

Coordination and Agreement

Outline

2

 Distributed Mutual Exclusion

 Election Algorithms

 Group Communication

 Consensus and Related Problems

 Introduction

Introduction

 Collection of algorithms that share an aim

 For example, Spaceship:

 Agreement: it is essential that the computers controlling it

agree on such conditions as whether the spaceship’s

mission is proceeding or has been aborted

 Coordination: the computers must coordinate their actions

correctly with respect to shared resources (the spaceship’s

sensors and actuators)

3

for a set of processes to coordinate their

actions or to agree on one or more values.

Main Assumptions

 Each pair of processes is connected by reliable
channels

4

 Processes independent from each other

 Network: don’t

disconnect

 Processes fail only by crashing

 Local failure detector

Failure Detector

 Is a service that processes queries about whether a

particular process has crashed.

 It is often implemented by a local object known as a

Local Failure Detector.

 Failure detectors are not necessarily accurate.

 For example:

 a process that timed-out after 255 seconds might have

succeeded if allowed to proceed for 256 seconds.

 Two types of failure detector:

 Unreliable failure detector

 Reliable failure detector

5

Unreliable Failure Detector

 Produce one of two values when given the identity of

a process: Unsuspected or Suspected.

 Unsuspected: detector has recently received evidence

suggesting that the process has not failed.

 Suspected: failure detector has some indication that the

process may have failed.

 Implement:

 each process sends alive message to everyone else

 not receiving alive message after timeout, report Suspected

 if it subsequently receives, reports OK(Unsuspected)

 Most practical systems

6

Reliable Failure Detector

 Is always accurate in detecting a process’s failure.

 It answers processes’ queries with either a response

of Unsuspected or Failed.

 Unsuspected: as before, can only be a hint that the process

has not failed.

 Failed: detector has determined that the process has

crashed.

 Implement needs synchronous system

 Few practical systems

7

Outline

8

 Distributed Mutual Exclusion

 Election Algorithms

 Group Communication

 Consensus and Related Problems

 Introduction

Distributed Mutual Exclusion (1)

 Mutual exclusion very important

 Prevent interference

 Ensure consistency when accessing the resources

9

Process 2
Process 1 Process 3

Process n

…

Shared

resource

Distributed Mutual Exclusion (2)

 Critical section

10

Access shared resources in critical
section

•
•
•

Enter()

Exit()

 Mutual exclusion useful when the server managing

the resources don’t use locks

enter critical section – blocking

Leave critical section

Distributed Mutual Exclusion (3)

 Distributed mutual exclusion: no shared variables,

only message passing

11

 Ordering: If one request to enter the CS happened-before

another, then entry to the CS is granted in that order

 Properties:

 Safety: At most one process may execute in the critical

section at a time

 Liveness: Requests to enter and exit the critical section

eventually succeed

 No deadlock and no starvation

Mutual Exclusion Algorithms

12

 Basic Hypothesis:

 System: asynchronous

 Critical section: only one

 Processes: don’t fail

 Message transmission: reliable

 Central Server Algorithm

 Ring-Based Algorithm

 Mutual Exclusion using Multicast and Logical Clocks

 Maekawa’s Voting Algorithm

 Mutual Exclusion Algorithms Comparison

Evaluation of the performance alg.

 Bandwidth

 The number of message sent in each entry and exit

operation

 Client Delay

 Throughput

13

Central Server Algorithm

14

Holds the token

Waiting

Holds the token

P3 P3

P1

P2

P4 P4

Server

4

2

Queue of

requests

1) Request

 token

2) Release

 token

3) Grant

 token

2

P2

Ring-Based Algorithm (1)

15

P4 P2 Pn P1 P3

Ethernet

A group of unordered

processes in a network

Ring-Based Algorithm (2)

16

Critical

Section

•
•
•

Enter()

Exit()

P1
P2

P3

P4

Pn

Token navigates

around the ring

P1
P2

P3

P1
P2

P3

P4

Mutual Exclusion using

Multicast and Logical Clocks (1)

17

P1 P1

P3

P2

19
19

P1 and P2 request

entering the critical

section simultaneously 19

23

23

23

Critical Section

•
•
•

Enter()

Exit()

2

Waiting

queue

P1

P2

Mutual Exclusion using

Multicast and Logical Clocks (2)

18

State := HELD;

 Main steps of the algorithm:

State := RELEASED;

Initialization

Process pi request entering the critical section

State := WANTED;

T := request’s timestamp;

Multicast request <T, pi> to all processes;

Wait until (Number of replies received = (N – 1));

Mutual Exclusion using

Multicast and Logical Clocks (3)

19

 Main steps of the algorithm (cont’d):

If (state = HELD) OR

 (state = WANTED AND (T, pj) < (Ti, pi))

On receipt of a request <Ti, pi> at pj (i  j)

state := RELEASED;

To quit the critical section

Then queue request from pi without replying;

Else reply immediately to pi;

Reply to any queued requests;

Maekawa’s Voting Algorithm (1)

20

 Each process pi maintain a voting set Vi (i=1, …, N),

where Vi  {p1, …, pN}

 Candidate process: must collect sufficient votes to

enter to the critical section

 Sets Vi: chosen such that  i,j

 Each process pj is contained in M of the voting sets Vi

 pi  Vi

 Vi  Vj  
(at least one common member of any

two voting sets)

 Vi = k (fairness)

Maekawa’s Voting Algorithm (2)

21

state := RELEASED;

Initialization

state := WANTED;

For pi to enter the critical section

 Main steps of the algorithm:

state := HELD;

Wait until (number of replies received = K);

Multicast request to all processes in Vi ;

pi enter the critical section

only after collecting K votes

voted := FALSE;

Maekawa’s Voting Algorithm (3)

22

state := RELEASED;

For pi to exit the critical section

Else Reply immediately to pi;

 voted := TRUE;

On receipt of a request from pi at pj

If (state = HELD OR voted = TRUE)

Then queue request from pi without replying;

Multicast release to all processes Vi ;

 Main steps of the algorithm (cont’d):

Maekawa’s Voting Algorithm (4)

23

Else voted := FALSE;

On a receipt of a release from pi at pj

If (queue of requests is non-empty)

Then remove head of queue, e.g., pk;

 send reply to pk;

 voted := TRUE;

 Main steps of the algorithm (cont’d):

M. E. Algorithms Comparison

24

Algorithm

Number of messages

Problems Enter()/Exit Before Enter()

Centralized 3 Crash of server

Virtual
ring

1 to N

Crash of a process
Token lost
Ordering non-
satisfied

Logical
clocks

3(N-1) Crash of a
process

Maekawa’s Alg. Crash of a

process who votes
3N

2

0 to N-1

2(N-1)

2N

Outline

25

 Distributed Mutual Exclusion

 Election Algorithms

 Group Communication

 Consensus and Related Problems

 Introduction

Election Algorithms (1)

26

 Objective: Elect one process pi from a group of

processes p1…pN

 At any point in time, a process pi is either a

participant or a non-participant

 Each process pi maintains the identity of the elected

in the variable Electedi (NIL ‘’ if it isn’t defined yet)

 Properties to satisfy:  pi

Even if multiple elections have

been started simultaneously

 Safety: Electedi = NIL or Elected = P

 Liveness: pi participates and sets Electedi  NIL, or

crashes

A non-crashed

process with the

largest identifier

Election Algorithms (2)

27

 Ring-Based Election Algorithm

 Bully Algorithm

 Election Algorithms Comparison

Ring-Based Election Algorithm (1)

28

9

Process 5 starts

 the election

5

16

25

25

5
16

25

3

Ring-Based Election Algorithm (2)

29

Pi starts an election

Participanti := FALSE;

Electedi := NIL

Initialization

Participanti := TRUE;

Send the message <election, pi> to its neighbor

Receipt of a message <elected, pj> at pi

If pi  pj

Then Participanti := FALSE;

 Electedi := pj;

 Send the message <elected, pj> to its neighbor

Ring-Based Election Algorithm (3)

30

Else If pi = pj

Receipt of the election’s message <election, pi> at pj

If pi > pj

Then Send the message <election, pi> to its neighbor

 Participantj := TRUE;

Else If pi < pj AND Participantj = FALSE

Then Send the message <election, pj> to its neighbor

 Participantj := TRUE;

Then Electedj := pj;

 Participantj := FALSE;

 Send the message <elected, pj> to its neighbor

Bully Algorithm (1)

31

 Characteristic: Allows processes to crash during

an election

 Hypothesis:

 Reliable transmission

 Synchronous system

DelayTrans.

DelayTrans. DelayTrait.

T = 2 DelayTrans. + DelayTrait.

Bully Algorithm (2)

32

 Election started by a process when it notices, through

timeouts, that the coordinator has failed

 Three types of messages:

 Coordinator: announces the new coordinator

 Each process knows which processes have higher

identifiers, and it can communicate with all such

processes

 Hypothesis (cont’d):

 Election: starts an election

 OK: sent in response to an election message

Bully Algorithm (3)

33

Coordinator Coordinator failed 8

1

5

3

2

4

7

Process 5 detects

it first
Election OK

8

6

7 New Coordinator

Bully Algorithm (4)

34

Else waits until receipt of the message (coordinator)
(if it doesn’t arrive during another timeout T’, it begins another election)

pi starts the election

Send the message (Election, pi) to pj , i.e., pj > pi

Waits until message (OK, pj) from pj are received;

If no message (OK, pj) arrives during T

Then Electedi := pi;

 Send the message (Coordinator, pi) to pj , i.e., pj < pi

Electedi := NIL

Initialization

Bully Algorithm (5)

35

Electedi := pj;

Receipt of the message (Coordinator, pj) at pi

Send the message (OK, pi) to pj

Receipt of the message (Election, pj) at pi

Start the election unless it has begun one already

 When a process is started to replace a crashed

process: it begins an election

Election Algorithms Comparison

36

Election

algorithm

Number of

messages

Problems

Virtual
ring

2N to 3N-1

Bully N-2 to (N2)

Don’t tolerate
faults

System must be
synchronous

