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FIGURE 8.3 Left- and right-hand sides of Eq. (8.32) as a function of E for the model
parameters given in the text.
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FIGURE 8.4 Wavefunctions for the deuteron problem when the energy is chosen to be
less than the eigenvalue E (E� < E ) or greater than E (E+ > E ).

Exercises

8.3.1 Solve the Legendre equation

(1 � x
2)y

00 � 2xy
0 + n(n + 1)y = 0

by direct series substitution.

(a) Verify that the indicial equation is

s(s � 1) = 0.

(b) Using s = 0 and setting the coefficient a1 = 0, obtain a series of even powers of x :

yeven = a0


1 � n(n + 1)

2! x
2 + (n � 2)n(n + 1)(n + 3)

4! x
4 + · · ·

�
,
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where

a j+2 = j ( j + 1) � n(n + 1)

( j + 1)( j + 2)
a j.

(c) Using s = 1 and noting that the coefficient a1 must be zero, develop a series of
odd powers of x :

yodd =a0


x � (n � 1)(n + 2)

3! x
3

+ (n � 3)(n � 1)(n + 2)(n + 4)

5! x
5 + · · ·

�
,

where

a j+2 = ( j + 1)( j + 2) � n(n + 1)

( j + 2)( j + 3)
a j .

(d) Show that both solutions, yeven and yodd, diverge for x = ±1 if the series continue
to infinity. (Compare with Exercise 1.2.5.)

(e) Finally, show that by an appropriate choice of n, one series at a time may be con-
verted into a polynomial, thereby avoiding the divergence catastrophe. In quantum
mechanics this restriction of n to integral values corresponds to quantization of
angular momentum.

8.3.2 Show that with the weight factor exp(�x
2) and the interval �1 < x < 1 for the scalar

product, the Hermite ODE eigenvalue problem is Hermitian.

8.3.3 (a) Develop series solutions for Hermite’s differential equation

y
00 � 2xy

0 + 2↵y = 0.

ANS. s(s � 1) = 0, indicial equation.
For s = 0,

a j+2 = 2a j

j � ↵

( j + 1)( j + 2)
( j even),

yeven = a0


1 + 2(�↵)x

2

2! + 22(�↵)(2 � ↵)x
4

4! + · · ·
�
.

For s = 1,

a j+2 = 2a j

j + 1 � ↵

( j + 2)( j + 3)
( j even),

yodd = a1


x + 2(1 � ↵)x

3

3! + 22(1 � ↵)(3 � ↵)x
5

5! + · · ·
�
.

(b) Show that both series solutions are convergent for all x , the ratio of successive
coefficients behaving, for a large index, like the corresponding ratio in the expan-
sion of exp(x

2).
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(c) Show that by appropriate choice of ↵, the series solutions may be cut off and
converted to finite polynomials. (These polynomials, properly normalized, become
the Hermite polynomials in Section 18.1.)

8.3.4 Laguerre’s ODE is

x L
00
n
(x) + (1 � x)L

0
n
(x) + nLn(x) = 0.

Develop a series solution and select the parameter n to make your series a polynomial.

8.3.5 Solve the Chebyshev equation

(1 � x
2)T

00
n

� xT
0

n
+ n

2
Tn = 0,

by series substitution. What restrictions are imposed on n if you demand that the series
solution converge for x = ±1?

ANS. The infinite series does converge for x = ±1 and no
restriction on n exists (compare with Exercise 1.2.6).

8.3.6 Solve

(1 � x
2)U 00

n
(x) � 3xU

0
n
(x) + n(n + 2)Un(x) = 0,

choosing the root of the indicial equation to obtain a series of odd powers of x . Since
the series will diverge for x = 1, choose n to convert it into a polynomial.

8.4 VARIATION METHOD

We saw in Chapter 6 that the expectation value of a Hermitian operator H for the normal-
ized function  can be written as

hHi ⌘ h |H | i,
and that the expansion of this quantity in a basis consisting of the orthonormal eigenfunc-
tions of H had the form given in Eq. (6.30):

hHi =
X

µ

|aµ|2�µ,

where aµ is the coefficient of the µth eigenfunction of H and �i is the corresponding
eigenvalue. As we noted when we obtained this result, one of its consequences is that hHi
is a weighted average of the eigenvalues of H , and therefore is at least as large as the small-
est eigenvalue, and equal to the smallest eigenvalue only if  is actually an eigenfunction
to which that eigenvalue corresponds.

The observations of the foregoing paragraph hold true even if we do not actually make
an expansion of and even if we do not actually know or have available the eigenfunctions
or eigenvalues of H . The knowledge that hHi is an upper limit to the smallest eigenvalue
of H is sufficient to enable us to devise a method for approximating that eigenvalue and
the associated eigenfunction. This eigenfunction will be the member of the Hilbert space
of our problem that yields the smallest expectation value of H , and a strategy for finding
it is to search for the minimum in hHi within our Hilbert space. This is the essential idea


