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22.1 Euler Equation 1093

For an excellent discussion of both the mathematical problems and experiments with
soap films, we refer to Courant and Robbins in Additional Readings. The larger message
of this subsection is the extent to which one must use caution in accepting solutions of the
Euler equations.

Exercises

22.1.1 For dy/dx ⌘ yx 6= 0, show the equivalence of the two forms of Euler’s equation:
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22.1.2 Derive Euler’s equation by expanding the integrand of

J (↵) =

x2Z

x1

f

⇣
y(x,↵), yx (x,↵), x

⌘
dx

in powers of ↵.

Note. The stationary condition is @ J (↵)/@↵ = 0, evaluated at ↵ = 0. The terms
quadratic in ↵ may be useful in establishing the nature of the stationary solution (maxi-
mum, minimum, or saddle point).

22.1.3 Find the Euler equation corresponding to Eq. (22.14) if f = f (yxx , yx , y, x), assuming
that y and yx have fixed values at the endpoints of their interval of definition.
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22.1.4 The integrand f (y, yx , x) of Eq. (22.2) has the form

f (y, yx , x) = f1(x, y) + f2(x, y)yx .

(a) Show that the Euler equation leads to
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= 0.

(b) What does this imply for the dependence of the integral J on the choice of path?

22.1.5 Show that the condition that J =

Z
f (x, y)dx has a stationary value

(a) leads to f (x, y) independent of y and

(b) yields no information about any x-dependence.

We get no (continuous, differentiable) solution. To be a meaningful variational problem,
dependence on y or higher derivatives is essential.
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Note. The situation will change when constraints are introduced (compare to Exer-
cise 22.4.6).

22.1.6 A soap film stretched between two rings of unit radius centered at ±x0 will have its
closest approach to the x-axis at x = 0, with the distance from the axis given by c1,
with x0 and c1 related by Eq. (22.26) or Eq. (22.29).

(a) Show that dc1/dx0 becomes infinite when x0 sinh(x0/c1) = 1, indicating that the
soap film becomes unstable if x0 is increased beyond the value satisfying this
condition.

(b) Show that the condition of part (a) is equivalent to
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.

(c) Solve the transcendental equation of part (b) to obtain the critical value of x0/c1
and show that the separate values of x0 and c1 are then approximately x0 ⇡ 0.6627
and c1 ⇡ 0.5524.

22.1.7 A soap film is stretched across the space between two rings of unit radius centered
at ±x0 on the x-axis and perpendicular to the x-axis. Using the solution developed in
Example 22.1.3, set up the transcendental equations for the condition that x0 is such that
the area of the curved surface of rotation equals the area of the two rings (Goldschmidt
discontinuous solution). Solve for x0.

22.1.8 In Example 22.1.1, expand J [y(x,↵)] � J [y(x,0)] in powers of ↵. The term linear in
↵ leads to the Euler equation and to the straight-line solution, Eq. (22.16). Investigate
the ↵2 term and show that the stationary value of J , the straight-line distance, is a
minimum.

22.1.9 (a) Show that the integral

J =

x2Z

x1

f (y, yx , x)dx, with f = y(x),

has no extreme values.

(b) If f (y, yx , x) = y
2(x), find a discontinuous solution similar to the Goldschmidt

solution for the soap-film problem.

22.1.10 Fermat’s principle of optics states that a light ray in a medium for which n is the
(position-dependent) index of refraction will follow the path y(x) for which

x2,y2Z

x1,y1

n(y, x)ds

is a minimum. For y2 = y1 = 1, �x1 = x2 = 1, find the ray path if

(a) n = e
y , (b) n = a(y � y0), y > y0.

22.1.11 A particle moves, starting at rest, from point A on the surface of the Earth to point B

(also on the surface) by sliding frictionlessly through a tunnel. Find the differential
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equation satisfied by the path if the transit time is to be a minimum. Assume the Earth
to be a nonrotating sphere of uniform density.
Hint. The potential energy of a particle of mass m a distance r < R from the center of
the Earth, with R the Earth’s radius, is 1

2 mg(R
2 � r

2)/R, where g is the gravitational
acceleration at the Earth’s surface. It is convenient to describe the path of the particle (in
the plane through A, B, and the center of the Earth) by plane polar coordinates (r, ✓),
with A at (R,�') and B at (R,').

ANS. Letting r0 be the minimum value of r (reached at ✓ = 0),

Eq. (22.21) yields r
2
✓ =

r
2

R
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2
0 )

r
2
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(the constant in

that equation has the value such that r✓ = 0 at ✓ = 0).

The solution for the path is a hypocycloid, generated by a circle of radius 1
2 (R � r0)

rolling inside the circle of radius R. You might like to show that the transit time is

t = ⇡
(R

2 � r
2
0 )1/2

(Rg)1/2 .

For details see P. W. Cooper, Am. J. Phys. 34: 68 (1966); G. Veneziano, et al., 34: 701
(1966).

22.1.12 A ray of light follows a straight-line path in a first homogeneous medium, is refracted
at an interface, and then follows a new straight-line path in the second medium. See
Fig. 22.7. Use Fermat’s principle of optics to derive Snell’s law of refraction:

n1 sin ✓1 = n2 sin ✓2.

Hint. Keep the points (x1, y1) and (x2, y2) fixed and vary x0 to satisfy Fermat’s
principle.

Note. This is not an Euler equation problem, because the light path is not differentiable
at x0.
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FIGURE 22.7 Snell’s law.
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22.1.13 A second soap-film configuration for the unit-radius rings at x = ±x0 consists of a
circular disk, radius a, in the x = 0 plane and two catenoids of revolution, one joining
the disk and each ring. One catenoid may be described by

y = c1 cosh
✓

x

c1
+ c3

◆
.

(a) Impose boundary conditions at x = 0 and x = x0.

(b) Although not necessary, it is convenient to require that the catenoids form an angle
of 120� where they join the central disk. Express this third boundary condition in
mathematical terms.

(c) Show that the total area of catenoids plus central disk is then

A = c
2
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◆
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�
.

Note. Although this soap-film configuration is physically realizable and stable, the area
is larger than that of the simple catenoid for all ring separations for which both films
exist.

ANS. (a)

8
><
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✓

x0

c1
+ c3

◆

a = c1 cosh c3

(b)
dy

dx
= tan 30�

= sinh c3.

22.1.14 For the soap film described in Exercise 22.1.13, find (numerically) the maximum value
of x0.

Note. This calls for a calculator with hyperbolic functions or a table of hyperbolic cotan-
gents.

ANS. x0 max = 0.4078.

22.1.15 Find the curve of quickest descent from (0,0) to (x0, y0) for a particle that, starting
from rest, slides under gravity and without friction. Show that the ratio of times taken
by the particle along a straight line joining the two points compared to along the curve
of quickest descent is (1 + 4/⇡2)1/2.

Hint. Take y to increase downwards. Apply Eq. (22.21) to obtain y
2
x

= (1 � c
2
y)/c

2
y,

where c is an integration constant. It is helpful to make the substitution c
2
y = sin2 '/2

and take (x0, y0) = (⇡/2c
2,1/c

2).

22.2 MORE GENERAL VARIATIONS

Several Dependent Variables

To apply variational methods to classical mechanics, we need to generalize the Euler equa-
tion to situations in which there is more than one dependent variable in roles like y in


