60 Chapter 1 Mathematical Preliminaries

FIGURE 1.15 Cube roots: (a) $1^{1/3}$; (b) $i^{1/3}$; (c) $(-1)^{1/3}$.

Logarithm

Another multivalued complex function is the logarithm, which in the polar representation takes the form

$$\ln z = \ln(re^{i\theta}) = \ln r + i\theta.$$

However, it is also true that

$$\ln z = \ln \left(re^{i(\theta + 2n\pi)} \right) = \ln r + i(\theta + 2n\pi), \tag{1.138}$$

for **any** positive or negative integer n. Thus, $\ln z$ has, for a given z, the infinite number of values corresponding to all possible choices of n in Eq. (1.138).

Exercises

- **1.8.1** Find the reciprocal of x + iy, working in polar form but expressing the final result in Cartesian form.
- 1.8.2 Show that complex numbers have square roots and that the square roots are contained in the complex plane. What are the square roots of i?
- **1.8.3** Show that

(a)
$$\cos n\theta = \cos^n \theta - \binom{n}{2} \cos^{n-2} \theta \sin^2 \theta + \binom{n}{4} \cos^{n-4} \theta \sin^4 \theta - \cdots,$$

(b)
$$\sin n\theta = \binom{n}{1} \cos^{n-1} \theta \sin \theta - \binom{n}{3} \cos^{n-3} \theta \sin^3 \theta + \cdots$$

1.8.4 Prove that

(a)
$$\sum_{n=0}^{N-1} \cos nx = \frac{\sin(Nx/2)}{\sin x/2} \cos(N-1) \frac{x}{2},$$

(b)
$$\sum_{n=0}^{N-1} \sin nx = \frac{\sin(Nx/2)}{\sin x/2} \sin(N-1) \frac{x}{2}.$$

These series occur in the analysis of the multiple-slit diffraction pattern.

1.8.5 Assume that the trigonometric functions and the hyperbolic functions are defined for complex argument by the appropriate power series. Show that

$$i \sin z = \sinh iz$$
, $\sin iz = i \sinh z$,

$$\cos z = \cosh iz$$
, $\cos iz = \cosh z$.

1.8.6 Using the identities

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \quad \sin z = \frac{e^{iz} - e^{-iz}}{2i},$$

established from comparison of power series, show that

- (a) $\sin(x + iy) = \sin x \cosh y + i \cos x \sinh y$, $\cos(x + iy) = \cos x \cosh y - i \sin x \sinh y$,
- (b) $|\sin z|^2 = \sin^2 x + \sinh^2 y$, $|\cos z|^2 = \cos^2 x + \sinh^2 y$.

This demonstrates that we may have $|\sin z|$, $|\cos z| > 1$ in the complex plane.

- **1.8.7** From the identities in Exercises 1.8.5 and 1.8.6 show that
 - (a) $\sinh(x + iy) = \sinh x \cos y + i \cosh x \sin y$, $\cosh(x + iy) = \cosh x \cos y + i \sinh x \sin y$,
 - (b) $|\sinh z|^2 = \sinh^2 x + \sin^2 y$, $|\cosh z|^2 = \cosh^2 x + \sin^2 y$.
- **1.8.8** Show that
 - (a) $\tanh \frac{z}{2} = \frac{\sinh x + i \sin y}{\cosh x + \cos y}$, (b) $\coth \frac{z}{2} = \frac{\sinh x i \sin y}{\cosh x \cos y}$.
- **1.8.9** By comparing series expansions, show that $\tan^{-1} x = \frac{i}{2} \ln \left(\frac{1 ix}{1 + ix} \right)$.
- 1.8.10 Find the Cartesian form for all values of
 - (a) $(-8)^{1/3}$,
 - (b) $i^{1/4}$,
 - (c) $e^{i\pi/4}$.
- **1.8.11** Find the polar form for all values of
 - (a) $(1+i)^3$,
 - (b) $(-1)^{1/5}$