
ArfKen_Ch11-9780123846549.tex

538 Chapter 11 Complex Variable Theory

and that for all x , cosh x � 1, we see that sinh z is zero only for z = n⇡ i , with n an integer.
Moreover, because limz!0 z/ sinh z = 1, the integrand of our present contour integral will
not have a pole at z = 0, but will have poles at z = n⇡ i for all nonzero integral n. For that
reason, the lower horizontal line of the contour in Fig. 11.27, marked A, continues through
z = 0 as a straight line on the real axis, but the upper horizontal line (for which y = ⇡ ),
marked B and B

0, has an infinitesimal semicircular detour, marked C , around the pole at
z = ⇡ i .

Because the integrand in Eq. (11.120) is an even function of z, the integral on segment A,
which extends from �1 to +1, has the value 2I . To evaluate the integral on segments
B and B

0, we first note, using Eq. (11.121), that sinh(x + i⇡) = �sinh x , and that the
integral on these segments is in the direction of negative x . Recognizing the integral on
these segments as a Cauchy principal value, we write

Z

B+B0

z dz

sinh z
=

1Z

�1

x + i⇡

sinh x
dx .

Because x/ sinh x is even and nonsingular at z = 0, while i⇡/ sinh x is odd, this integral
reduces to

1Z

�1

x + i⇡

sinh x
dx = 2I.

Combining what we have up to this point, invoking the residue theorem, and noting that
the integrand is negligible on the vertical connections at x = ±1. We have

I
z dz

sinh z
= 4I +

Z

C

z dz

sinh z
= 2⇡ i (residue of z/ sinh z at z = ⇡ i ). (11.122)

To complete the evaluation, we now note that the residue we need is

lim
z!⇡ i

z(z � ⇡ i)

sinh z
=

⇡ i

cosh⇡ i
= �⇡ i,

and, cf. Eqs. (11.75) and (11.76), the counterclockwise semicircle C evaluates to ⇡ i times
this residue. We have then

4I + (⇡ i)(�⇡ i) = (2⇡ i)(�⇡ i), so I =
⇡2

4
.

⌅

Exercises

11.8.1 Generalizing Example 11.8.1, show that
2⇡Z

0

d✓

a ± b cos ✓
=

2⇡Z

0

d✓

a ± b sin ✓
=

2⇡

(a2 � b2)1/2 , for a > |b|.

What happens if |b| > |a|?
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11.8.2 Show that

⇡Z

0

d✓

(a + cos ✓)2 =
⇡a

(a2 � 1)3/2 , a > 1.

11.8.3 Show that

2⇡Z

0

d✓

1 � 2t cos ✓ + t2 =
2⇡

1 � t2 , for |t | < 1.

What happens if |t | > 1? What happens if |t | = 1?

11.8.4 Evaluate

2⇡Z

0

cos 3✓ d✓

5 � 4 cos ✓
.

ANS. ⇡/12.

11.8.5 With the calculus of residues, show that
⇡Z

0

cos2n ✓ d✓ = ⇡
(2n)!

22n(n!)2 = ⇡
(2n � 1)!!

(2n)!!
, n = 0,1,2, . . . .

The double factorial notation is defined in Eq. (1.76).

Hint. cos ✓ =
1
2 (ei✓ + e

�i✓ ) =
1
2 (z + z

�1), |z| = 1.

11.8.6 Verify that simplification of the expression in Eq. (11.112) yields the result given in
Eq. (11.113).

11.8.7 Complete the details of Example 11.8.8 by verifying that there is no contribution to
the contour integral from either the small or the large circles of the contour, and that
Eq. (11.115) simplifies to the result given as (11.116).

11.8.8 Evaluate

1Z

�1

cos bx � cos ax

x2 dx, a > b > 0.

ANS. ⇡(a � b).

11.8.9 Prove that

1Z

�1

sin2
x

x2 dx =
⇡

2
.

Hint. sin2
x =

1
2 (1 � cos 2x).

11.8.10 Show that

1Z

0

x sin x

x2 + 1
dx =

⇡

2e
.
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11.8.11 A quantum mechanical calculation of a transition probability leads to the function
f (t,!) = 2(1 � cos!t)/!2. Show that

1Z

�1

f (t,!)d! = 2⇡ t.

11.8.12 Show that (a > 0):

(a)

1Z

�1

cos x

x2 + a2 dx =
⇡

a
e
�a .

How is the right side modified if cos x is replaced by cos kx?

(b)

1Z

�1

x sin x

x2 + a2 dx = ⇡ e
�a .

How is the right side modified if sin x is replaced by sin kx?

11.8.13 Use the contour shown (Fig. 11.28) with R ! 1 to prove that
1Z

�1

sin x

x
dx = ⇡.

11.8.14 In the quantum theory of atomic collisions, we encounter the integral

I =

1Z

�1

sin t

t
e

ipt
dt,

R R.

RR

FIGURE 11.28 Contour for Exercise 11.8.13.
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in which p is real. Show that

I = 0, |p| > 1
I = ⇡, |p| < 1.

What happens if p = ±1?

11.8.15 Show that

1Z

0

dx

(x2 + a2)2 =
⇡

4a3 , a > 0.

11.8.16 Evaluate

1Z

�1

x
2

1 + x4 dx .

ANS. ⇡/
p

2.

11.8.17 Evaluate

1Z

0

x
p ln x

x2 + 1
dx, 0 < p < 1.

ANS.
⇡2

4
sin(⇡p/2)

cos2(⇡p/2)
.

11.8.18 Evaluate

1Z

0

(ln x)2

1 + x2 dx,

(a) by appropriate series expansion of the integrand to obtain

4
1X

n=0

(�1)n(2n + 1)�3,

(b) and by contour integration to obtain
⇡3

8
.

Hint. x ! z = e
t. Try the contour shown in Fig. 11.29, letting R ! 1.

−R + iπ

−R

R + iπy

R
x

FIGURE 11.29 Contour for Exercise 11.8.18.
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11.8.19 Prove that

1Z

0

ln(1 + x
2)

1 + x2 dx = ⇡ ln 2.

11.8.20 Show that
1Z

0

x
a

(x + 1)2 dx =
⇡a

sin⇡a
,

where �1 < a < 1.

Hint. Use the contour shown in Fig. 11.26, noting that z = 0 is a branch point and the
positive x-axis can be chosen to be a cut line.

11.8.21 Show that
1Z

�1

x
2
dx

x4 � 2x2 cos 2✓ + 1
=

⇡

2 sin ✓
=

⇡

21/2(1 � cos 2✓)1/2 .

Exercise 11.8.16 is a special case of this result.

11.8.22 Show that
1Z

0

dx

1 + xn
=

⇡/n

sin(⇡/n)
.

Hint. Try the contour shown in Fig. 11.30, with ✓ = 2⇡/n.

11.8.23 (a) Show that

f (z) = z
4
� 2z

2 cos 2✓ + 1

has zeros at e
i✓ , e

�i✓ ,�e
i✓ , and �e

�i✓.

(b) Show that
1Z

�1

dx

x4 � 2x2 cos 2✓ + 1
=

⇡

2 sin ✓
=

⇡

21/2(1 � cos 2✓)1/2 .

Exercise 11.8.22 (n = 4) is a special case of this result.

R

R

θ

FIGURE 11.30 Sector contour.
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11.8.24 Show that
1Z

0

x
�a

x + 1
dx =

⇡

sin a⇡
,

where 0 < a < 1.

Hint. You have a branch point and you will need a cut line. Try the contour shown in
Fig. 11.26.

11.8.25 Show that

1Z

0

cosh bx

cosh x
dx =

⇡

2 cos(⇡b/2)
, |b| < 1.

Hint. Choose a contour that encloses one pole of cosh z.

11.8.26 Show that
1Z

0

cos(t2)dt =

1Z

0

sin(t2)dt =

p
⇡

2
p

2
.

Hint. Try the contour shown in Fig. 11.30, with ✓ = ⇡/4.

Note. These are the Fresnel integrals for the special case of infinity as the upper limit.
For the general case of a varying upper limit, asymptotic expansions of the Fresnel
integrals are the topic of Exercise 12.6.1.

11.8.27 Show that

1Z

0

1
(x2 � x3)1/3 dx = 2⇡/

p
3.

Hint. Try the contour shown in Fig. 11.31.

11.8.28 Evaluate

1Z

�1

tan�1
ax dx

x(x2 + b2)
, for a and b positive, with ab < 1.

Explain why the integrand does not have a singularity at x = 0.

0 1

FIGURE 11.31 Contour for Exercise 11.8.27.
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Hint. Try the contour shown in Fig. 11.32, and use Eq. (1.137) to represent tan�1
az.

After cancellation, the integrals on segments B and B
0 combine to give an elementary

integral.

11.9 EVALUATION OF SUMS

The fact that the cotangent is a meromorphic function with regularly spaced poles, all with
the same residue, enables us to use it to write a wide variety of infinite summations in terms
of contour integrals. To start, note that ⇡ cot⇡ z has simple poles at all integers on the real
axis, each with residue

lim
z!n

⇡ cos⇡ z

sin⇡ z
= 1.

Suppose that we now evaluate the integral

IN =

I

CN

f (z)⇡ cot⇡ z dz,

where the contour is a circle about z = 0 of radius N +
1
2 (thereby not passing close to

the singularities of cot⇡ z). Assuming also that f (z) has only isolated singularities, at
points z j other than real integers, we get by application of the residue theorem (see also
Exercise 11.9.1),

IN = 2⇡ i

NX

n=�N

f (n) + 2⇡ i

X

j

(residues of f (z)⇡ cot⇡ z at singularities z j of f ).

This integral over the circular contour CN will be negligible for large |z| if z f (z) ! 0 at
large |z|.8 When that condition is met, limN!1 IN = 0, and we have the useful result

1X

n=�1

f (n) = �

X

j

(residues of f (z)⇡ cot⇡ z at singularities z j of f ). (11.123)

The condition required of f (z) will usually be satisfied if the summation of Eq. (11.123)
converges.

A
ib

B′ B

x

y

i
a

FIGURE 11.32 Contour for Exercise 11.8.28.

8See also Exercise 11.9.2.


