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432 Chapter 9 Partial Differential Equations

L2
z commutes with the operator defining the PDE (clearly so, because the PDE operator

does not contain '). In other words, because L2
z and the PDE operator commute, they will

have simultaneous eigenfunctions, and the overall solutions of the PDE can be labeled to
identify the L2

z eigenfunction that was chosen.
Looking now at the situation in spherical polar coordinates, we note that if k2 is inde-

pendent of the angles, i.e., k2 = k2(r), then our PDE always has the same angular solutions
2lm(✓)8m('). Looking further at the angular terms of our PDE, we can identify them as
the operator L2, and we see that the angular solutions we have found are eigenfunctions of
this operator. When the PDE operator is independent of the angles, it will commute with
L2 and the solutions to the PDE can be labeled accordingly. These symmetry features are
very important and are discussed in great detail in Chapter 16.

Exercises

9.4.1 By letting the operator r2
+ k2 act on the general form a1 1(x, y, z) + a2 2(x, y, z),

show that it is linear, i.e., that (r2
+ k2)(a1 1 + a2 2) = a1(r2

+ k2) 1 + a2(r2
+

k2) 2.

9.4.2 Show that the Helmholtz equation,

r2 + k2 = 0,

is still separable in circular cylindrical coordinates if k2 is generalized to k2 + f (⇢) +

(1/⇢2)g(') + h(z).

9.4.3 Separate variables in the Helmholtz equation in spherical polar coordinates, splitting off
the radial dependence first. Show that your separated equations have the same form as
Eqs. (9.74), (9.77), and (9.78).

9.4.4 Verify that

r2 (r, ✓,') +


k2

+ f (r) +
1
r2 g(✓) +

1

r2 sin2 ✓
h(')

�
 (r, ✓,') = 0

is separable (in spherical polar coordinates). The functions f , g, and h are functions
only of the variables indicated; k2 is a constant.

9.4.5 An atomic (quantum mechanical) particle is confined inside a rectangular box of sides
a,b, and c. The particle is described by a wave function  that satisfies the Schrödinger
wave equation

�
h̄2

2m
r2 = E .

The wave function is required to vanish at each surface of the box (but not to be identi-
cally zero). This condition imposes constraints on the separation constants and therefore
on the energy E . What is the smallest value of E for which such a solution can be
obtained?

ANS. E =
⇡2h̄2

2m

✓
1
a2 +

1
b2 +

1
c2

◆
.
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9.4.6 The quantum mechanical angular momentum operator is given by L =

� i(r ⇥ r). Show that

L · L = l(l + 1) 

leads to the associated Legendre equation.
Hint. Section 8.3 and Exercise 8.3.1 may be helpful.

9.4.7 The 1-D Schrödinger wave equation for a particle in a potential field V =
1
2 kx2 is

�
h̄2

2m
d2 

dx2 +
1
2

kx2 = E (x).

(a) Defining

a =

✓
mk

h̄2

◆1/4

, �=
2E
h̄

⇣m
k

⌘1/2
,

and setting ⇠ = ax , show that

d2 (⇠)

d⇠2 + (�� ⇠2) (⇠) = 0.

(b) Substituting

 (⇠) = y(⇠)e�⇠2/2,

show that y(⇠) satisfies the Hermite differential equation.

9.5 LAPLACE AND POISSON EQUATIONS

The Laplace equation can be considered the prototypical elliptic PDE. At this point we
supplement the discussion motivated by the method of separation of variables with some
additional observations. The importance of Laplace’s equation for electrostatics has stim-
ulated the development of a great variety of methods for its solution in the presence of
boundary conditions ranging from simple and symmetrical to complicated and convoluted.
Techniques for present-day engineering problems tend to rely heavily on computational
methods. The thrust of this section, however, will be on general properties of the Laplace
equation and its solutions.

The basic properties of the Laplace equation are independent of the coordinate system
in which it is expressed; we assume for the moment that we will use Cartesian coordinates.
Then, because the PDE sets the sum of the second derivatives, @2 /@x2

i , to zero, it is
obvious that if any of the second derivatives has a positive sign, at least one of the others
must be negative. This point is illustrated in Example 9.4.1, where the x and y dependence
of a solution to the Laplace equation was sinusoidal, and as a result, the z dependence was
exponential (corresponding to different signs for the second derivative). Since the second
derivative is a measure of curvature, we conclude that if  has positive curvature in any
coordinate direction, it must have negative curvature in some other coordinate direction.
That observation, in turn, means that all the stationary points of  (points where its
first derivatives in all directions vanish) must be saddle points, not maxima or minima.


