Exercises

11.3.1 Show that
$$\int_{z_1}^{z_2} f(z) dz = -\int_{z_2}^{z_1} f(z) dz.$$

11.3.2 Prove that $\left| \int_{C} f(z) dz \right| \le |f|_{\max} \cdot L$,

where $|f|_{\text{max}}$ is the maximum value of |f(z)| along the contour C and L is the length of the contour.

11.3.3 Show that the integral

$$\int_{3+4i}^{4-3i} (4z^2 - 3iz) dz$$

has the same value on the two paths: (a) the straight line connecting the integration limits, and (b) an arc on the circle |z| = 5.

11.3.4 Let
$$F(z) = \int_{\pi(1+i)}^{\infty} \cos 2\zeta \, d\zeta$$
.

7

Show that F(z) is independent of the path connecting the limits of integration, and evaluate $F(\pi i)$.

- 11.3.5 Evaluate $\oint_C (x^2 iy^2) dz$, where the integration is (a) clockwise around the unit circle, (b) on a square with vertices at $\pm 1 \pm i$. Explain why the results of parts (a) and (b) are or are not identical.
- 11.3.6 Verify that

$$\int_{0}^{1+i} z^* dz$$

depends on the path by evaluating the integral for the two paths shown in Fig. 11.7. Recall that $f(z) = z^*$ is not an analytic function of z and that Cauchy's integral theorem therefore does not apply.

11.3.7 Show that

$$\oint_C \frac{dz}{z^2 + z} = 0,$$

in which the contour *C* is a circle defined by |z| = R > 1.

Hint. Direct use of the Cauchy integral theorem is illegal. The integral may be evaluated by expanding into partial fractions and then treating the two terms individually. This yields 0 for R > 1 and $2\pi i$ for R < 1.

486 Chapter 11 Complex Variable Theory

FIGURE 11.7 Contours for Exercise 11.3.6.

11.4 CAUCHY'S INTEGRAL FORMULA

As in the preceding section, we consider a function f(z) that is analytic on a closed contour C and within the interior region bounded by C. This means that the contour C is to be traversed in the **counterclockwise** direction. We seek to prove the following result, known as **Cauchy's integral formula**:

$$\frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz = f(z_0), \tag{11.30}$$

in which z_0 is any point in the interior region bounded by *C*. Note that since *z* is on the contour *C* while z_0 is in the interior, $z - z_0 \neq 0$ and the integral Eq. (11.30) is well defined. Although f(z) is assumed analytic, the integrand is $f(z)/(z - z_0)$ and is not analytic at $z = z_0$ unless $f(z_0) = 0$. We now deform the contour, to make it a circle of small radius *r* about $z = z_0$, traversed, like the original contour, in the counterclockwise direction. As shown in the preceding section, this does not change the value of the integral. We therefore write $z = z_0 + re^{i\theta}$, so $dz = ire^{i\theta} d\theta$, the integration is from $\theta = 0$ to $\theta = 2\pi$, and

$$\oint_C \frac{f(z)}{z-z_0} dz = \int_0^{2\pi} \frac{f(z_0 + re^{i\theta})}{re^{i\theta}} ire^{i\theta} d\theta.$$

Taking the limit $r \to 0$, we obtain

$$\oint_C \frac{f(z)}{z - z_0} dz = i f(z_0) \int_0^{2\pi} d\theta = 2\pi i f(z_0),$$
(11.31)

where we have replaced f(z) by its limit $f(z_0)$ because it is analytic and therefore continuous at $z = z_0$. This proves the Cauchy integral formula.

Here is a remarkable result. The value of an analytic function f(z) is given at an arbitrary interior point $z = z_0$ once the values on the boundary C are specified.