Coordination and Agreement

Outline

" |[ntroduction

= Distributed Mutual Exclusion
= Election Algorithms
= Group Communication

= Consensus and Related Problems

- 2

Introduction

= Collection of algorithms that share an aim

\ for a set of processes to coordinate their
actions or to agree on one or more values.

= For example, Spaceship:

= Agreement: it is essential that the computers controlling it
agree on such conditions as whether the spaceship’s
mission is proceeding or has been aborted

= Coordination: the computers must coordinate their actions
correctly with respect to shared resources (the spaceship’s
sensors and actuators)

- :

Main Assumptions

= Each pair of processes is connected by reliable
channels

= Processes independent from each other

= Network: don’t

disconnect Q Q
X

Router

= Processes fail only by crashing

s Local failure detector

- :

Failure Detector

= IS a service that processes queries about whether a
particular process has crashed.

= |t Is often implemented by a local object known as a
Local Fallure Detector.

= Fallure detectors are not necessarily accurate.

= For example:

= a process that timed-out after 255 seconds might have
succeeded if allowed to proceed for 256 seconds.

= Two types of failure detector:
= Unreliable failure detector
= Reliable failure detector

- :

Unreliable Failure Detector

= Produce one of two values when given the identity of
a process:. Unsuspected or Suspected.

= Unsuspected: detector has recently received evidence
suggesting that the process has not failed.

= Suspected: failure detector has some indication that the
process may have failed.

= Implement:
= each process sends al/lve message to everyone else
= Not receiving a/ive message after timeout, report Suspected
= If it subsequently receives, reports OK (Unsuspected)

= Most practical systems

- :

Reliable Fallure Detector

= Is always accurate in detecting a process’s failure.

= It answers processes’ gueries with either a response
of Unsuspected or Falled.

= Unsuspected: as before, can only be a hint that the process
has not failed.

= Failed: detector has determined that the process has
crashed.

= Implement needs syrnchronous system
= Few practical systems

-

Outline

" |[ntroduction

= Distributed Mutual Exclusion
= Election Algorithms
= Group Communication

= Consensus and Related Problems

- :

Distributed Mutual Exclusion ;,

Process 2
Process 1 \ / Process 3
Shared Process n

resource

= Mutual exclusion very important
= Prevent interference
= Ensure consistency when accessing the resources

- :

Distributed Mutual Exclusion

= Mutual exclusion useful when the server managing
the resources don'’t use locks

s Critical section

Enter() enter critical section — blocking

Access shared resources in critical
section

Exit() Leave critical section

10

Distributed Mutual Exclusion

= Distributed mutual exclusion: no shared variables,
only message passing
= Properties:

= Safety: At most one process may execute in the critical
section at a time

= Liveness: Requests to enter and exit the critical section
eventually succeed

\> No deadlock and no starvation

= Ordering: If one request to enter the CS happened-before
another, then entry to the CS is granted in that order

= ,

Mutual Exclusion Algorithms

= Basic Hypothesis:
= System: asynchronous
= Critical section: only one
= Processes: don't fall
= Message transmission: reliable

= Central Server Algorithm

= Ring-Based Algorithm
= Mutual Exclusion using Multicast and Logical Clocks

= Maekawa’s Voting Algorithm

= Mutual Exclusion Algorithms Comparison

= :

Evaluation of the performance a

= Bandwidth

= The number of message sent in each entry and exit
operation

= Client Delay

= Throughput

= :

Central Server Algorithm

Server
Queue of ___
requests
3) Grant
token
1) Reques 2) Release

token token

14

Ring-Based Algorithm 4,

A group of unordered
processes in a network

~
_———————————————————’ bl R el e e
’ -~

Ethernet

. :

Ring-Based Algorithm ,

/Token navigates
around the ring

~
i S -

16

Mutual Exclusion usin
Multicast and Logical Clocks 3

P1 and P2 request
entering the critical
23 section simultaneously

17

Mutual Exclusion usin
Multicast and Logical Clocks 3

= Main steps of the algorithm:

Initialization

State := RELEASED:;

Process p; request entering the critical section

State := WANTED;

T :=request’s timestamp;

Multicast request <T, p;>to all processes;

Wait until (Number of replies received = (N-1));

State := HELD:;

-

18

Mutual Exclusion using
Multicast and Logical Clocks 3

= Main steps of the algorithm (cont’d):

On receipt of a request <T;, p;> at p; (i #j)

If (state = HELD) OR

(state = WANTED AND (T, p;) < (T;, py))
Then queue request from p; without replying;
Else reply immediately to p;;

To quit the critical section

state := RELEASED,;
Reply to any queued requests;

= ,

Maekawa’s Voting Algorithm (1)

= Candidate process. must collect sufficient votes to
enter to the critical section

= Each process p, maintain a voting set V, (i=1, ..., N),
where V, c {py, ---, Pn}

= Sets V;: chosen such that V i,

"pi €V,

(at least one common member of any
" Vin Vj;é & two voting sets)
n |Vi | =k (fairness)

= Each process p; is contained in M of the voting sets V;

- ;

Maekawa’s Voting Algorithm)

= Main steps of the algorithm:

Initialization

state := RELEASED:;
voted := FALSE;

For p, to enter the critical section

state := WANTED;

Multicast request to all processes in V, ;

' d

e e e e - = === ==

state ‘= HELD: ™ enter the critical section
' '’ only after collecting K votes

n ,

Maekawa’s Voting Algorithm)

= Main steps of the algorithm (cont’d):

On receipt of a request from p; at p;

If (state = HELD OR voted = TRUE)
Then queuerequest from p;, without replying;
Else Reply immediately to p;;
voted .= TRUE;
For p; to exit the critical section

state := RELEASED;
Multicast release to all processes V, ;

> ,

Maekawa’s Voting Algorithm

= Main steps of the algorithm (cont’d):

On areceipt of arelease from p; at p;

If (queue of requests is non-empty)

Then remove head of queue, e.g., p;
send reply to p,;
voted := TRUE;

Else voted := FALSE:

- :

M. E. Algorithms Comparison

Number of messages
Algorithm Enter()/Exit Before Enter() Problems
Centralized 3 2 Crash of server
Crash of a process
Virtual Token lost
ring LtoN 0toN-1 Ordering non-
satisfied
Logical Crash of a
3(N-1 2(N-1
clocks (N-1) (N-1) process
Maekawa’s Alg. 3VN 27N Crash of a
process who votes

-

24

Outline

" |[ntroduction

= Distributed Mutual Exclusion
= Election Algorithms
= Group Communication

= Consensus and Related Problems

= :

Election Algorithms 4,

= Objective: Elect one process p; from a group of

rocesses p,...
P P1---Pn Even if multiple elections have

= At any point in tireen started simultaneously. = - g
participant or a non-participant

= Each process p, maintains the identity of the elected
In the variable E/ected; (NIL ‘L’ if itisn't defined yet)

= Properties to satisfy: V p,

= Safety: Elected;= NIL or Elected = P

\ A non-crashed

s | : e /5 esS\ilth
Liveness: p; participates and sets E/e aré% S;% L hfgf
crashes

- 26

Election Algorithms ,

= Ring-Based Election Algorithm

= Bully Algorithm

= Election Algorithms Comparison

- 3

Ring-Based Election Algorithm (1)l

Process 5 starts

the election

28

Ring-Based Election Algorithm ,,

Initialization

Participant, := FALSE;
Elected; := NIL

P, starts an election

Participant; := TRUE;
Send the message <election, p,>to its neighbor

Receipt of a message <elected, p> at p;

It p;i #p
Then Participant, := FALSE;
Elected; := p;
Send the message <elected, p,>to its neighbor

- :

Ring-Based Election Algorithm

Receipt of the election’s message <e/ection, p;> at p,

If p;>p;

Then Send the message <election, p;>1o its neighbor
Participant; := TRUE;

Else If p; < p; AND Participant; = FALSE

Then Send the message <election, p>to its neighbor
Participantj = TRUE;

Else If p;=p;

Then Elected; :=p;
Participant; := FALSE;
Send the message <éelected, p>to its neighbor

> :

Bully Algorithm 4

= Characteristic: Allows processes to crash during

an election
= Hypothesis:

= Reliable transmission

= Synchronous system

@ DelayTrans.

4&@ Delayans.

T =2 Delayq,ns. + Delayqa

-

31

Bully Algorithm

= Hypothesis (cont’d):

= Each process knows which processes have higher
identifiers, and it can communicate with all such
processes

= Threetypes of messages:
= Flection. starts an election
= OK: sent in response to an election message
= Coordinator. announces the new coordinator

= Election started by a process when it notices, through
timeouts, that the coordinator has failed

n ,

Bully Algorithm

33

Bully Algorithm

Initialization

Elected,; := NIL

p; starts the election
Send the message (E/ection, p;)to p; , 1.e., p; > p;
Waits until message (OK, p) from p; are received;
If no message (OK, p)) arrives during T

Then Elected, :=p;;
Send the message (Coordinator, p))to p; , 1.e., p; < p;

Else waits until receipt of the message (coordinator)

(if it doesn’t arrive during another timeout T, it begins another election)

> .

Bully Algorithm

Receipt of the message (Coordinator, p/) at p;
Elected, := P;;
Receipt of the message (E/ection, p;) at p;

Send the message (OK, p,)to p,

Start the election unless it has begun one already

= When a process is started to replace a crashed
process: it begins an election

= :

Election Algorithms Comparison

Election Number of Problems
algorithm messages
Vlrtual N to 3N-1 | Don't tolerate
ring faults
System must be
P
Bully N-2to O(V°)| synchronous

-

36

