
مروری بر نفوذگری و امنیت در سیستمهای کامپیوتری

تثبيت مواضع

روند نمای کلی انجام یک حملهٔ کامپیوتری

Contents

- Definitions
- Spywares
- Trojan horses
- Rootkits
- Covert channels

Definitions

A general term for a program that <u>secretly</u> monitors your actions. While they are not sometimes <u>malicious</u>, but like a remote control program used by a hacker reteive your private information. Software companies have been known to use Spyware to gather data about customers.

Definition from: BlackICE Internet Security Systems - http://blackice.iss.net/glossary.php

An apparently useful and innocent program containing additional hidden code which allows the <u>uncutborized collection</u>, <u>exploitation</u>, <u>falsification</u>, or <u>destruction</u> of data.

Definition from: Texas State Library and Archives Commission - http://www.tsl.state.ty.us/lo/pubs/com/security/glossary.html

Summary of Effects

- Collection of data from your computer without your agreement
- Execution of code without your agreement
- Assignment of a unique code to identify you
- Collection of data pertaining to your habitual use
- Installation on your computer without your agreement
- Inability to remove the software
- Performing other undesirable tasks without agreement

Similarities / Differences

Spyware	Trojan Horses				
Commercially Motivated	Malicious				
Internet connection required	Any network connection required				
Initiates remote connection	Receives incoming connection				
Purpose: To monitor activity	Purpose: To control activity				
Collects data	Unauthorized access and control				
Legal	Illegal				
Not Detectable with Virus Checker	Detectable with Virus Checker				
Age: Relatively New (< 10 Years)	Age: Relatively Old (> 20 Years)				
Memory Resident Processes					
Secretly installed without user's consent or understanding					
Creates a security vulnerability					

Source – Table derived and produced by; Andrew Brown, Tim Cocks and Kumutha Swampillai, February 2004.

Contents

- Definitions
- Spywares
- Trojan horses
- Rootkits
- Covert channels

Software Examples

- GAIN / Gator
- Gator E-Wallet
- Cydoor
- BonziBuddy
- Google Toolbar
- Yahoo Toolbar
- DownloadWare
- BrowserAid
- Dogpile Toolbar

Image Sources...

GAIN Logo – The Gator Corporation – http://www.gator.com **BonziBuddy Logo** – Bonzi.com - http://images.bonzi.com/images/gorillatalk.gif **DownloadWare Logo** – DownloadWare - http://www.downloadware.net

Spyware Defence

User Initiatives...

- Use Legitimate S/W Sources
- Improved Technical Ability
- Choice of Browser
- Choice of OS

Technical Initiatives...

- Spyware Removal Programs
- Firewall Technology
- Disable ActiveX Controls
- E-Mail Filters
- Download Patches

Deep view: Cookie Marketing

- Basic cookie mechanism: Place a piece of information, retrieve it for customization on subsequent visits
- Functions available: read, write, delete
- Creative application1: Initialize a cookie called counter to 1. Every time user visits, retrieve counter, increment by 1 and re-write.
- Creative application2: When a user visits, write system date/time in a cookie. Next visit get cookie for last visit. Overwrite with current date/time.

Cookie Scope: Cannot Do

- Have automatic access to personal information like name, address, email
- Read or write data to hard disk
- Read or write information in cookies placed by other sites
- Run programs on your computer

Cookie Scope: Can Do

- Store and manipulate any information you explicitly provide to a site
- Track your interaction with parent site such as pages visited, time of visits, number of visits
- Use any information available to web server including: IP address, Operating System, Browser Type, etc

Cookie Types and Taxonomy

- By Lifespan
 - Session Cookies (RAM)
 - Persistent Cookies (Disk)
- By Read-Write Mechanism
 - Server-Side Cookies (HTTP Header)
 - Client-Side Cookies (JavaScript)
- By Structure
 - Simple Cookies
 - Complex Cookies

Cookie based Marketing

How does it work?

- Companies like DoubleClick.net, adserver.com and adflow.com have developed an innovative system (using standard technologies) for this purpose.
- They tie up with popular websites like Yahoo, Amazon to create an extensive data and information sharing network
 - Code developed by the company is placed on these web sites.
 - When you hit another such site, it sends data placed in your cookies to
 DoubleClick and retrieves marketing information about you enabling them to
 customize ads etc
 - Result: One person may see ads for sports goods and another for baby clothes

Tracking Cookie Defence

- Replace tracking cookies with write protected zero length files of the same name.
- Disable cookies
 - Makes many websites unusable
- Delete cookies after session
- Spyware remover (Ad-aware)

Contents

- Definitions
- Spywares
- Trojan horses
- Rootkits
- Covert channels

Types of Trojan Horse

- Remote Access Trojan: allow attacker to gain control over the victim's pc.
- **Data sending Trojan**: provide the attacker confidential data such as password, credit card information.
- **Destructive Trojan**: designed to destroy or delete files.
- **Proxy Trojan**: to use the victim's computer as the proxy server for the attackers.
- **FTP Trojan**: designed to open ftp port (port 21) on your computer, enable the attacker to connect your PC through File Transfer Protocol.
- Security software disabler Trojan: designed to stop or kill security software program such as antivirus program and internet security program.
- **Denial of Service (DoS) attack**: the attacker try to bring down the network service by flooding the useless traffic over the network.

Trojan Horse: installation

- Secretly installed when an infected executable is run
 - Much like a virus
 - Executables typically come from P2P networks or untrusted websites
- ActiveX controls on websites
 - ActiveX allows automatic installation of software from websites
 - User probably does not know what they are running

Trojan Horse: Effects

- Allows remote access
 - To spy
 - To disrupt
 - To relay a malicious connection, so as to hide the attacker's location (spam, hacking)
 - To access resources (i.e. bandwidth, files)
 - To launch a DDoS attack

Trojan Horse Examples

- Hardware
 - Key loggers
 - More advanced?
- Magic Lantern
 - FBI developed
 - Legal grey area (until recently!)

Solutions

Short Term

- Firewall
- Virus Checker
- Spyware Remover
- Frequent OS updates
- Frequent back-up
- Learning problems

Long Term

- Add Spyware to Anti-Virus
- Automatic maintenance
- Education on problems
- Biometric access

Contents

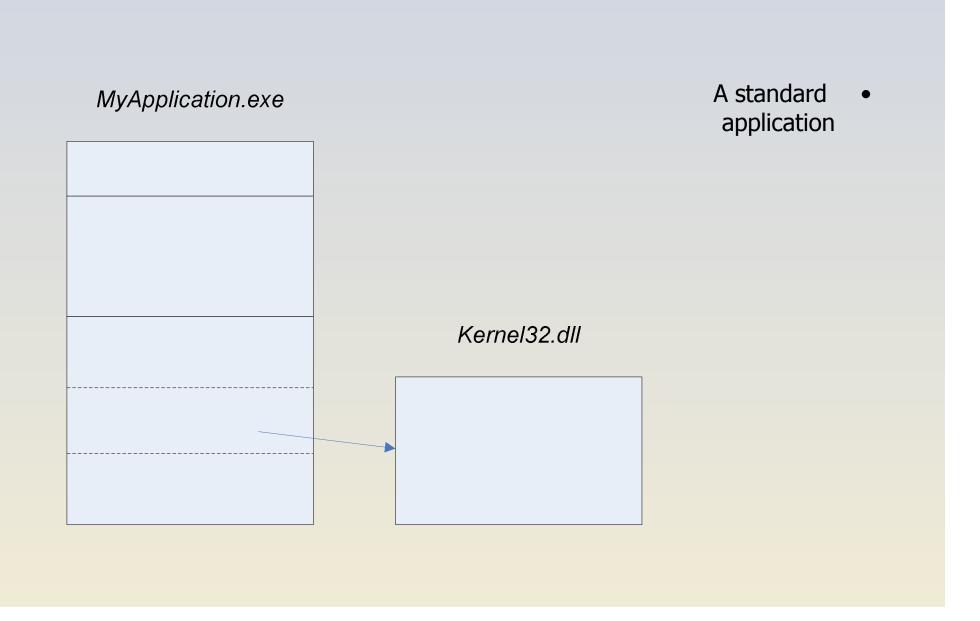
- Definitions
- Spywares
- Trojan horses
- Rootkits
- Covert channels

What is a Rootkit?

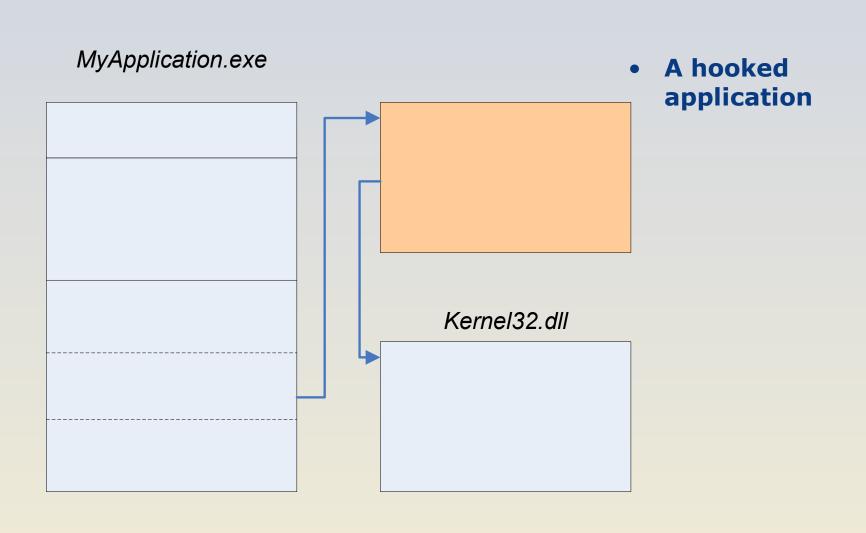
- A rootkit is a tool that is designed to hide itself and other processes, data, and/or activity on a system.
- "A tool used to protect backdoors and other tools from detection by administrators"
- A rootkit is not
 - An exploit
 - A virus or worm

Rootkits - Why Should You Care?

- If you can't detect a backdoor on any given machine, how do you know your machine is clean?
- New viruses will use new rootkit technology


Rootkits - How They Work?

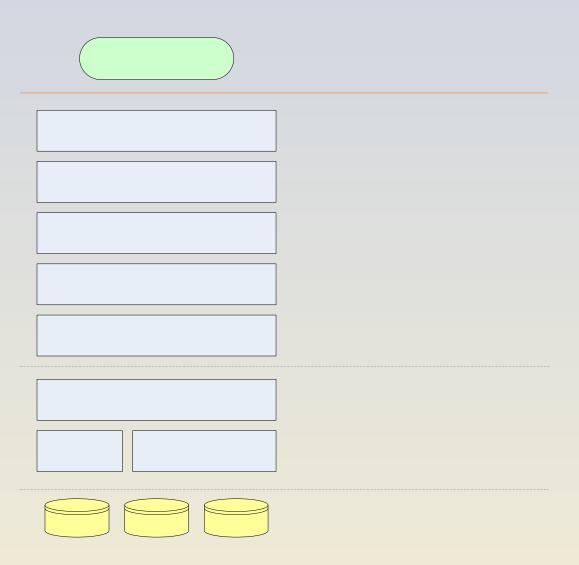
• To hide in a system you have to control a system


 Act as a gatekeeper between what a user sees and what the system sees

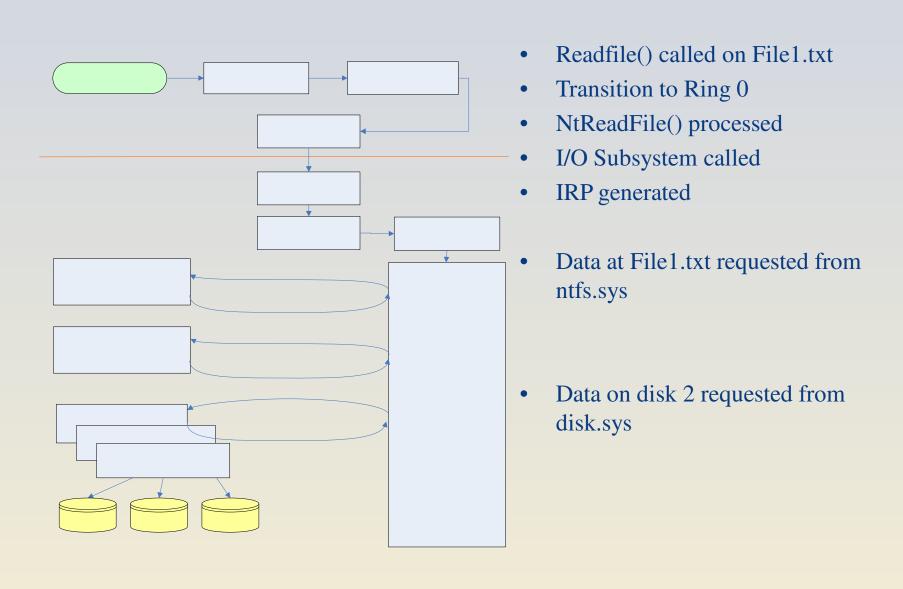
• Requires administrator privileges to install

How Rootkits Work - Hooking

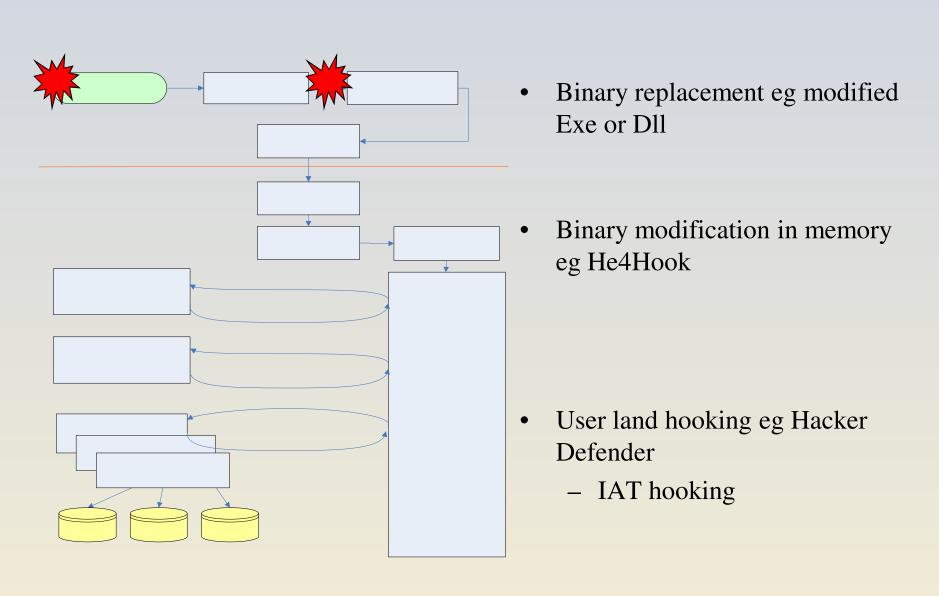
How Rootkits Work - Hooking

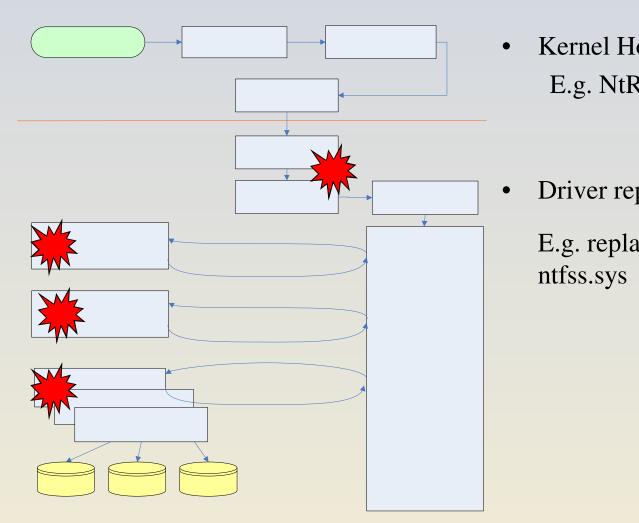


Rootkits – How They Work?

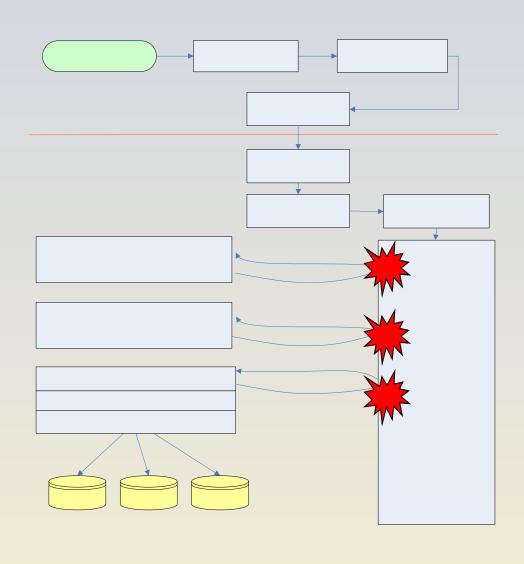

- To hide what is taking place, an attacker wants to:
 - Hide processes
 - Hide services
 - Hide listening TCP/UDP ports
 - Hide kernel modules
 - Hide drivers

Levels of Access in Windows


- User Land
 - User
 - Administrator
 - System
- Kernel Land
 - Drivers

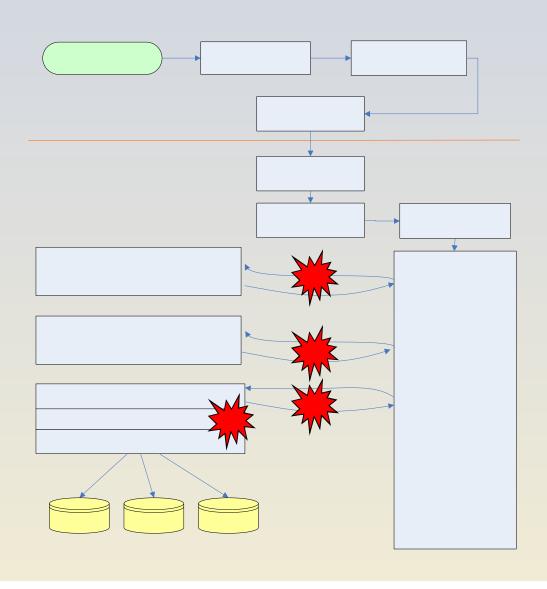

What Happens When You Read a File?

Userland (Ring 3) Rootkits


Kernel (Ring 0) Rootkits

Kernel Hooking E.g. NtRootkit

Driver replacement E.g. replace ntfs.sys with


Kernel (Ring 0) Rootkits

- IO Request Packet (IRP) Hooking
 - IRP Dispatch Table

E.g. He4Hook (some versions)

Kernel (Ring 0) Rootkits

- Filter Drivers
- Types
 - File system filter
 - Volume filter
 - Disk Filter
 - Bus Filter

Current Rootkit Capabilities

• Hide processes

undetectable on the network

• Hide files

Install silently

- Hide registry entries
- Hide services
- Completely bypass personal firewalls
- Undetectable by anti virus
- Covert channels -

Detection Methodologies

• Traditional Detection

- Check integrity of important OS elements against a hash database (sigcheck)
- Look for unidentified processes (task manager)
- Check for open ports (netstat)

Detection Methodologies

Signature based

- Look for known rootkits, viruses, backdoors
- Antivirus
- Look for "bad things" living in memory

Problems

- Requires updated databases
- Doesn't detect anything it hasn't seen before

Detection Methodologies

Code verification

- Code sections are read only in all modern OSes
- Programs should not modify their own code
- Check to see if the files on disk match what is running in memory

Detection Methodologies: Code Verification

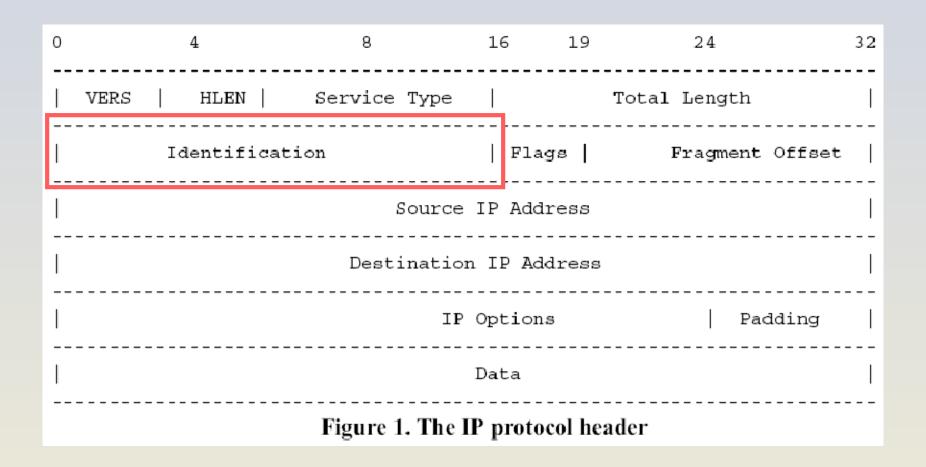
MyApplication.exe (on disk)	MyApplication.exe (in memory)

Hardware Rootkits

- A OS reinstall won't save you
- Hard to remove.
 - Device is usually destroyed
- Difficult to implement
- With more and more memory on devices they are becoming prevalent with time
- VideoCardKit (http://www.rootkit.com)
 - Stores code in FLASH or EEPROM
- EEye Bootroot
 - Installs in real mode via network PXE boot

Contents

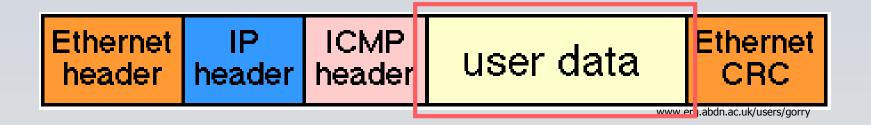
- Definitions
- Spywares
- Trojan horses
- Rootkits
- Covert channels


Definition

- Covert channels are a means of communication between two processes
- Processes may be:
 - Authorized to communicate, but not in the way they actually are
 - Prohibited from communicating

Why Are They Important?

- Difficult to detect
- Can operate for a long time and leak a substantial amount of classified data to uncleared processes
- Can compromise a secure system


IP Channels

TCP Channels

0	4	8	16	19	24	32			
	Source	rce Port Des			estination Port				
	Sequence Number								
	Acknowledgment Number								
HLEN		Code Bits	I		ıdow	I			
	Checks				gent Pointer				
			Options		Padding				
			Data						
Figure 2. The TCP protocol header									

ICMP Channels

- ICMP echo request/reply can tunnel arbitrary user data
 - Payload capacity depends on path MTU (this feature often used to measure PMTU)

Conclusions

- Difficult to detect
- Can exist even in formally verified systems
- Should be analyzed during system design