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11.4 Cauchy’s Integral Formula 491

Exercises

Unless explicitly stated otherwise, closed contours occurring in these exercises are to
be understood as traversed in the mathematically positive (counterclockwise) direction.

11.4.1 Show that
1

2⇡ i

I
z

m�n�1
dz, m and n integers

(with the contour encircling the origin once), is a representation of the Kronecker �mn .

11.4.2 Evaluate
I

C

dz

z2 � 1
,

where C is the circle |z � 1| = 1.

11.4.3 Assuming that f (z) is analytic on and within a closed contour C and that the point z0
is within C , show that

I

C

f
0(z)

z � z0
dz =

I

C

f (z)

(z � z0)2 dz.

11.4.4 You know that f (z) is analytic on and within a closed contour C . You suspect that the
nth derivative f

(n)(z0) is given by

f
(n)(z0) =

n!

2⇡ i

I

C

f (z)

(z � z0)n+1 dz.

Using mathematical induction (Section 1.4), prove that this expression is correct.

11.4.5 (a) A function f (z) is analytic within a closed contour C (and continuous on C). If
f (z) 6= 0 within C and | f (z)|  M on C , show that

| f (z)|  M

for all points within C .

Hint. Consider w(z) = 1/ f (z).

(b) If f (z) = 0 within the contour C , show that the foregoing result does not hold
and that it is possible to have | f (z)| = 0 at one or more points in the interior with
| f (z)| > 0 over the entire bounding contour. Cite a specific example of an analytic
function that behaves this way.

11.4.6 Evaluate
I

C

e
iz

z3 dz,

for the contour a square with sides of length a > 1, centered at z = 0.
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11.4.7 Evaluate
I

C

sin2
z � z

2

(z � a)3 dz,

where the contour encircles the point z = a.

11.4.8 Evaluate
I

C

dz

z(2z + 1)
,

for the contour the unit circle.

11.4.9 Evaluate
I

C

f (z)

z(2z + 1)2 dz,

for the contour the unit circle.

Hint. Make a partial fraction expansion.

11.5 LAURENT EXPANSION

Taylor Expansion

The Cauchy integral formula of the preceding section opens up the way for another deriva-
tion of Taylor’s series (Section 1.2), but this time for functions of a complex variable.
Suppose we are trying to expand f (z) about z = z0 and we have z = z1 as the nearest
point on the Argand diagram for which f (z) is not analytic. We construct a circle C cen-
tered at z = z0 with radius less than |z1 � z0| (Fig. 11.8). Since z1 was assumed to be the
nearest point at which f (z) was not analytic, f (z) is necessarily analytic on and within C .

From the Cauchy integral formula, Eq. (11.30),

f (z) =
1

2⇡ i

I

C

f (z0)dz
0

z0 � z

=
1

2⇡ i

I

C

f (z0)dz
0

(z0 � z0) � (z � z0)

=
1

2⇡ i

I

C

f (z0)dz
0

(z0 � z0)[1 � (z � z0)/(z0 � z0)]
. (11.38)

Here z
0 is a point on the contour C and z is any point interior to C . It is not legal yet

to expand the denominator of the integrand in Eq. (11.38) by the binomial theorem, for


