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which is a separable ODE for C(x) that integrates to yield

C(x) =

xZ
exp

0

@
XZ

p(Y )dY

1

Aq(X)d X and y = C(x) exp

0

@�

xZ
p(X)d X

1

A.

This particular solution of the inhomogeneous ODE is in agreement with that called y2 in
Eq. (7.17).

Exercises

7.2.1 From Kirchhoff’s law the current I in an RC (resistance-capacitance) circuit (Fig. 7.1)
obeys the equation

R
d I

dt
+

1
C

I = 0.

(a) Find I (t).

(b) For a capacitance of 10,000 µF charged to 100 V and discharging through a resis-
tance of 1 M�, find the current I for t = 0 and for t = 100 seconds.

Note. The initial voltage is I0 R or Q/C , where Q =
R

1

0 I (t)dt .

7.2.2 The Laplace transform of Bessel’s equation (n = 0) leads to

(s2
+ 1) f

0(s) + s f (s) = 0.

Solve for f (s).

7.2.3 The decay of a population by catastrophic two-body collisions is described by

d N

dt
= �k N

2.

This is a first-order, nonlinear differential equation. Derive the solution

N (t) = N0

✓
1 +

t

⌧0

◆�1

,

where ⌧0 = (k N0)
�1. This implies an infinite population at t = �⌧0.

C+

−
R

FIGURE 7.1 RC circuit.
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7.2.4 The rate of a particular chemical reaction A + B ! C is proportional to the concentra-
tions of the reactants A and B:

dC(t)

dt
= ↵[A(0) � C(t)][B(0) � C(t)].

(a) Find C(t) for A(0) 6= B(0).

(b) Find C(t) for A(0) = B(0).

The initial condition is that C(0) = 0.

7.2.5 A boat, coasting through the water, experiences a resisting force proportional to vn, v

being the boat’s instantaneous velocity. Newton’s second law leads to

m
dv

dt
= �kvn .

With v(t = 0) = v0, x(t = 0) = 0, integrate to find v as a function of time and v as a
function of distance.

7.2.6 In the first-order differential equation dy/dx = f (x, y), the function f (x, y) is a func-
tion of the ratio y/x :

dy

dx
= g(y/x).

Show that the substitution of u = y/x leads to a separable equation in u and x .

7.2.7 The differential equation

P(x, y)dx + Q(x, y)dy = 0

is exact. Show that its solution is of the form

'(x, y) =

xZ

x0

P(x, y)dx +

yZ

y0

Q(x0, y)dy = constant.

7.2.8 The differential equation

P(x, y)dx + Q(x, y)dy = 0

is exact. If

'(x, y) =

xZ

x0

P(x, y)dx +

yZ

y0

Q(x0, y)dy,

show that
@'

@x
= P(x, y),

@'

@y
= Q(x, y).

Hence, '(x, y) = constant is a solution of the original differential equation.

7.2.9 Prove that Eq. (7.12) is exact in the sense of Eq. (7.9), provided that ↵(x) satisfies
Eq. (7.14).
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7.2.10 A certain differential equation has the form

f (x)dx + g(x)h(y)dy = 0,

with none of the functions f (x), g(x),h(y) identically zero. Show that a necessary and
sufficient condition for this equation to be exact is that g(x) = constant.

7.2.11 Show that

y(x) = exp

2

4�

xZ
p(t)dt

3

5

8
<

:

xZ
exp

2

4
sZ

p(t)dt

3

5q(s)ds + C

9
=

;

is a solution of
dy

dx
+ p(x)y(x) = q(x)

by differentiating the expression for y(x) and substituting into the differential equation.

7.2.12 The motion of a body falling in a resisting medium may be described by

m
dv

dt
= mg � bv

when the retarding force is proportional to the velocity, v. Find the velocity. Evaluate
the constant of integration by demanding that v(0) = 0.

7.2.13 Radioactive nuclei decay according to the law
d N

dt
= ��N ,

N being the concentration of a given nuclide and �, the particular decay constant. In
a radioactive series of two different nuclides, with concentrations N1(t) and N2(t), we
have

d N1

dt
= ��1 N1,

d N2

dt
= �1 N1 � �2 N2.

Find N2(t) for the conditions N1(0) = N0 and N2(0) = 0.

7.2.14 The rate of evaporation from a particular spherical drop of liquid (constant density) is
proportional to its surface area. Assuming this to be the sole mechanism of mass loss,
find the radius of the drop as a function of time.

7.2.15 In the linear homogeneous differential equation

dv

dt
= �av

the variables are separable. When the variables are separated, the equation is exact.
Solve this differential equation subject to v(0) = v0 by the following three methods:

(a) Separating variables and integrating.

(b) Treating the separated variable equation as exact.
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(c) Using the result for a linear homogeneous differential equation.

ANS. v(t) = v0e
�at .

7.2.16 (a) Solve Example 7.2.1, assuming that the parachute opens when the parachutist’s
velocity has reached vi = 60 mi/h (regard this time as t = 0). Find v(t).

(b) For a skydiver in free fall use the friction coefficient b = 0.25 kg/m and mass
m = 70 kg. What is the limiting velocity in this case?

7.2.17 Solve the ODE

(xy
2
� y)dx + x dy = 0.

7.2.18 Solve the ODE

(x
2
� y

2
e

y/x )dx + (x
2
+ xy)ey/x

dy = 0.

Hint. Note that the quantity y/x in the exponents is of combined degree zero and does
not affect the determination of homogeneity.

7.3 ODES WITH CONSTANT COEFFICIENTS

Before addressing second-order ODEs, the main topic of this chapter, we discuss a special-
ized, but frequently occurring class of ODEs that are not constrained to be of specific order,
namely those that are linear and whose homogeneous terms have constant coefficients. The
generic equation of this type is

d
n

y

dxn
+ an�1

d
n�1

y

dxn�1 + · · · + a1
dy

dx
+ a0 y = F(x). (7.18)

The homogeneous equation corresponding to Eq. (7.18) has solutions of the form y = e
mx,

where m is a solution of the algebraic equation

m
n
+ an�1m

n�1
+ · · · + a1m + a0 = 0,

as may be verified by substitution of the assumed form of the solution.
In the case that the m equation has a multiple root, the above prescription will not yield

the full set of n linearly independent solutions for the original n th order ODE. If one then
considers the limiting process in which two roots approach each other, it is possible to
conclude that if e

mx is a solution, then so is d e
mx/dm = xe

mx. A triple root would have
solutions e

mx, xe
mx, x

2
e

mx, etc.

Example 7.3.1 HOOKE’S LAW SPRING

A mass M attached to a Hooke’s Law spring (of spring constant k) is in oscillatory motion.
Letting y be the displacement of the mass from its equilibrium position, Newton’s law of
motion takes the form

M
d

2
y

dt2 = �ky,


