with another vehicle,
or taking a turn with high speed would violate this constraint.

In general, the constraint force associated with a nonholonomic constraint per-
forms work. A special case when this is not valid is rolling without slipping, where
the friction force is applied to a point with zero velocity. For roll without slip, friction
becomes a constraint force, as it reduces the number of degrees of freedom.

We next look into determining whether a constraint is holonomic or not. In gen-
eral, whether it is or is not can be ascertained by visual inspection. Mathematically,
in order for a constraint in Pfaffian or velocity form to be integrable to configura-
tion form, the constraint relation must satisfy differentiability conditions. The con-
straint must represent an exact differential. Consider Eq. [4.3.6]. If the jth constraint
equation is holonomic, one should be able to write it as fj(q1, g2, ..., qn ) = 0.
Taking the differential of f; and, for the most general case, dividing it by an inte-
grating factor g(q1, g2, - . ., g») we obtain Eq. [4.3.3b]. Comparing Eq. [4.3.4b] with
Eq. [4.3.6], we obtain for the general case of a holonomic constraint

If;
== = gjajk 7{]- = gjajo k=12 ...,n [4.3.22]

For a constraint given by Eq. [4.3.6] to be holonomic, there must be a function
f; and an integrating factor g;(q1,q2,...,qn) (j = 1,2,..., m) where the partial
derivatives of fj(j = 1,2,..., m) satisfy Eq. [4.3.22]. To check this, we evaluate
the second derivatives of f;. Indeed, considering an index r, we obtain

32 f; d d*f; d
= —(g;a; and —) = — (g;ia; [4.3.23]
3904, 6’qr(g’ i#) 9qx94r 6qk(g’ i)
3 f; d d*f; d
= " (o.a.: d J — Z(o. o
dg.01 - ag 80 and oo = 58
kr=1,...,nj=12...,m [4.3.24]

From Egs. [4.3.23] and [4.3.24] if an integrating factor g; exists such that a
and a o satisfy the relations

J J d J
8—(1’(81'0,'/:) = 5q_k(gjajr) ¢9—q,(gjaj0) = 5(8jajr)
r=1....mj=1,2...,m [4.3.25]

then the constraint is holonomic. The problem with using the above procedure is that
it may not be easy to find the integrating factor, especially for systems having more
than three degrees of freedom.

A constraint of the form f(qy,qa, ..., qn ) = 0,01 > aygy + ap = 0, that is,
an inequality constraint, is nonholonomic because it cannot be reduced to a form
f(q1,q2 - .., qn 1) = 0. Such constraints require a different treatment than equality
constraints. We also encounter constraints that are valid in some positions of the body
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or during certain intervals of the motion. Such constraints can also be classified as
inequality constraints. They can be found in problems involving contact.

Consider now a system that originally has n degrees of freedom and is subjected
to m holonomic constraints. Introduction of m constraints reduces the degrees of
freedom by m to p = n — m, resulting in a set of m excess, or surplus, coordinates.

It is possible, at least mathematically, to eliminate the surplus coordinates from
the formulation, which results in an unconstrained system of order n — m. Because
of this, unconstrained systems are referred to as holonomic.

By contrast, a nonholonomic constraint constrains only the generalized veloci-
ties, without affecting the generalized coordinates. In such systems there are n inde-
pendent generalized coordinates and n — m independent generalized velocities.

Example
4.1

A bead is sliding in a tube, whose shape is given by the equation y = 1 — x2, as shown in
Fig. 4.9. Find the direction of the normal to the tube.

Solution

One can solve this problem in a number of ways. We first consider the problem from a physical
standpoint. Because the bead is sliding in the tube, the equation defining the shape of the tube
becomes the constraint equation, and it has the form

fy=y—-1+x>=0 [al
Taking the partial derivatives of f, we obtain
i _ 2x a _ 1 bl
dx ay

so that, using Eq. [4.3.8], the gradient of f has the form Vf = 2xi + j. From Eq. [4.3.12], the
unit vector in the normal direction (chosen, for convenience, positive outward) becomes
2xi+j

n= —— [«]
V1+4x2

As expected, because the constraint is not an explicit function of time, neither is the direction
of the constraint force. The constraint is, of course, holonomic.

To solve this problem geometrically, we define the angle § between the horizontal and
the tangent to the curve. The tangent of 6(x) describes the slope of the tube, and

4y _
tanO—dx— 2x [d}

* Figure 4.9  Bead sliding inside a tube
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We find the sine and cosine of 6 by

sinf = Z—x cosf = ——1— [e]

V1+4x2 Vv1+4x?

Now we can express the unit vector describing the normal as
2xi+j
V1+4x?

We can also determine the normal direction directly from the geometry, using the ap-
proach in Chapter 1, without going into any constraint equations. Denoting the path variable
by x, we write the position vector as

n = sinfi — cosfj =

r = xi+(1-x%)j gl

and the expressions for the slope and the unit vector in the tangential direction become

dr i—2xj
r=— =i-2xj € = ——— s'=V1+4x2 [h]
dx N EYYs

Use of Eq. [1.3.36] yields n. When the path parameters associated with the motion of a body
are specified, in essence a constraint has been imposed on an otherwise free body.

227

A block of mass m is attached to a cord of original length L and is rotating about a thin hub,
as shown in Fig. 4.10. Friction is negligible. Find the constraint force if (a) the cord is not
wrapping around the hub, and (b) the cord is wrapping around the hub.

Solution

a. When the cord is not wrapping around the hub, the constraint is holonomic and independent
of time. The constraint equation basically describes that the length of the cord is constant, and
it has the form

fy)=x*+y*-L*=0 [al

(@ ®

Figure 4.10 Mass rotating around a thin hub {a) Cord is not
wrapping around hub {b) Cord is wrapping
around hub

| Example
4.2
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Once motion is initiated, the mass keeps rotating with the same speed and the energy of the
particle does not change. The constraint force is the tension in the rope, and it does no work.

b. The situation is quite different when the rope wraps around the hub. Assuming that the hub
radius is very small, the tension in the rope is directed toward point O. Summing moments
about O, we obtain

> Mp=0 [b]

so that the angular momentum about O is conserved. In essence, we have a central force
problem. Let us use polar coordinates r and 6. Consider that the length of the rope, denoted
by r, reduces continuously by the relation

r=L~-r,0 [c]

where r, is the radius of the hub. In one revolution of the mass, the rope shortens by 27r,.
The angular momentum about O is given by Hp = mr?6. Because the angular momen-
tum is conserved,

0 = constant = h C]]
where we note that the constant 4 is always greater than zero, 2 > 0, and that & is a function

of the initial condition. Differentiating the relation between r and 0, we write

. . . F
F=—r,0 >0 =—— [e]
[

and substituting the above relation into Eq. [d], we obtain

o= "0 i
or
Pr=-r,*9=-r,h=C C<0 [l
where C is constant. Now, let us find the response r(z). We can rewrite Eq. [g] as
Pdr = Cdt [h]
which, when integrated, gives
%3— =Ct+D [

where D is a constant of integration, determined from the initial conditions. We note that at
t =0, r = L, and from Eq. [i] 3/3 = D, so that D = L3/3. Considering that the length of
the rope is related to x and y by * = x? + y?, we can write Eq. [i] as
( x2 + 213/2 L3
fayn =3 Loy il
3 3
The constraint is a time-dependent holonomic constraint, that is, a rheonomic constraint.
The constraint force, which is the tension in the rope, does perform work. To show that the
constraint force does indeed perform work, we consider the configuration vector r and its
derivative

r=re P=re, + rfeg [kl
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The constraint force (the tension in the rope) can be expressed as F' = —Fe,, so that the
dot product between the constraint force and the particle velocity becomes

F'er = —FF i

which is not zero. Note that for the case when the length of the rope is not changing, r = 0, and
the work done by the constraint is zero. Also note that in order to find an explicit expression
for r(z), the initial angular velocity must be specified.

Given a system with generalized coordinates ¢; and g, and the constraint equation I Example
, 4.3
(3q1 sing, + % + 2>dq1 + (q3cos g2 + 2g2)dg, = 0
1
determine whether the constraint is holonomic or not.
Solution
The constraint equation is holonomic if there exists an integrating factor g(qi, ¢2), such that
Eq. [4.3.22] holds, or
of . 849 of 2
—— = 3gqsing; + === +2 - = cosqy +2 al
g~ EMsn@ TS tIg o = 84iC0sqy+ 2gq [
We observe that if g(q1, ¢2) = ¢, then
7 . 7
a 3¢}sing; + @3 + 2q i qicos g2 + 2192 [b]
aq oq
Integrating the two expressions, we obtain
f=qsingg+q@E+qt +hi(g)+C  f=gising: + qig5 + haq) + C2 el
where h; and A, are functions that appear as a result of the integration over ¢; and g3, respec-
tively, and Cy and C, are constants. Comparing the two integrated terms, we conclude that
h(q) = qf and h;(g2) = 0 and that the constants are related by C; = C,. The constraint,
therefore, is holonomic and has the form
fquq) = gising + g3 +q1 +C =0 [d]
where C is a constant. For this problem the integrating factor was found by visual inspection.
In general, there are no set guidelines for finding the integrating factor.
The tip of the double-link mechanism in Fig. 4.11 is constrained to lie on the inclined plane. Example
Derive the constraint equation and express it in velocity form. 4.4

Solution

This is a single degree of freedom system. We use 6; and 6, as generalized coordinates.
Hence, we need one constraint equation. We can simplify the formulation by expressing the
position of the tip along the incline by the variable s. To derive the constraint equation we
write the position vector of the tip in two ways: using the links and using the incline. Using
the links, the position vector has the form

rp = (Licos@; + LycosBy)i + (Lgsin@, + L, sinf,)j [a]
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and using the incline, it has the form

rp = :—s-é—'li+scos¢i+ssiml/j Ib]

We equate the above two expressions and separate components in the x and y directions, thus

Lycos@, + LycosB, = % + scosy [e]

L,sin6, + L;sinf,; = ssiny [d]

To obtain the constraint equation, we eliminate s by multiplying Eq. [c] by sin ¢ and Eq. [d]
by —cos ¢ and adding the two equations. Dividing the result by L, sin s, we obtain

N W

L, j L, .

cosf; + —cosf; — ——sinf; — —————sinf, =
'L 2 tany ' Litang  ?

which is recognized as the holonomic constraint equation. To express this constraint in ve-

locity form, we differentiate Eq. [e] with respect to time, with the result

cos01>- L,

in6, +
(s1n01 any 6, + L

. cosfr\,
(smoz + any )02 =0 If1

4.4 VIRTUAL DISPLACEMENTS AND VIRTUAL WORK

At this point, we introduce the variational notation. The variational notation is ide-
ally suited for dynamics problems because it makes the formulation concise, and
it has a meaningful physical interpretation. When applied to dynamical systems,
the variations of displacements are known as virtual displacements, denoted by
8x, 8y, 8z, etc. In terms of generalized coordinates, the virtual displacements
have the form 8q;, 6qs,..., 8g,. The variations of the velocities are denoted
by éx, 8y, 67 for physical coordinates and 84; (k = 1,2,..., n) for generalized
velocities.
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Virtual displacements have the following properties:

o They are infinitesimal displacements.
¢ They are consistent with the system constraints, but are arbitrary otherwise.

e The variation of displacements (or velocities, etc.) is obtained by holding time
fixed; therefore, virtual displacements can be considered as occurring instanta-
neously, and time is not involved in their applications.

Dealing with virtual displacements is like imagining the system in a different po-
sition that is physically realizable, while freezing time. It is as if a different set of
forces were applied and, as a result, the system moved to another location by one of
the admissible paths it can follow.

The rules for calculating virtual displacements are intimately related to the rules
of differentiation. For the position vector r = x(H)i + y(©)j + z(H)k, or r = r(q,
q2, ..., qn, 1), the variation of r becomes

Sr = 5xi+8yj+ 8k or or=Coq +Tog+... + - sg,
Iq 7))

aq,
[4.4.1a,b]

Figure 4.12 depicts the concept of a variation (for the coordinate y). When expressing
the motionr = xi + yj + zk in which x, y, and z are all functions of the generalized
coordinates, the variation of r has the form

“(dx . dy. 9z
Sr ;(aqkl + 700 + quk>8qk [4.4.2]

As discussed in Appendix B, we distinguish between dependent and indepen-
dent variables. For dynamical systems, time is the independent variable. The co-
ordinates x, y, z, as well qy, qa, . . ., g, are functions of time and are referred to as
the dependent variables. The term dependent is used here to denote explicit depen-
dence of the generalized coordinates on time, rather than on each other. It follows
that one can interchange the time differentiation and the variation operators. That is,
8qr = 6(dqp/dty = d(bqp)ldt (k = 1,2,...,n).

The variation of a position vector can be obtained in two different ways. One way
is by obtaining an analytical expression for the position vector and taking its variation

y+ 6y
y(®)

Figure 4.12 Variation of y
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by differentiating with respect to the generalized coordinates. Basically this is the
use of Eq. [4.4.1b]; it is known as the analytical approach. This approach may lead
to lengthy expressions for certain complex problems. When r is expressed in terms
of the coordinates of a moving reference frame, one must also take the variation of
the unit vectors of the moving reference frame. The exception to this is when the
motion of the relative frame is prespecified as a known quantity and is not treated as
a motion variable.

In the second way, known as the kinematical approach, one explores similari-
ties between velocities and virtual displacements. When taking the variation of an
expression, the independent variable is not varied. We use this property, as time is
the independent variable. The time derivative of r is

P +k+¢? i = or ar +. o’?r.+0r
itz T, oq -t £ —q2 &qn% a1
[4.4.3a,b]

Elimination of the partial derivative of r with respect to time, elimination of
all expressions explicit in time, and replacement of x by 8x, y by 8y, z by 8z in
Eq. [4.4.3a] and of ¢ (k = 1,2,..., n) with 64, in Eq. [4.4.3b] yields the variation
of r. This implies that if the expression for the velocity is known, the associated
virtual displacement can be obtained directly from it. This approach of calculating
virtual displacements from velocities is especially useful when the velocity of a point
can be found using an instant center or a relative velocity expression, such as

Vg = V4 + ® X Ip/g + Vel [4.4.4]

The variation of the displacement of point B is
8rg = 6ry + 80 X rpy + Orpe [4.4.5]

where we note that the rp/4 term is left intact and that 80 represents the variation
of an infinitesimal rotation. Also, keeping in line with the developments in Chapter
2, we extend the boldface to the entire term 80 to denote that 80 is a variation of a
rotation and that it is not obtained by differentiating a vector.

Consider Eq. [4.4.3b] and the derivative of I with respect to g;. Of all the terms
in Eq. [4.4.3b] only one survives and we obtain the important relationship

or _ or

—_ = — k=12...,n [4.4.6]
dqr  9qx
so that the variation of r can be expressed as
n, dr
or = > ——dqy [4.4.7]
; 9k

Note that Eq. [4.4.7] is in essence the mathematical representation of the kine-
matical method of calculating virtual displacements. Next, consider the holonomic
constraint f(x, y, z, t) = 0 and obtain its variation, which has the form

Foxs Loy Loio
X

of = 3 o oy + [4.4.8]
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Because time is held fixed while f is varied, &f has the same form whether the
constraint is time dependent or not. When a constraint is given in velocity form by
Egs. [4.3.5] and [4.3.6], in terms of physical coordinates the virtual displacements
satisfy

a,dx +a,dy + a6z =0 [4.4.9]
and, in terms of generalized coordinates and the jth constraint, they satisfy
8fj = apdqi+apdgy + - +ajsbgs  j=12....m [4.4.10]

Let us next consider the work done by a force over a virtual displacement. Con-
sider a body acted upon by a force F and the virtual displacement associated with
the point at which the force F is applied. We define the work done by the force over
the virtual displacement 8r as the virtual work or variation of work and denote it by
6W. Hence

6W = F+ér [4.4.11]

We will examine the virtual work associated with a general force in the next
section. For now, let us consider the holonomic constraint f(x, y, z, f) = 0 and the
associated virtual work. Recall that whether the constraint is time dependent or not
is immaterial. From Egs. [4.3.11}-[4.3.14], the constraint force F’ has the form

vi\ax' T oy T a2 ) T WA

We define by W’ the work performed by the constraint force in any virtual dis-
placement virtual work due to constraint forces, as

! !
F'=Fi+Fj+Fk-= F (‘?f‘ + ij + a—f~k) F Vf [4.4.12])

W' = F'+ér = F,8x + F 8y + F;8z [4.4.13]
Using Eqgs. [4.4.1] and [4.4.8] we conclude that
6W' = F'+6r = —ﬁl—Vf-ar = —f—’—'o‘f =0 [4.4.14]
V£ V£

so that the work performed by a holonomic constraint force in any virtual displace-
ment is zero.
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A disk of radius R rolls without slipping on a rod of length L pivoted at one end, as shown in
Fig. 4.13. Denoting the pivot angle by 6 and the angular displacement of the disk by ¢, find
the virtual displacement of the center of the disk.

Solution

We will solve this problem using both a kinematical and an analytical approach. We begin
with the kinematical approach. We select an inertial frame XYZ and a relative frame xyz,
such that the x yz axes are obtained by rotating the XY Z frame by an angle § counterclockwise
about the Z axis.

The velocity of point G can be written as

VG = Vg + @ X Igp + Vil [al

| Example
4.5
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Figure 4.13  Disk rolling over bar

in which vz = 0, @ = 6k, and
rgs =t =(L—RPi+Rj Vi = —Rei [b, €]
Substituting the above values into Eq. [a] we obtain
ve = 0k X [(L — R$)i + Rjl — Rdi = —R(¢ + )i + (LO — RpO)j [d]
Thus, we write the variation of rg as
6rg = —R(6¢ + 86)i + (L 80 — RP 60)j el

Now we will find the variation of rg analytically. The position vector r¢ is given in
Eq. [b]. There are two ways to obtain its variation. In the first, we express rg in terms of the
inertial coordinate frame and then differentiate. In the second, we take the variation of Eq.
[b] directly, which requires the variation of the unit vectors i and j of the moving frame. The
relation between the unit vectors of the inertial and relative frames is

i cos® sinf|[I
k=K [j]_ [—sinﬂ cosO][J] Ul
Introducing this into Eq. [b], we obtain
r¢ = [(L — Rp)cos@® — RsinO]I + [(L — RPp)sin@ + Rcos 1) Igl

The virtual displacement then becomes
org = [-(L — R¢)sin0 86 — Rcos 8 6 — Rcos 8 8611
+ [(L — R¢p)cos 666 — Rsin68¢p — Rsind 561) [h]

To convert the virtual displacement in terms of the relative frame, we introduce the relation-
ships

I = cos @i — sin 8j J = sin6i + cos 6 1]
into Eq. [h], which gives Eq. [e].
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Next, take the variation of Eq. [b] directly, with the result
org = —R&¢i + (L — Rp)bi + REj Iil
From Eq. [f], the variations of the unit vectors have the form
6i = —sin@861 +cosfE0J = 56j 8j = —cos0801—5sinhd0]) = —66i [k]

Equations [k] can also be obtained directly from the rates of change of the unit vectors.
Indeed, recalling that the angular velocity is @ = 6Kk, the derivatives of the unit vectors are

d—':=mxj=~9i m

from which the variations can be calculated easily. Introducing Eqs. [k] into Eq. [j], we obtain

Eq. {e].
We have thus obtained the variation of r¢ three different ways. It is clear that the number
of manipulations is the least when we obtain the variation of r¢ from the velocity expressions.

Consider the two-link mechanism in Fig. 4.3. A force F is acting at point P. Find the virtual
work expression for each link and demonstrate that Eq. [4.4.14] holds.

The free-body diagrams of the link are shown in Fig. 4.7. For the first link, the forces that
contribute to the virtual work are the reactions at point B and the force of gravity at the mass
center G. The forces can be expressed in vector form as

Fg = Bxi + Byj FGl = —mlgj [al
The associated displacement vectors are
L
rg =L1801i_L1C01j l'G1 = %s()]i—?'cﬁlj [b]

so that the virtual displacements become
. . L . L .
8rg = L1¢c6,60,i+ L;s6,80,j org, = 709180|| + 7s916613 [e]

We thus find the virtual work for the first link as

Wik = FB'SI‘B - mlgj'SrG] =B,L,c6,80 + ByLl s6,66, — %501 86, I[d]l

For the second link, the virtual work is due to the reactions at point B, gravity acting
through the center of mass of the link G, and the external force F at the tip P. The forces at
B are equal and opposite of Fg. The other forces can be expressed by

F = F,i+F,j Fg, = —mygj fe]
with associated displacements

rp =(L1s6y +LysO)i—(LicO, + L2c02)j

rG, = (L, s6, + %Sez)i - (L1091 + %col)j [f]

‘ Example
4.6
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whose variations are

8rp = (L1686 + Lyc0,60:)i + (L1560,60, + L,s0,80,)j
L, . L, .
81‘02 ={L,c6,60, + 7 c0,80, )i+ L5060, + 7 56,60, [']

We now find the virtual work for the second link as
OWiinky = —Fp+8rp + Fe8rp — mygj«drg, [h]
The virtual work of the entire system is found by adding Eqs. [d] and [h], with the result
6W = Win + Wiy = F8rp — mygj« 0rg, — migjdrg, [}

The only terms that contribute to the virtual work are those associated with the external
forces. The contribution of the holonomic constraint forces (in this case the reaction at point
B) to the virtual work is zero.

Taking the dot products, we write Eq. [i} in terms of the generalized coordinates as

W = Fx(Ll cO, 801 + L,cH, 892) + Fy(Ll s@, 801 +L,s0; 802)

—myg (Ll s0,80, + %LzS@zaez)— %mlng 6,660,

= (F,Ll cl; + FyLl s, — ngLl s@, — %mlng 801)601
+ (F,chgz + FyLzsez - %"Qngsez) 86, i

Consider next the problem of having not a pinned joint at point B, but a joint that permits
sliding motion, such as the collar shown in Fig. 4.14. Such a joint, as we will see in more detail
in Chapter 7, is called a prismatic joint. The free-body diagram is illustrated in Fig. 4.15. The
friction force at the sliding joint must be considered, and the forces that the two bodies exert
on each other are split into two parts: a normal force N and a friction force Fy. Introducing
the unit vectors e; and e, along and perpendicular to the link, we express the normal and

Fy
(@ )

Prismatic joint Figure 4.15 Free-body diagrams
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friction forces on the two rods as
FN = Nel Ff = Ffez [k]

Note also that because of sliding, the points B on the first link and on the collar do not
have the same velocity. Denoting these points by B; and B, and introducing a generalized
coordinate g to describe the sliding of link 2, the position vectors for B; and B, become

rg = Trp rg, = rp+qe; m

The virtual work expression has the form
Winki = (Fy + Fy)+8rp, — mgjedrg,
OWina = —(Fy + Fy)+8rp, + Fedrp — mygj+ brg, [m]
so that the virtual work for the entire system is
OW = 6Winki + 6Wiine = —Fy8q + F+8rp — mygj+8rg, — migj+drg, [n]

The contribution of the friction force to the virtual work is clear. Note that in order to
determine the magnitude of the friction force, we need to have the normal force, which is
absent from the above expression. This, basically, is the typical problem encountered when
formulating problems involving friction. Also note that the position vectors for the center
of mass and for the tip of the second rod change when the sliding joint is introduced to the
problem.
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4.5 GENERALIZED FORCES

Consider the system of particles in Fig. 4.16. The jth particle exerts a force of F;;
on the ith particle (i, j = 1,2,..., N). The resultant of all forces acting on the ith
particle is denoted by R; and has the form

N
R =F,+F =F,+>F; i=12..,N [4.5.1]
j=1
m
Fp, m,
Fy
r F23
1
T, Fz,zg
r3
e My

Figure 4.16
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where F; denotes the sum of all external (impressed, applied) forces exerted on the
ith particle and F; is the sum of all internal forces (constraint or reaction forces that
one particle exerts on the other).

The virtual work for each particle is defined as

oW; = R;*6r; [4.5.2]

One obtains the virtual work for the entire system by summing over the individual
particles

N N
W = > 8W; = > R;*dr; [4.5.3]
i=1 i=1
Substituting Eq. [4.5.1] into Eq. [4.5.3],
N N
8W = > Fiedr; + > Fj+dr; [4.5.4)
i=1 i=1

We showed in Eq. [4.4.14] that the total work performed by the constraint forces in
any virtual displacement is zero. It follows that the second term on the right side of
the above equation vanishes because

N
> Fj+or; =0 [4.5.5]
i=1
and the expression for the virtual work becomes

N
8W = > F;+dr; [4.5.6]
i=1

It is of interest to examine the virtual work in terms of generalized coordinates.
We express the displacement of each particle in terms of a set of n generalized coor-
dinates g (k = 1,2,...,n)asr; = r{(q1, 92, ..., gn, 1), i = 1,2,..., N). The vari-
ation of r; is

N

ar;
ori = > 6q; 8qx [4.5.7]
i=1

Substitution of Eq. [4.5.7] into the expression for virtual work yields

F--6r~=iF~-iﬂ8 =iZN:F~°&ri é [4.5.8]
i i - i aq dk i EPN gk D

k=1 949k k=1\=1

oW =

N

i=1

We define the term inside the fences in the above equation as generalized forces and
write

0 —ﬁF--ar" k=12...n [4.5.9]
k < i 94 gy ooy BB
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where Oy is the generalized force associated with the kth generalized coordinate.
We can then express the virtual work as

W = > 0k 8qx [4.5.10]
k=1

The relation between a generalized coordinate and a generalized force is anal-
ogous to the relation between a physical coordinate and the force applied in the
direction of that coordinate. Also, the dimensional relation between generalized co-
ordinates and generalized forces is worth noting. The product of Q; and 8¢, has the
same units as the variation of energy. For example, if the generalized coordinate de-
scribes a displacement, the generalized force has the units of force. If the generalized
coordinate describes a rotation, the generalized force becomes a moment.

Recalling from the previous section that the variations are often calculated with
more ease by velocity relations, we make use of Eq. [4.4.6]

o k= 12.n [4.5.11]
gk gk
to express the generalized forces as
N .
O = ZF . ‘9"' = Z g"’ [4.5.12]
i=1 dk

Another way of calculating generalized forces is based on the nature of the ap-
plied forces. For a conservative system, because dW is a perfect differential, the
virtual work can be written as the variation of the negative of the potential energy,
or

N
8W = > Fi+8r; = -8V [4.5.13]

i=1

in which V is the potential function, or the potential energy. The variation of the
potential energy in terms of physical coordinates is

N
A% oV
8V = — 8x; 8 — & 4.5.14
Zf (ﬁxi i+ Yi+ 192,‘ Z’) I 1
When there are no constraints acting on the system, x;, y;,andz; (i = 1,2,..., N)

are independent. It follows that 8 x;, 8 y; and &z; are arbitrary, and using Eqs. [4.5.13]
and [4.5.14], we obtain

av av oV
— = —F,. — = —F, — = —F, 4.5.15
0x,' i ayl Yi 01[ Zi [ ]

In terms of independent generalized coordinates, and when all the applied forces
are conservative, the virtual work expression can be written as

8V = —8W = Z———qu [4.5.16]
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Comparing Egs. [4.5.16] and [4.5.10], and considering the independence of the
variations of the generalized coordinates, we conclude that the generalized forces
are related to the potential energy by
v
Or=—— [4.5.17]
gy
In the presence of both conservative and nonconservative forces, the virtual work
and generalized forces can be written as
W = =6V + 6W, [4.5.18]
ov & or;
- + = -2 L NF,, o 4.5.19
Qk ch anc Ik ; inc 3qx [ 1
where the notation is obvious. When they are constant, nonconservative forces can
be treated as conservative.
In summary, one can use a number of ways to calculate generalized forces:
1. Write Eq. [4.5.6] and after the virtual work is calculated collect coefficients of
Oqr (k= 1,2,...,n).
2. Calculate dr;/dq; (or r;/dq;) and use Eq. [4.5.12].
3. Take advantage of the potential energy and use Eq. [4.5.17] for the conservative
forces.
The reader is encouraged to use and compare all three approaches.
Example Find the generalized forces for the mechanism in Fig. 4.3 (Example 4.6).
4.7

Solution

The generalized coordinates are 6; and 6,. We will calculate the generalized forces in a num-
ber of ways. First, we take the expression for virtual work from Eq. [j] in Example 4.6, thus

oW = (F,Llcol +FyL1 s, — ngL1891 - mlg% 801)801

+ (FxchOZ + FyLys0; — ng% 892) 86, [a]

so that we can identify the generalized forces as

1
Q1 =F,Lico; + FyLl s6, — m2gL1801 - Emlng s,

1
Q) =F,LycH, + FyL2s62 - —2—m2gL2 s, bl

Next, consider each force and dr;/dq;. For the first link we have one external force,
gravity, and

. L . L .
Fg, = —mgj rg, = T‘sl)ll— Tlceu [e]
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so that

ar, L or,
o _LigirLigey; Ta

90, 2° 2 0, ~ 0 [d]

There are two external forces acting on the second link, written
F=in+ij rp =(L]SO]+L2$92)i—(L1C01+L2C92)j

FGZ = —mygj g, = (Ll s@; + % S02>i - (Llcel + %Cf)z)j [e]
so.that
arp . . arp . .
30, 1cOii+ Lisoj 36, Lycqi+ Lys6,j
0[‘02 . . al‘(;2 1 . 1 . [']
= + = — _—
28, Lic0ii+Lis0,j FTR 2L2002|+ 2L2s02|
Applying Eq. [4.5.12] we obtain
arg orp org,
=Fg +—L +Fe—= +Fg +—2
O =Fo,* 59 30, % 36,
= —%mlng s0; — mygL,s0y + F,Lyc0; + FyLl s0,
arg arp arg
=Fg *+——L+Fe—- +Fg +—2
0 G a0, 00, G a0,
= —%ngLzsoz+FXL2002+FyL2802 [’]

which are the same as Eq. [b].

Finally, we make use of the potential energy to calculate the portion of the generalized
forces associated with the gravitational forces. Taking point O as the datum, we write the
potential energy as

L L
V= —m1g71 c6) —mygLic, — m2g72c02 [h]

hence, the generalized forces due to the conservative forces become

A% 1
Oic = T30 _imlngsel —mygL;s6;
'A% 1
c = T = T x5 L
0> 36, 2M8 2503 L)

It is easy to see that the use of potential energy simplifies the calculation of the general-
ized forces.

4.6 PrRINCIPLE OF VIRTUAL WORK FOR STATIC EQUILIBRIUM

Let us now consider static equilibrium. For a dynamical system, static equilibrium
is described as the state where all components of the system are at rest, with zero
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velocity and zero acceleration. To find the equilibrium position, one can write the
equilibrium equations using Newton’s second law and solve these equations. The
disadvantage of doing so is that if the motions of any two components are related to
each other with a constraint relation, then the associated constraint forces must be
calculated in the process. This may become tedious for systems with several inter-
connected components. Encouraged by the results of the previous section, we seek
a different solution to the equilibrium problem that does not require one to solve for
the constraint equations.

At equilibrium, the resultant force on each component of a system must be zero.
Hence, wehaveR; = 0(i = 1,2,..., N).Itfollows from Eq. [4.5.3] that since every
resultant R; = 0, the virtual work must vanish as well and we must have ow = 0.
Introducing this into Eq. [4.5.6] gives

N
W = > Fiedr; = 0 [4.6.1]
i=1

The above equation, first formulated by Johann Bernoulli, is known as the
principle of virtual work for static equilibrium. 1t basically states that, at static
equilibrium, the work performed by the external, impressed forces through virtual
displacements compatible with the system constraints is zero. It can easily be ex-
tended to rigid bodies if we consider r; to be the displacement of the point on the
body to which the force F; is applied.

Let us consider the principle of virtual work in terms of generalized forces. It
follows from Eq. [4.5.10] that at equilibrium

n
W = Zkaqk =0 [4.6.2)
k=1

When the system is represented in terms of independent generalized coordinates,
because the generalized coordinates are independent of each other, their variations
8¢y also are independent. Therefore, for Eq. [4.6.2] to hold, each of the coefficients
of 84y, that is, O, must vanish individually. We write

N

0 = S F,+ 2K =im-‘7?“=0 k=12...n [4.6.3]
oqr = 99

i=1

In the presence of conservative forces we can take advantage of the potential energy
and write

_—_k + Qinc =0 [4.6.4]

The above results can also be interpreted as follows: Because independent general-
ized coordinates represent the independent motion of each degree of freedom, their
corresponding generalized forces must vanish at equilibrium.

As in the previous section, one can follow two approaches when solving static
equilibrium problems using the principle of virtual work:
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1. One can work with physical coordinates and use Eq. [4.6.1].

2. One can select a set of generalized coordinates, calculate the associated gener-
alized forces, and use Eq. [4.6.3] or [4.6.4].

In the second approach, Eq. [4.6.4] is usually recommended over Eq. [4.6.3] in
the presence of conservative forces, as it makes use of the potential energy. On the
other hand, computation of dr;/dq, or ori/dg, (i = 1,2,...,N; k = 1,2,...,n) in
Eq. [4.6.3] can be done in a systematic fashion and tabulated, thereby mechanizing
the derivation of the equilibrium equations.

Next, consider the principle of virtual work in terms of constrained generalized
coordinates. To this end, write the constraint equations in Pfaffian form as

n
zajkqu+aj0dt=0 Jj=12...,m [4.6.5]
k=1

Now write the variation of the generalized coordinates as

n

Z aj 8qr =0 [4.6.6]

k=1
We add this relation to the principle of virtual work via the Lagrange multipliers

Aj (j = L,2,..., m), resulting in the expression for the augmented virtual work as
m n n m n
SW = 6W —Z/\j <zajk8qk>= ZQkqu - z/\j(Zajk‘o‘qk) =0
j=1 k=1 k=1 j=1 k=1

[4.6.7]

Rearranging this equation as

dW = Qc— > Ajaji |8 =0 [4.6.8]

k=1 j=1

and by selecting the Lagrange multipliers such that the coefficients of §g; vanish
individually, we write the equilibrium equations as

m
OQc=> May  k=12..,n [4.6.9]
j=1

In the presence of conservative forces, we introduce Eq. [4.6.4] to this equation,
which leads to

‘9_V_ + /\jajk [4.6.10]
Iqx 5

Qknc =
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Find the equilibrium position of the two links in Fig. 4.17. The springs are unstretched when [ Example

both rods are horizontal. Both springs deflect only vertically.

4.8
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Figure 4.17

Solvtion

Because this problem involves two interconnected bodies and it is conservative, it is prefer-
able to use potential energy to find the equilibrium position. Noting that the spring deflections
are L, sin#, and L, sin 8, + L, sin 0;, and taking as the datum position the horizontal position
of both links, the potential energy is

1 1
= —mlg% s, + Ekl(Ll S91)2 - ng(Ll s@; + %802)4' -2-k2(L1 sé, + L, 802)2

[a]
The equilibrium positions are found from
av av
30, 0 36, ~ 0 Ib]

and, taking the partial derivatives of V, we obtain

av 1

Fr e —EmlgL1c01 + ki L2s0,c0, — mygLicOy + ky(L1s0; + Lys8,)L, c 8 [e]
1

A% 1

—_— = ——mggL2c02 + ky(L1s6y + Lys@y)LycO,

76, 2

We introduce Egs. [c] into Eqs. [b]. Because cos #; and cos 8, are common to the first
and second of Egs. [c], respectively, we eliminate them from Eqs. [c] and obtain

(ky + kz)L%Sol + kyL1Lys0, = %mlng +magl, [dl

koL1L,s8y + kzL%SOz = %ngLz

Note that by eliminating cos #; and cos 6, from the formulation, we are concluding that
cosf; = 0 and cos 8, = 0 represent equilibrium positions themselves. This basically is the
vertical position of the links. At equilibrium either both links can be vertical, or one can. If
link 1 is vertical, then the equilibrium position for link 2 is found by solving the second of
Egs. [d], and vice versa. To find the equilibrium positions where neither link is vertical, we
solve Eqgs. [d] simultaneously. To this end, we express Egs. [d] in matrix form by

2 . = [e]
koLiLo kL5 |isin@, lInszz

1
(ky + kp)L} kleLZHsinol] 3mgLy + magLy
2
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which can be written as [K}{g} = {Q}, and whose solution is {g} = [K]~*{Q}. The solution
can be shown to be

sin@, = Tng(ml + my) Ifl
. ___ & 8
sinf, = —"——Zk]LZ (my + my)) + —-——2k2L2”l2

An interesting case arises when k; is set to zero, or when there is no spring attached to the
middle link. In this case, det[K] = 0, which implies that one cannot solve for the equilibrium
position by inverting Eq. [e]. The double link can assume an infinite number of equilibrium
positions.
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D’ Alembert’s principle extends the principle of virtual work from the static to the
dynamic case. Consider the system of N particles discussed in the previous sec-
tions. If the system is not at rest, we can write Newton’s second law for the ith par-
ticle as

d .
R; = m;a; = EP, i=1,2...,.N [4.7.1]
where p; = mv; is the linear momentum of the ith particle and R; is the resultant
of all forces acting on the ith particle. As in the static case, we split the resultant R;

into the sum of the externally applied and constraint forces as
R; =F; +F; [4.7.2]
Introducing Eq. [4.7.2] into Eq. [4.7.1], we obtain
Fi+F,—-p;=0 [4.7.3]

This equation is known as the dynamic equilibrium relation, where the neg-
ative of the rate of change of linear momentum, —p; = —m;a;, is treated as a
force, referred to as the inertia force, that provides equilibrium. We can now treat
the dynamic system as if it is a static system and invoke the principle of virtual
work. Equation [4.7.3] is sometimes referred to as D’Alembert’s principle. We
proceed with the dot product of Eq. [4.7.3] and the variation in the displacement,
and write

F; + F,’ — m;a;)*ér; = 0 [4.7.4]
Summing over all the particles gives

N
O (F; + F} — ma;)+8r; = 0 [4.7.5]

i=1
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Recalling from Section 4.4 that work done by the constraint forces over virtual dis-
placements is zero, or

N
> Fjeori =0 [4.7.6]
i=1
and subtracting Eq. [4.7.6] from Eq. [4.7.5], we arrive at
N
> (Fi — ma)+dr; = 0 [4.7.7]
i=1

This we call the generalized principle of D’Alembert, or D’Alembert’s principle. We
observe immediately that the principle of virtual work, given in Eq. [4.6.1], becomes
a special case of D’ Alembert’s principle.

D’ Alembert’s principle is a fundamental principle that provides a complete for-
mulation of all of the problems of mechanics. Hamilton’s principle and Lagrange’s
equations are all derived from D’ Alembert’s principle, as will be shown in the next
sections. The advantage of using D’ Alembert’s principle over a Newtonian approach
is that constraint forces and interacting forces between particles are eliminated from
the formulation. This advantage becomes more pronounced for systems with several
degrees of freedom.

We next extend D’ Alembert’s principle to rigid bodies. We consider here plane
motion only (the general three-dimensional case will be derived in Chapter 8). We
treat a rigid body as a collection of particles, so that in Eq. [4.7.7], N approaches
infinity. Define the angular velocity of the rigid body as w = 6. Also, we express
the position, velocity, and acceleration in terms of the center of mass motion as

ri =rg+pi Vi =Vgt+wXp,;
a, =agt+ta Xp,--wzp; i=12...,N [4.7.8]

where @ = 0k, @ = 6K, so that the variation of r; can be written as
ér; = Org + 86k X Pi [4.7.9]

and we recognize that 80 = 86 k. Introducing Egs. [4.7.8] and [4.7.9] into D’ Alembert’s
principle, we obtain

N
Z(F, — mijag — mio. X p; + m;wzp;)-(b‘r(; +66k X p;) =0 [4.7.10]

i=1

Now, consider that the number of particles approaches infinity. The summation
is replaced by integration, and m;, p;, and F; are replaced by dm, p, and dF, respec-
tively. Evaluating the individual terms and using the definitions of center of mass
and mass moment of inertia, we obtain

JdF'Sl‘G = Feérg JdF-(SBkXp):MGb‘B Jdmaa-8r0=ma(;-8r(;

Jdm(ék X p)e(80k X p) = 680Ip2dm =160 [4.7.11]
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where m is the total mass, F is the resultant of all forces, I; is the centroidal mass
moment of inertia, and M; is the sum of moments about the center of mass. All other
remaining terms in Eq. {4.7.10] are zero. It follows that D’ Alembert’s principle for
arigid body in plane motion is

(F — mag)*8rg + (Mg — 150)80 = 0 [4.7.12]

For a system of N rigid bodies in plane motion, D’ Alembert’s principle becomes
N ..
> [(F; — miag,)* 81, + (Mg, — 1,6:)88;] = 0 [4.7.13]
i=1

where the subscript i now denotes the ith rigid body.

Up until the second half of the 20th century, the property of D’ Alembert’s
principle being a vector relationship was usually viewed as a disadvantage, and
D’Alembert’s principle was primarily considered as a tool to obtain Hamilton’s
principle and Lagrange’s equations. Equations [4.7.7] or [4.7.13] were rarely used
in the form given here. The need to deal with complex multibody problems and
the availability of digital computers has led scientists and engineers to take another
look at D’ Alembert’s principle as a primary method of solution. For example, if we
introduce Eq. [4.4.1b] into Eq. [4.7.7], we obtain

N n ar; n N ar;
LRSS VLR
i=1 1 1

=199k k=1Li=
[4.7.14]

When we have a set of independent generalized coordinates, the coefficients of 8¢
must vanish independently, with the result

N 31‘,‘
> (Fi — may) =0 k=12...,n [4.7.15]
i=1 99

Extending this to the case of N rigid bodies in plane motion, we obtain

N

Z I:(F, - m,'a(;i) i %G, + (MG,- - IGIO,)a—Gl:l =0 [4.7.16]
99k Gk

i=1

Equations [4.7.15] and [4.7.16] represent direct use of D’ Alembert’s principle
to derive equations of motion.
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Consider a bead of mass m free to slide on a ring (hoop) of radius R, as shown in Fig. 4.18. | Example
The ring is rotating with the constant angular velocity ). Find the equation of motion using 4.9

D’ Alembert’s principle.
Solution

Because we are dealing with a single particle, we drop the subscript in Eq. [4.7.7] and write
it as

(F—ma)*ér =90 [al
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b

N, mg

Figure 4.18 Bead on a Figure 4.19  Freebody

rotating ring diagram

The free-body diagram is given in Fig. 4.19. The b;b,b; axes are attached to the hoop. The
generalized coordinate is selected as 6. We first derive an expression for the acceleration. The
moving frame is attached to the ring. The position vector is

r = Rsin6b, — Rcos@bs [b]
S0 its variation is
ér = Rcos@60b, + Rsin@ 86 bs [e]

Because the motion of the relative frame, that is, of the hoop, is treated as a known
quantity, its variation is zero. Hence, it is possible to calculate the variation of r in the relative
frame. To see this better, write the velocity of the bead as

V = Vg + ® X T = ROcosbb, + ROsinOb; + Qb; X (Rsinfb, — Rcos6b;) [d]
= RO cos @b, + RA sin@b; — R sin 6b,

Since () is a constant and it is not the derivative of a motion variable, it cannot be expressed
in terms of a variation. Consequently, the third term on the right side of Eq. [d] does not
contribute to the virtual displacement.

Because the angular velocity is constant, the expression for the acceleration has the form

a=a.+mX®XT+2m X Vg = Rcosdb, + R sinfb; — R@? sin b, + R? cos 6bs
+ Qbs X Obs X (Rsin@b, — Rcos 6bs) + 2Qbs X (RO cos Ob, + RO sin Obs)
—2ROQ cos b, + (—Rsin (0% + O2) + Ré cos 0)b, + (R§%cosf + RIsin@)b; [e]

I

a

The only force acting on the system which is not a constraint force is gravity, and it has the
form F = —mgb;.
Substituting Eqgs. [c] and [e] into the generalized principle of D’ Alembert yields
(F — ma)+8r = [—mghs + m(Rsin6(6* + Q2) — Ré cos )b,

— m(R§*cos § + Ré sin@)bs — 2mROQ cos 8 b;]
«(Rcos80b, + Rsin686bs) = 0 [
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After evaluating the dot product and setting the coefficient of 80 equal to zero, we obtain the
equation of motion as

é+sin0(%—020059>=0 Ig]
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Let us compare the procedure we used in this example with a Newtonian ap-
proach. From the free-body diagram, there are two normal (reaction) forces, N; and
N,. After applying Newton’s second law, we get three equations and we need to elim-
inate the reactions. It is obvious that using D’ Alembert’s principle is simpler. The
difference becomes more pronounced where there are several degrees of freedom.

4.8 HAMILTON’S PRINCIPLES

From D’ Alembert’s principle we develop the scalar variational principles that pro-

vide a complete formulation of the problems of mechanics. These principles were

stated for the most general case of motion by Sir William Rowan Hamilton.
Consider a system of N particles and D’ Alembert’s principle

N
Z(mii:i —F;)edr; =0 [4.8.1]
i=1

We denote by 8W = > F; * 8r; the virtual work of all the impressed forces. To
manipulate the first term in the above equation, consider the expression

dgt-(l', *8r;) = F;*8r; + 1;*01; i=1,2..,N [4.8.2]

The second term on the right in Eq. [4.8.2] can be recognized as

r;*or; = 8(—1"2L) [4.8.3]
The kinetic energy of the ith particle is
T = smibiek, [4.8.4]
so that the variation of the kinetic energy of the ith particle becomes
ST; = LmidGie) = myk, 5t [4.8.5]

2

and we can express Eq. [4.8.2] as

m,%(r, o 8r;) = myf; * 8r; + m;k; * 61; = m;k; * 6r; + oT; [4.8.6]
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The variation in the total kinetic energy of the system is
N N _
oT = ; oF; = ; Em,S(r, °r;) [4.8.7]
Using Eq. [4.8.6], we express D’ Alembert’s principle as
N N4 .

Z(m,'.fi —F;))*br; =0 = —-8T + ; mia(ri «or;) — 6W [a4.8.8]
so that we have an expression for the variation of the kinetic and potential energies
N

d
6T + &6W = ; —(Ir; * Or; 4.8.9
; m; d t(rt i) [ 1

Next, we integrate the right side of Eq. [4.8.9] over two points in time, say, ¢; and
t, thus

15
jz(aT+3W)dt=f Zm, (k1) dt
31 t

1 i=1

[4.8.10]

N f2
= sz, d(i‘,"&l‘i) = Zm,-i‘,--Sri
i=1 i=1 14}

The term m;r; is recognized as the partial derivative of T; with respect to I;, so that
we may write

N N h
> myie ‘O‘r, Z o 8r; [4.8.11]
i=1 h H
which, when introduced back into Eq. [4.8.10], yields
17}
f oT;

6T + éW)dt — oér;| =0 [4.8.12

L ( ) ; o, " ]

This equation is known as Hamilton's principle (or law) of varying action. One
can put this principle into more general form, by expressing it in terms of generalized
coordinates alone. Introducing Eq. [4.4.7] into Eq. [4.8.11], we obtain

N oT, or; K
i t
E — *OT; E
i=1 T l l‘, qk t
1

Gk
Introducing Eq. [4.8.13] into Eq. [4.8.12] we write Hamilton’s principle of varying
action as

n L

= Z—6Qk

1 99k

5]

[4.8.13]

n

n

n f

7]
J 8T + 8W)dt — > T 8qx
14!

=0 [4.8.14]
=199k

4

Note that the derivation above does not put any restrictions on the time instances ¢,
and t,.
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A special case of Hamilton’s principle of varying action is obtained when we
consider the variation of r; as time is held fixed. We reexamine Fig. 4.12, which is
analogous to Fig. B1 in Appendix B. The varied path can take any value within the set
of admissible displacements of the system, and it coincides with the true path at the
end points. It follows that the variation of the displacement r; and of the generalized
coordinates have values of zero at # = #; and t = £,, provided r is specified at ¢; and
t,. Of interest is the case whenr; (i = 1,2,..., N) are specified, which eliminates
the integrated term in Hamilton’s principle of varying action, resulting in

15}
J (6T + 6W)dt =0 [4.8.15]
t

1

This equation is known as the extended Hamilton's principle. Writing the virtual
work as 8W = 8W,. — 8V, one can express the extended Hamilton’s principle also
as

173
j (6T — 6V + 6W,)dt = 0 [4.8.16]
t

1

Even though we derived it here for a system of particles, the extended Hamil-
ton’s principle is valid both for particles and for rigid or elastic bodies. It is, again,
a fundamental principle of mechanics from which the motion of all bodies can be
described. In this sense, the extended Hamilton’s principle is not exactly a derived
principle. Rather, it is more like a law of nature, in the same way that Newton’s sec-
ond law is a law of nature. Further, only scalar quantities like work and energy are
needed. No acceleration terms need to be calculated to invoke this principle.

Introduce the Lagrangian L such that L = T — V. For conservative systems,
8W = —48V, and we can write

b
J 6Ldt =0 [4.8.17]
t

and Eq. [4.8.17] is referred to as Hamilton'’s principle. This principle was first stated
by Lagrange and originally called Principle of least action. When the system is holo-
nomic, one can interchange the integration and variation operations, which yields

]
BJ Ldt =0 [4.8.18]
t

1

Hamilton’s principle for a holonomic system basically states that among all the
paths that a system can take, the actual path followed renders the definite integral
I= J,'Z L dt stationary. This integral is also known as the action integral.

The implementation of the extended Hamilton’s principle for finding the equa-
tions of motion requires the evaluation of the variations of the kinetic and potential
energies. The procedure can become tedious, primarily because of the large number
of integrations by parts that one must perform to relate the variations of general-
ized velocities to the variations of the generalized coordinates. A simpler and more
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general procedure for deriving the equations of motion for systems with a finite num-
ber of degrees of freedom is by means of Lagrange’s equations, as we will see in the
next section.

The direct use of the extended Hamilton’s principle is effective when deriving
the equations of motion of deformable bodies, such as for the vibrations of beams,
plates, and shells. In such problems, the extended Hamilton’s principle yields the
equations of motion in the form of partial differential equations with accompany-
ing boundary conditions. We will investigate the dynamics of deformable bodies in
Chapter 11. Hamilton’s principle is also used in transformation theory and in optimal
control theory.

One may wonder why we list two major principles in this section that encompass
nonconservative forces when the first, Hamilton’s law of varying action, is length-
ier and has the appearance of being redundant when compared with the extended
principle. The difference between the two principles is in how they treat the time
instances #; and #,.

If we view #; and 1, as arbitrary time instances, we obtain the extended Hamil-
ton’s principle from Hamilton’s law of varying action and the two principles become
the same. But if we view #; as a point at which we know the values of the gener-
alized coordinates, then we can make use of Eq. [4.8.14] to find the values of the
generalized coordinates at time #;. To do this we do not need to derive any equations
of motion, just the variation of the Lagrangian and the virtual work. This approach
comes in handy in numerical integration, as ¢, can be taken as #; + A, in which A is
a small time increment.

Example
4.10

Obtain the equation of motion of the bead problem in Example 4.9 using the extended Hamil-
ton’s principle.

Solution
To find the kinetic energy, we need the velocity of the bead. From Example 4.9 we have
r = Rsinf@b, — Rcos6bs [a]
v = —RQsingb, + RO cos 6b, + RE sin 6bs b]

The kinetic energy is

. . 2 2
T = %—mv-v = %m[(QRsinG)z + (RO cos 8)* + (ROsin0)?] = %92 sin®6 + Tgiez
[e]

Using the position of the bead at the bottom of the ring (6 = 0) as the datum, the potential
energy becomes

V = mgR(1 — cos 6) [d]

so that the Lagrangian has the form

2 2 .
L=T-V-= ’"_;Lm sin @ + %02 — mgR(1 — cos §) [e]
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The variation of the Lagrangian is
oL = %L 50 + 59 = mr2[Q2sin0cos6 — & sino)| 56 + mR20 86 if
a0 90 R

The second term in this equation is in terms of 86. To invoke the extended Hamilton
principle, we have to express all the terms in terms of §8. To accomplish this, we integrate
this second term by parts and write

., . .4
J 060dt = f 0—(66)dt =
4 y dt

2,
—J 0604t [gl
I

The integrated term on the right side of Eq. [g] vanishes by virtue of the definition
of the variation operation. (The values of the variation at the beginning and end of the path
are zero.) The second term, when used with Eq. [f] and the Extended Hamilton’s Principle,
yields

13 . g
f [—mRZO + mR? (02 sin @ cos 6§ — = sin())] 860dt =0 [h]
gl

In order for the equality to hold, the integrand must vanish at all times. Because 86 is
arbitrary, for the integrand to be zero the coefficient of 56 must be identically zero. Thus we
recognize as the equation of motion

é+sin0<%—ﬂ,zcos0>=0 )

Let us review the operations we carried out. After obtaining the kinetic and po-
tential energies and taking the partial derivatives, we performed an integration by
parts on the term 6 50. We could have done the integration by parts on the general
expression —r L 59 rather than the corresponding specific term in this problem, 6 86.
The questlon then arises as to whether, manipulating the extended Hamilton’s princi-
ple, one can perform the integrations by part in advance and develop a general form
for the equations of motion. This is the question we will explore in the next section.

4.9 LAGRANGE’S EQUATIONS

From Hamilton’s principle, we derive Lagrange’s equations, which present them-
selves as a convenient way of deriving the equations of motion. The extended Hamil-
ton’s principle can be expressed as

n

1 153
f (6T — 8V + 8Wp)dt = f 6L dt +J Wpedt =0 [4.9.1]
15} 5]

4]

The Lagrangian L can be written in terms of generalized coordinates g and
generalized velocities g, (k = 1,2,...,n)asL = L(qy, g, ..., Gn 41,92, - - -» Gns 1).
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The variation of L is

n
8L = (ﬁ 8qc+ 2L aqk) [4.9.2]
k=1

and, using Eqgs. [4.5.10] and [4.5.19], the variation of the nonconservative work is
written in terms of the generalized forces as

n
Wy = Z Oine 0qx [4.9.3]
k=1

Making use of the property that the variation and differentiation (with regard
to time) operations can be interchanged, we integrate by parts the second term in
Eq. [4.9.2] and obtain

Bqi(t2) t d {dL
—1 L% )s
L1 dt( ) qkdt

2 oL 2 9L d JL
——b“dt=4[ — —(8gy)dt = — 8 .
Jt dk (6q1) 900 g 90
[4.9.4]

. 94k 1y 9qrdt

8qr(ty)

The integrated term requires evaluation of 8g, (k = 1,2, ...,n) at the beginning
and the end of the time intervals. By the definition of the variation, the varied path
vanishes at the end points, thus 8¢;(t;) = 8qx(z2) = 0 for all values of k. Consider-
ing this, and introducing Egs. [4.9.2]-[4.9.4] into the extended Hamilton’s principle,
we obtain

f R d {dL oL
8T — 8V + 6W,)dt = —— =+ —+ 8qrdt =
L ( )4 L ;[ dt (341:) Iqk anc] qk 0

[4.9.5]

For the integral over time to vanish at all times, the integrand must be identically
equal to zero, which can be expressed as

" [ d({dL\ L
;[ dt (3_ék)+ qx * Q""C] 8gx =0 [4.9.6]

It should be noted that this equation can be directly obtained from D’ Alembert’s
principle, without using Hamilton’s principle. Because of this, Eq. [4.9.6] is some-
times referred to as Lagrange’s form of D’Alembert’s principle.

Consider now a set of independent generalized coordinates. It follows that the
only way Eq. [4.9.6] can be equal to zero is if the coefficients of 8g; vanish individ-
ually for all values of the index k. Setting the coefficients equal to zero, we obtain
Lagrange’s equations of motion

d (dL aL
E(};‘;)_—— —anc k= 1,2,...,n [4.’.1]
Equation [4.9.7] is the most general form of Lagrange’s equations. They can also

be expressed in terms of the kinetic and potential energies. Noting that the potential
energy is not a function of the generalized velocities (except for electromagnetic
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systems), we write Eq. [4.9.7] as

d (oT oT  adV
S -y = k=12..., 4.9.8
i (aqk) sqc  oge ~ e noo el
This form of Lagrange’s equations is preferred by many, as it reduces the possibility
of making a sign error when evaluating the partial derivatives. It also is similar to
the format Lagrange first presented these equations in 1788. Under certain circum-
stances it is more convenient to write Lagrange’s equations in terms of the kinetic
energy alone, in the form of

d [JL o7
~ - = 4.9.9
dt (an) Iqx O [ !

where the values of Q; contain contributions from the conservative as well as non-
conservative forces. The principle of virtual work given by Eq. [4.6.4], is a special
case of Lagrange’s equations. In the static case, the first two terms in Eq. [4.9.8]
vanish.

For a holonomic conservative system, one can use Eq. [4.8.15] directly in con-
junction with the Euler-Lagrange equation in Appendix B to derive Lagrange’s equa-
tions. The order of variation and integration can be exchanged, and one seeks the
stationary values of the integral I = L:Z L dt, leading to

d (dL oL
L2y _p 4.9.10
dt (aqk> aqk [ !
Lagrange’s equations can conveniently be expressed in column vector for-

mat. Introducing the n-dimensional generalized coordinate and generalized force
vectors

@=Ila q ... qn]T {Onc} = [Qine Q20 --- anc]T [4.9.11]
we can write Lagrange’s equations as
d (dL\ oL T
L\ % _ o, 4.9.12
dt (0{q}) d{q} {Qnct . !

Let us now compare the steps involved in obtaining the equations of motion us-
ing Lagrange’s equations and using the Newtonian approach. When using Newton’s
second law, we
1. Isolate the different bodies involved.

Select a coordinate system and draw free-body diagrams.

3. Relate the sum of forces and sum of moments to the translational and angular
accelerations.

4. Use kinematics to express the accelerations in terms of translational and angular
parameters.

5. Eliminate the constraint and reaction forces and derive the equations of motion.
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When using the Lagrangian approach, we

1. Determine the number of degrees of freedom and select a set of independent
generalized coordinates. The free-body diagram is a useful tool for this.

2. Use the kinematical relations to find the velocities and virtual displacements
involved.

3. Identify the forces that are conservative and those that are not.
4. Write the kinetic and potential energies, as well as the virtual work.
5. Apply Lagrange’s equations.

There are two distinct differences between the two approaches. The first dif-
ference is in the order of the steps involved: In the Newtonian approach, one first
writes the force and moment balances for all bodies separately and then uses kine-
matical relations and the constraint forces to reduce the number of equations. In the
Lagrangian approach, one considers the constraints and kinematics of the problem
first. Then, the equations of motion are written, one for each degree of freedom.
The bulk of the work involved in Lagrangian mechanics is to find a proper set of
generalized coordinates and to express the kinematics. Once this is done, the rest is
straightforward.

The second difference is that the Lagrangian approach uses velocities and scalar
quantities, whereas the Newtonian approach uses accelerations and vector quantities.
Dealing with velocities involves considerably less algebra than dealing with accel-
erations.

It may appear, from the above discussion, that Lagrange’s equations should be
preferable to the Newtonian approach at all times; but this is not so. By eliminating
the constraint forces from the formulation, the Lagrangian approach does not cal-
culate the amplitudes of these forces. While this may be acceptable for classroom
examples, it certainly is not in many real-life applications, where one must know
the amplitudes of the reaction and other contact forces acting on a body. Further-
more, for certain geometries a Newtonian approach is more suitable. The best way
to determine which approach is most suited to one’s needs is by gaining experience
in solving mechanics problems. In many cases, looking at a problem from both a
Lagrangian and Newtonian point of view increases the physical insight and makes
it easier to understand the characteristics of the system.

We should add here that the historical development of analytical mechanics did
not follow the sequence in which it is presented in this chapter. Lagrange’s equations
were derived before the extended Hamilton’s principle, and they were derived for
conservative systems only. It was Hamilton, born after Lagrange, who put together
the developments in variational mechanics and Lagrange’s equations to develop a
general scalar principle from which all the equations of motion can be derived.

For the system in Fig. 4.20, find the equations of motion using Lagrange’s equations. Assume
that the spring and dashpot deflect only horizontally and that the force F is always applied
horizontally.
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Figure 4.20 Figure 4.21 Free body diagram
Solvution

This is a two degree of freedom system, and we select the generalized coordinates as the
displacement of the mass x and rotation of the bar 6. The free-body diagram of the entire

system is shown in Fig. 4.21. The kinetic energy of the cart is Tcor = %M x2. The kinetic
energy of the bar is due to the translation and rotation and can be expressed as
Lo L2 o
Toar = 5160 + Em(vx + vy) [al

where I is the mass moment of inertia about the center of mass, I = mb?/12, and v, and
vy are the velocities of the center of mass of the bar, found as

d d{ b. .\ .. b,
Ve = XG = E(x+ Esm(J)— X+ 500080
0=y - %(mgcos0)= Lhsine [b]

The total kinetic energy is

2 2
T = ‘pi+ Lop2e + 1m[(x + by coso> + (99 sina)]

2 24 2 2 2
l -2 1 - 1 2‘2
= E(M +m)x© + Embt)xcos() + gmb 6 [¢]

The potential energy is due to the deflection of the spring and the vertical movement of
the center of mass of the bar, written
1
2

The virtual work of the nonconservative forces is due to the external force F and the
dashpot, so

V= —kx?— mgl—27 cos @ [d]

0W,. = Fér—cv,6xg = Fé(x + bsin8) — c[fc + gécos()](ﬁx + I%COSOSG)

= Féx+ Fbcos080 —cxdx — %cbé cosfdx — %cbkccs()ﬁe - %cb2éc0s2060
[e]
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from which we recognize the generalized forces as
Q,=F—cx— %cbcoso Qy = Fbcos@ — %cbz(') cos? g — %cbi cosd [l
Taking the appropriate derivatives, we obtain
oT _ A aTr 1 . | Y
i M+ m)x + Embl)cosO — = Embxcoso + §Mb 6
aT 1'% or 1 ... . vV 1 .
_E =0 a = kx - % Embexsme 0—0‘ = imgbsm@ [’]
Substituting the above values into Lagrange’s equations we obtain the equations of mo-
tion as
(M + m)i + %mbécos() - %mbézsine +ck + %cbé cos@ +kx = F
1 o, 1 | 1 ., 1 .
§mb 0+ Embxcos() + zcbxcoso + ZCb 0cos” 0 + -2—mgbs1n0 = Fbcos® [h]
Example | Figure 4.22 shows a collar of mass m sliding outside a long, slender rod of mass M and length
4.12 L. The coefficient of friction between the rod and collar is . There is a force F acting at the

tip of the rod. Find the equations of motion.

We will solve this problem as a two degree of freedom unconstrained system. Polar coordi-
nates are suitable as generalized coordinates. The free-body diagrams are given in Fig. 4.23.
There are four external forces: two gravity forces, which we will account for in the potential
energy, the friction force, and the force at the tip.

Figure 4.22

Collar slid-
ing on a rod

Figure 4.23  Free-body diagram
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The position and velocity of the collar are
r=re, v=re +rle [e]
The virtual work associated with the two external forces can be written as
OW = Feorp + Fyeor [b]
in which

F = Fcosiye, + Fsinjpey Fy; = —Fysign()e, Or = bre, + r60e; Orp = Lfe

[e]
so that the virtual work becomes
6W = —Fsign(#)ér + FLsiny 86 = Q,6r + Qy 66 Id]l
with Q, = —Fpsign () and Qp = FL siny as the generalized forces due to the nonconser-
vative forces.
The kinetic energy is
T = Troa + Teollar = éMLZ()Z + %m(ﬁ +r’6%) [e]
and the potential energy is
L
V= —mgrcosO—MgEcose [f1
Application of Lagrange’s equations yields the equations of motion as
mi — mr? — mgcosf = —Fysign(F) Igl
(%Mﬁ + mrz)é +2mrif + (mr + %ML)g sin@ = FLsiny [h]

The friction force is related to the normal force N between the collar and rod by Fy =
uN. However, at this point we do not know what the normal force is. To find the normal force,
we need to go to a Newtonian analysis. Reconsidering the free-body diagram and semming
forces along the transverse direction, we obtain

> Fy = m(rf +2/8) = N — mgsin@ i
from which we obtain the magnitude of the normal force as
N = m(rb + 20 + gsin6) [i1

We can eliminate the normal force from the equations of motion by introducing Eq. [j]
into Eq. [g]. Note that the friction force is always a positive quantity, as it is proportional to
the magnitude of the normal force. The expression involving N in Eq. {j] can lead to both
positive and negative values. Therefore, we express the friction force as

F; = w|N| = umjrf + 276 + gsiné| k]

and use Eq. [k] in the equations of motion.
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The preceding example illustrates the problems that one encounters when deal-
ing with problems involving friction. As stated earlier, friction is not a constraint
force, but its magnitude depends on a constraint force. If we select a set of uncon-
strained generalized coordinates to describe the motion, as we did in this example,
we cannot obtain the magnitudes of the friction force without an additional Newto-
nian analysis. In the next section, we will see an analytical approach that calculates
magnitudes of constraint forces.

4.10 1AGRANGE’S EQUATIONS FOR CONSTRAINED SYSTEMS

The formulation of Lagrange’s equations in the previous section was for uncon-
strained systems and for constrained systems where the generalized coordinates are
selected such that all constraints are accounted for and the surplus coordinates elim-
inated. This approach is not feasible under a number of circumstances:

1. When the constraints are nonholonomic. Because nonholonomic constraints in-
volve velocity expressions that cannot be integrated to displacement expres-
sions, one cannot find a set of unconstrained generalized coordinates.

2. When the constraints are holonomic and one cannot eliminate the surplus coor-
dinates easily, for one of the following reasons:
a. The constraint equation is complicated.
b. Finding the transformations that lead to unconstrained equations makes the
equations of motion very complicated.
c. Some of the forces acting on the system are functions of constraint forces.

3. When the constraints are holonomic but one does not want to eliminate the sur-
plus coordinates from the formulation, usually because of the need to know the
amplitudes of the reaction forces.

Consider a system originally of n degrees of freedom, to which m constraints
are applied. For the most general case, we express the constraints in velocity form
as

n
>apgitap=0 j=12...,m [4.10.1]
k=1
whose variation is
n
> ajudq =0 [4.10.2]
k=1

Multiplying Eq. [4.10.2] by the Lagrange multipliers A; (j = 1,2,..., m) and in-
troducing these constraints to the extended Hamilton’s principle, we obtain

123 123 t, m n
f 8Ldt+j 8W,,cdt—-f > > Ajajdgrdt =0 [4.10.3]
gl i h j=1k=1

When the constraints are holonomic, the coordinates ¢y, g2, ..., g, no longer
constitute a set of independent generalized coordinates. They are now constrained
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generalized coordinates. When the constraints are nonholonomic, only the gener-
alized velocities are constrained, while the generalized coordinates are still inde-
pendent. In both cases, the variations of the generalized coordinates are constrained.
Following the same procedure as when deriving Lagrange’s equations for the uncon-
strained case, we take the appropriate partial derivatives and perform the integrations
by parts to obtain

n, (= d (JL JL “
“ 2= =+ - Aiair | 6grdt = 0 [4.10.4]
;L P (ﬂqk) £ Qkne ; jajk| 09k

As in the static case, we select the Lagrange multipliers A ; such that the coeffi-
cientsof g, (k = 1, 2, ..., n)vanish, which leads to a modified form of Lagrange’s
equations, written
d (JL oL -
E(EI:)————+Z:/\,-ajk=Q,c,,c k=12 .., n [4.10.5]

o

where Ajajy are the generalized constraint forces. They have the same units as the
generalized forces (which do not necessarily have the units of force). In column
vector notation, Eq. [4.10.5] is expressed as

d (dL aL Te 1 T
235 G + W = 10w [4.10.6]
in which [a] is a matrix of order m X n whose entries are aj; and {A} is a column
vector of order m that contains the Lagrange multipliers.

After obtaining the equations of motion, one has two courses of action for finding
a solution. The first is to eliminate the Lagrange multipliers from the equations of
motion and obtain a set of n — m unconstrained equations. One accomplishes this by
algebraic manipulation of the equations of motion. Many times, such an approach
results in complicated expressions.

The second course of action is to take the n equations of motion in Eq. [4.10.5]
and the m constraint relations in Eq. [4.10.1] and then to solve them together for the
n+m = p+2munknowns qi, g2, - . ., gn, A1, A2, - . ., Ap. The resulting n + m equa-
tions are not a set of differential equations, as there is no derivative of the Lagrange
multipliers involved. Such equations are known as differential-algebraic equations.
Their analysis requires a different treatment than that for differential equations.

When the constraints are holonomic and expressed in the configuration form
[4.3.2], one can add them to the extended Hamilton’s principle by

1% %) t, m
J 6Ldt+J SW,,Cdt—J > Ajdciqr g ..., qn) = 0 [4.10.7]
t t

1 2] 1 j=]

and obtain the contribution of the constraint by replacing aj; in Eq. [4.10.5] with
dcjldqy. Or, we can add them directly to the Lagrangian as

m
L=T-V-> Xcjq q2 .-, 4n) [4.10.8]
j=1
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When the objective is to obtain the amplitude of a constraint force, an analyt-
ical approach that can be used is the constraint relaxation method. This method is
mathematically equivalent to the Lagrange multiplier approach. However, it is more
intuitive and it is particularly useful when dealing with holonomic constraints ex-
pressed in configuration form. Following is a description of the method.

We relax the constraint from the formulation and represent the effects of the
constraint by a constraint force. Then, we write the Lagrangian and virtual work. The
constraint force enters the formulation via the virtual work. We invoke Lagrange’s
equations and obtain the equations of motion. We next impose the constraint, which
enables us to calculate the magnitude of the constraint force.

Example
4.13

Consider Example 4.12, in which a collar of mass m is sliding on a rod of mass M and length
L. The coefficient of friction between the rod and collar is u. Obtain the equations of motion
using constrained generalized coordinates and find the value of the normal force N.

Solvtion

To describe this system in terms of constrained generalized coordinates, consider the rod and
the collar separately. We express the motion of the collar using polar coordinates, r and 8,
as in Example 4.12. To express the motion of the rod, we introduce another angle, ¢. The
constraint equation is

6-¢=0 [a]
The kinetic and potential energy has the same form as in Example 4.12. We write them here
in terms of the constrained generalized coordinates as

. 1 .
T = éML2¢2 + Em(iz + 29%) V = —mgrcos — Mg%cosd> [b]

The normal force N acts in the transverse direction and it contributes to the virtual work.
Considering that the velocity of the collar in the transverse direction is vy = rfeg, we write
the virtual work expression as

8W = —F;sign(F)6r + FLsiny 86 + Nr(66 — 8¢) [e]
We obtain the Lagrange’s equations as
Forr — mi — mr* — mgcos@ = —Fy sign(F) (C}]
For § — mr26 + 2mri@ + mgrsin® = Nr [e]
1 "
For ¢ — 3ML2¢ + %MgL sing = —Nr+ FLsin f

These equations have to be solved together with Eq. [a). Equation [d] is the same as
Eq. [g] in Example 4.12, and if we add Eqs. [e] and [f] and use the constraint equation [a]
we eliminate the normal force and obtain Eq. [h] in Example 4.12. From Egq. [e], we find the
normal force as

N = mrb + 2mi9 + mgcos 6 [g]

which is the same value obtained in Example 4.12. The friction force is given in Eq. [k] of
Example 4.12.
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The difference between the approach here and the approach in Example 4.12 is that here
we calculated the normal force directly from the Lagrange’s equations, while in Example 4.12
we conducted a force balance in addition to the Lagrange’s equations.
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Consider the vehicle in Fig. 4.8. Given that the velocity of point A is along the line of sym-
metry of the vehicle, derive the equations of motion. Gravity acts perpendicular to the plane
of motion.

We denote the coordinates of the center of mass by X and Y and select the generalized coor-
dinates as X, Y, and 6. The kinetic energy of the vehicle is

T = %m()'(2 +YH+ %Igéz [al

where m is the mass and /¢ is the centroidal mass moment of inertia. There is no potential
energy, and the virtual work expression involves the two forces F¢ and Fp. We can find
the virtual work conveniently by calculating the velocities of points C and D. Defining a
coordinate system xy attached to the vehicle, we write the velocities of points G and A as

vg = XI+ Y] = (Xcos@ + Ysin8)i + (—X sin@ + ¥ cos 0)j [b]
V4 = vg + Ok X —Li = (Xcos@ + Ysin0)i + (=Xsin6 + Ycos8 — Lé)j [e]
The constraint is defined as
f =vVaej=—Xsin0 +Ycos6 — L =0 [dl
thus the velocity of A reduces to
V4 = (Xcos® + Ysin@)i [e]
and the variation of the constraint becomes
6f =sinfdX —cos@8Y + L6 =0 [£]
Hence, the velocities of C and D become
Ve =vA+ékxhj=(Xcos()+Ysin6-h(§)i Ig]
Vo = V4 + 0k X (—hj) = (Xcos@ + sin@ + hb)i 1))
The external forces are Fc = Fci, Fp = Fpi, so the virtual work expression becomes

8W = Fcedrc + Fpedrp + ASf
= (Fc + Fp)cos08X + (Fc + Fp)sin08Y + (Fp — Fc)h 860
+ A(8Xsin@ — 8Y cos @ + L §0) [{]]

The physical interpretation of the Lagrange multiplier is that it is the resultant of
all forces that keep v4 along the x axis, and it acts in a direction perpendicular to this
axis. Introducing Eqs. [a] and [i] into Lagrange’s equations, we obtain the equations of
motion as

I Example
4.14
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mX = (F¢c + Fp)cos@ + Asiné (]}
mY = (F¢c + Fp)sin® — Acos@ Ikl
Ig6 = (Fp — Fo)h + LA m

Note that while deriving the equations of motion we did not introduce Eq. [d] directly into
the expression for the kinetic energy, thus eliminating one of the generalized coordinates from
the outset. Had we done so, we would have eliminated the contribution due to the variation
of that coordinate and ended up with an incorrect representation. This procedure is crucial to
the treatment of nonholonomic constraints.

Even if we eliminated one of the generalized velocities and the Lagrange multiplier,
writing the equations of motion in terms of ¥ and 6 (or X and 8) would not give the most
meaningful description of the motion. A quantity critical to the understanding of the motion
is the speed of point A. If the equations of motion can be expressed in terms of that speed, one
gets a clearer picture of the nature of the motion. One can introduce v, to Egs. [j]-[1] with a
substitution.

Indeed, if we multiply Eq. [j] by cos @ and Eq. [k] by sin 6§ and add the two we obtain

m(X cos® + Ysin@) = Fc + Fp [m]

Recalling from Eq. [¢] that vs = (X cos @ + Y sin 6), differentiating this expression we
obtain

va = Xcos® + ¥sinf + §(—X sin6 + ¥ cos ) [n]
Introducing Eq. [d] to Eq. [n] we can write
Xcos@ + Vsin@ = v, — LO? [o]
so that Eq. [m] can be written as
m(vs — LO?) = Fc + Fp ()]

which is recognized as the force balance along the x direction.

We next find an expression for the Lagrange multiplier A and introduce it to Eq. [e].
To this end, we multiply Eq. [j] with siné and Eq. [k] by — cos# and add the two, with the
result

m(Xsin@ — ¥Ycosf) = A [ql

We can introduce this relationship to Eq. [1], but a more meaningful expression can be gen-
erated if we consider Eq. [d] and differentiate it

Xsin@ — Ycos@ + (X cos@ + Ysinf) = —Lé (]
Considering Eq. [q], we express the Lagrange mulitiplier as
= —mvaf — mLé sl
Introducing this equation into Eq. [1] we obtain
(g +mL?)8 + mLvad = (Fp — Fc)h (0

which we recognize as the moment balance about point A. Equations [p] and [t] are the two
independent equations of motion of the vehicle.
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HOMEWORK EXERCISES

SECTION 4.3

1. The four-bar linkage in Fig. 4.24 is a single degree of freedom system. Show
that this is so by separating the mechanism into its three components and by

writing the constraint equations that relate the configurations of the links.

2. Abead slides up a spiral of constant radius R and height A, as shown in Fig. 4.25.
It takes the bead six full turns to reach the top. Express the characteristics of the

path of the bead as a constraint relation.

3. A particle slides inside a smooth paraboloid of revolution described by z = r’/b,
as shown in Fig. 4.26. Using cylindrical coordinates, find an expression for the

constraint force on the particle.

4. The radar tracking of a moving vehicle by another moving vehicle is a common
problem. Consider the two vehicles A and B in Fig. 4.27. The orientation of vehi-
cle A must always be toward vehicle B. Express the constraint relation between
the velocities and distance between the two vehicles and determine whether this

is a holonomic constraint or not.

Figure 4.24  Fourbar Figure 4.25
linkage



266

CHAPTER 4 ® ANALYTICAL MECHANICS: BASIC CONCEPTS

— & —

F— % —
Figure 4.26 Figure 4.27

5. Consider the double pendulum in Fig. 4.3. It is desired to have the velocity of
the tip of the pendulum point toward the pinned end O. Express this condition
as a constraint and determine whether the constraint is holonomic or not.

SECTION 4.4

6. Consider a particle moving along a path and the description of motion by path
variables. Express the force keeping the particle moving along the path in terms
of its components in the tangential, normal, and binormal directions and evaluate
the virtual work expression. Identify which of these forces are constraint forces
and verify Eq. [4.4.14].

7. Find the virtual displacement of point P in Fig. 4.28. The mass is suspended
from an arm which is attached to a rotating column. The pendulum swings in
the plane generated by the column and arm.

Figure 4.28
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8. Express the virtual displacement of the slider in the slider-crank mechanism
shown in Fig. 4.29 using (a) the relative velocity relations, and (b) the analytical
expressions.

9. A uniform solid cylinder of radius R rolls without slip on a horizontal plane
and an identical cylinder rolls without slip on it (Fig. 4.30). Find the virtual
displacements of the centers of the cylinders.

10. Consider Fig. 4.2 and the case when the cord is getting pulled down by an ex-
ternal force, such that the length of the cord varies by L(t) = Loe %%. Find the
virtual displacement of the mass.

SECTION 4.5

11. Find the generalized force associated with the system in Fig. 4.29.

12. The spherical pendulum of mass m shown in Fig. 4.2 has its length being reduced
by a force F, according to the relationship L(t) = Lo — bt, where Ly is the
initial length and b is a constant. Calculate the generalized forces using spherical
coordinates as generalized coordinates.

13. Consider Fig. 4.13, and calculate the associated generalized forces. The disk is
of mass m and the rod is of mass 2m. There is a moment M acting on the rod at
the pin joint.

SECTION 4.6

14. For the two links attached to a spring as shown in Fig. 4.31, find the equilibrium
position. The spring is not stretched when the rods are horizontal.

15. Find the equilibrium position of the rod of mass m and length L sliding in the
guide bars shown in Fig. 4.32. The spring is not stretched when the rod is ver-
tical. The sliders are massless and the contact between the horizontal slider and
the guide bar involves friction with coefficient u.

16. Find the equilibrium position for the system shown in Fig. 4.33, with the middle
mass equal to zero. Assume that the displacements are small, and that the springs
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Figure 4.31 Figure 4.32

deflect only in the vertical direction. Use as generalized coordinates the transla-
tion of the center of the rod and the rotation of the rod. Then, use the deflections
of the springs at A and B as generalized coordinates and obtain the equilibrium
configuration. Compare the results.

17. Consider the two systems in Figs. 4.3 and 4.14 and set up the equations to find
the magnitude and direction of the force F necessary to keep the systems at
equilibrium at 6; = 30°, 6, = 15°.

18. Find the equilibrium position of the system in Fig. 4.34.

19. Find the equilibrium position of the pulley system in Fig. 1.77 (Problem 1.36).
Use the constrained coordinate approach.

Figure 4.33 Figure 4.34
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SECTION 4.7

20. Find the equation of motion of the rod in Fig. 4.32 using D’ Alembert’s principle.

21.

Find the equations of motion of the pulley system in Fig. 3.40 using D’ Alembert’s
principle. The pulleys are massless.

SECTION 4.8

22.

23.

Find the equation of motion of the system mechanism in Fig. 4.34 by Hamilton’s
principle.

Find the equation of motion of the rod in Fig. 4.32 by Hamilton’s principle.

SECTION 4.9

24. Find the equations of motion of the system in Fig. 4.35 using Lagrange’s equa-

25.

26.

27.

tions.

Use Lagrange’s equations to derive the equations of motion for the Foucault’s
pendulum in Chapter 2.

Figure 4.36 depicts a simplified illustration of a spacecraft to which a robot arm
is attached at the center of mass. The robot arm moves by a moment T exerted
to it at the pin joint by a motor on the spacecraft. Considering only plane motion
for both the spacecraft and the robot arm, derive the equations of motion by

a. Separating the two masses, writing force and moment balances, and

eliminating constraints.
b. Using Lagrange’s equations. Compare the complexity in both cases.
A block of mass m and length L is positioned over a semicircular block

(Fig. 4.37). It is given that friction is sufficient to prevent slipping. Derive
the equation of the rod as it rocks over the semicircular block.

Figure 4.35 Figure 4.36
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28.

29.
30.

31.

32.

33.
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Figure 4.37 Figure 4.38

A cylinder of mass m, and radius R rolls without slipping on a wedge of mass
m; (Fig. 4.38). The wedge is moving under the influence of the force F with no
friction. Obtain the equations of motion.

