
ArfKen_Ch11-9780123846549.tex

476 Chapter 11 Complex Variable Theory

Exercises

11.2.1 Show whether or not the function f (z) = <(z) = x is analytic.

11.2.2 Having shown that the real part u(x, y) and the imaginary part v(x, y) of an analytic
function w(z) each satisfy Laplace’s equation, show that neither u(x, y) nor v(x, y) can

have either a maximum or a minimum in the interior of any region in which w(z) is
analytic. (They can have saddle points only.)

11.2.3 Find the analytic function

w(z) = u(x, y) + iv(x, y)

(a) if u(x, y) = x
3 � 3xy

2, (b) if v(x, y) = e
�y sin x .

11.2.4 If there is some common region in which w1 = u(x, y) + iv(x, y) and w2 = w⇤
1 =

u(x, y) � iv(x, y) are both analytic, prove that u(x, y) and v(x, y) are constants.

11.2.5 Starting from f (z) = 1/(x + iy), show that 1/z is analytic in the entire finite z plane
except at the point z = 0. This extends our discussion of the analyticity of z

n to negative
integer powers n.

11.2.6 Show that given the Cauchy-Riemann equations, the derivative f
0(z) has the same value

for dz = a dx + ib dy (with neither a nor b zero) as it has for dz = dx .

11.2.7 Using f (re
i✓ ) = R(r, ✓)ei2(r,✓), in which R(r, ✓) and 2(r, ✓) are differentiable real

functions of r and ✓ , show that the Cauchy-Riemann conditions in polar coordinates
become

(a)
@R

@r
=

R

r

@2

@✓
, (b)

1
r

@R

@✓
= �R

@2

@r
.

Hint. Set up the derivative first with �z radial and then with �z tangential.

11.2.8 As an extension of Exercise 11.2.7 show that 2(r, ✓) satisfies the 2-D Laplace equation
in polar coordinates,

@22

@r2 +
1
r

@2

@r
+

1
r2

@22

@✓2 = 0.

11.2.9 For each of the following functions f (z), find f
0(z) and identify the maximal region

within which f (z) is analytic.

(a) f (z) =
sin z

z
, (d) f (z) = e

�1/z,

(b) f (z) =
1

z2 + 1
,

(e) f (z) = z
2 � 3z + 2,

(c) f (z) =
1

z(z + 1)
,

(f) f (z) = tan(z),

(g) f (z) = tanh(z).
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11.2.10 For what complex values do each of the following functions f (z) have a derivative?

(a) f (z) = z
3/2,

(b) f (z) = z
�3/2,

(c) f (z) = tan�1(z),

(d) f (z) = tanh�1(z).

11.2.11 Two-dimensional irrotational fluid flow is conveniently described by a complex poten-
tial f (z) = u(x, v) + iv(x, y). We label the real part, u(x, y), the velocity potential,
and the imaginary part, v(x, y), the stream function. The fluid velocity V is given by
V = ru. If f (z) is analytic:

(a) Show that d f/dz = Vx � iVy .
(b) Show that r · V = 0 (no sources or sinks).
(c) Show that r ⇥ V = 0 (irrotational, nonturbulent flow).

11.2.12 The function f (z) is analytic. Show that the derivative of f (z) with respect to z
⇤ does

not exist unless f (z) is a constant.

Hint. Use the chain rule and take x = (z + z
⇤)/2, y = (z � z

⇤)/2i .

Note. This result emphasizes that our analytic function f (z) is not just a complex func-
tion of two real variables x and y. It is a function of the complex variable x + iy.

11.3 CAUCHY’S INTEGRAL THEOREM

Contour Integrals

With differentiation under control, we turn to integration. The integral of a complex vari-
able over a path in the complex plane (known as a contour) may be defined in close
analogy to the (Riemann) integral of a real function integrated along the real x-axis.

We divide the contour, from z0 to z
0
0, designated C , into n intervals by picking n � 1

intermediate points z1, z2, . . . on the contour (Fig. 11.2). Consider the sum

Sn =

nX

j=1

f (⇣ j )(z j � z j�1),

where ⇣ j is a point on the curve between z j and z j�1. Now let n ! 1 with

|z j � z j�1| ! 0

for all j. If limn!1 Sn exists, then

lim
n!1

nX

j=1

f (⇣ j )(z j � z j�1) =

z
0
0Z

z0

f (z)dz =

Z

C

f (z)dz. (11.16)

The right-hand side of Eq. (11.16) is called the contour integral of f (z) (along the specified
contour C from z = z0 to z = z

0
0).


