

Definition :

 distributed file system enables programs to store and access

remote files as they do local ones.

 allowing users to access files from any computer on a

network.

Intro

 The concentration of persistent storage at a few servers

result :

 reduces the need for local disk storage

 enables economies to be made in the management and archiving of

the persistent data owned by an organization. (more importantly)

 Other services, such as the name service, the user authentication

service and the print service, can be more easily implemented when

they can call upon the file service to meet their needs for persistent

storage

Intro

File systems are responsible for the organization, storage,

retrieval, naming, sharing and protection of files.

They provide a programming interface that freeing programmers

from concern with the details of storage allocation

 Files are stored on disks or other non-volatile storage media.

File systems also take responsibility for the control of access to

files, restricting access to files according to users’ authorizations.

 Characteristics of file system

Intro

 Characteristics of file system

File

consist of a sequence of data item (typically
8-bit bytes). accessible by operations to read

and write any portion of the sequence.

 as a single record containing information
such as the length of the file, timestamps,

file type, owner’s identity and access control
lists.

Data

Attributes

Intro

The design must balance the flexibility from it against

complexity and performance

 Access: client programs are unaware of

 distributed of files.Programs written to

 operate on local files are able to access

 remote files without modification

Location: client programs should see a uniform

 file name space when Files may be

 relocated without changing their

 pathnames.

.

Mobility: Automatic relocation of files is possible

(neither client programs nor system admin

tables in client nodes need to be changed

when files are moved).

Performance: Satisfactory performance across a

specified range of system loads

Scaling: Service can be expanded to meet

additional loads or growth.

 Distributed file system requirements

 Changes to a file by one client should not interfere with

 the operation of other clients simultaneously

 accessing or changing the same file.

Most current file services provide File or record-level

locking

File service can maintain copies of a file in different

location.

• Enables multiple servers to share the load of providing

a service to clients accessing the same set of files

.enhancing the scalability of the service

• Fault tolerance by enabling clients to locate another

server that holds a copy of the file

• Caching (of all or part of a file) locally

Heterogeneity properties

Service can be accessed by clients running on (almost)

any OS or hardware platforms

• Service must continue to operate even when clients

make errors or crash.

• servers can be stateless, so that they can be restarted

and the service restored after a failure without any

need to recover previous state.

• If the service is replicated, it can continue to operate

even during a server crash.

• Unix offers one-copy update semantics for
operations on local files

• Difficult to achieve the same for distributed file

systems while the files are replicated or cached at

different sites due to delay in propagation of

modifications

Must maintain access control as for local files.

•based on identity of user making request

•identities of remote users must be
authenticated

•Server may rely messages with digital
signatures & encryption (optionally)

Service interfaces are open to all processes not
excluded by a firewall.

Goal for distributed file systems is usually performance

comparable to local file system.

•The techniques used for the implementation of file

services are an important part of the design of

distributed systems.

• Transparency

• Concurrency

• Replication

• Heterogeneity

• Fault tolerance

• Consistency

• Security

• Efficiency..

Intro

Distributed File

service architecture

part2

architect
ure

An architecture that offers a clear separation in providing access

to files is obtained by structuring the file service as three

components:

 A flat file service

 A directory service

A client module.

The flat file service and the directory service each export an

interface for use by client programs, and their RPC interfaces,

providing a set of operations for access to files.

Client module that perform operations for clients on directories

and on files

Client computer Server computer

Application

program

Application

program

Client module

Directory service

Flat file service

Lookup
AddName
UnName
GetNames

Read
Write
Create
Delete
GetAttributes
SetAttributes Figure12.5 file service architecture

architect
ure

Responsibilities of various modules

Flat file service:

Concerned with the implementation of operations on the contents

of file.

Unique File Identifiers (UFIDs) are used to refer to files in all

requests for flat file service operations.

 UFIDs are long sequences of bits chosen so that each file has a

unique among all of the files in a distributed system.

Directory Service:

Provides mapping between text names for the files and theirUFIDs.

Clients may obtain the UFID of a file by quoting its text name to

directory service.

architect

ure

 Directory service supports functions needed generate directories, to

add new files to directories.

Client Module:

It runs on each computer and provides extended service (flat file and

directory) as a single API to application programs

It holds information about the network locations of flat-file and

directory server processes.

 achieve better performance through implementation of a cache of

recently used file blocks at the client.

Responsibilities of various modules

architect
ure

Flat file service

Read(FileId, i, n) -> Data

Write(FileId, i, , len,Data)

Create() -> FileId

Delete(FileId)

GetAttributes(FileId) -> Attr

SetAttributes(FileId, Attr)

Directory service

Lookup(Dir, Name) -> FileId

AddName(Dir, Name, FileId)

UnName(Dir, Name)

GetNames(Dir, Pattern) -> NameSeq

Server operations/interfaces for the model file service

FileId

Contain an valid UFID with

user’ sufficient access rights

position of first byte

position of first byte

architect
ure

DFS: Case Studies

• NFS (Network File System)

– Developed by Sun Microsystems (in 1985)

– NFS was the first file service that was designed as a product.

– Their design is operating system–independent

• AFS (Andrew File System)

– Developed by Carnegie Mellon University as part of Andrew distributed

computing environments (in 1986)

– intention to support information sharing on a large scale by minimizing

client-server communication

– Public domain implementation is available on Linux (Linux AFS)

architect

ure

Sun Network File

System(NFS)

part3

 Sun NFS

 The NFS client and server modules communicate using remote procedure calls

 Supports many of the design requirements already mentioned:

– transparency

– heterogeneity

– efficiency

– fault tolerance

 Limited achievement of:

– concurrency

– replication

– consistency

– security

NFS

UNIX
file

system

NFS
client

Application
program

Application
program

Virtual file system

NFS
server

UNIX
file

system

Virtual file system

O
th

e
r

 f
ile

 s
y
s
te

m

UNIX kernel

system calls

NFS
protocol

(remote operations)

UNIX

Operations

on local files

Operations

on

remote files

Figure 12.8.NFS architecture

UNIX kernel

Client computer Server computer

NFS

The integration is achieved by a VFS module, which has been

added to the UNIX kernel to distinguish between local and remote

files.

it passes each request to the appropriate local system module (the

UNIX file system, the NFS client module or the service module for

another file system).

Translate between file identifiers used by NFS and the internal file

identifiers normally used in UNIX and other file systems.

 Virtual file system

NFS

• The file identifiers used in NFS.

• A file handle is unclear to clients and contains whatever information

the server needs .

 File handle

Filesystem identifier i-node number i-node generation

 a number that serves to identify and
locate the file in which the file is stored
and are reused after a file is removed

a unique number that is allocated to
each file system when it is created

is incremented each time the i-node
number is reused

NFS

• read(fh, offset, count) -> attr, data

• write(fh, offset, count, data) -> attr

• create(dirfh, name, attr) -> newfh, attr

• remove(dirfh, name) status

• getattr(fh) -> attr

• setattr(fh, attr) -> attr

• lookup(dirfh, name) -> fh, attr

• rename(dirfh, name, todirfh, toname)

• mkdir(dirfh, name, attr) -> newfh, attr

• rmdir(dirfh, name) -> status

• statfs(fh) -> fsstats

NFS server operations

Model flat file service
Read(FileId, i, n) -> Data

Write(FileId, i, Data)

Create() -> FileId

Delete(FileId)

GetAttributes(FileId) -> Attr

SetAttributes(FileId, Attr)

Model directory service
Lookup(Dir, Name) -> FileId

AddName(Dir, Name, Fileid)

UnName(Dir, Name)

GetNames(Dir, Pattern)

->NameSeq

NFS

 Stateless server, so the user's identity and authentication

information (user ID and group ID) must be checked by the server

on each request.

• In the local file system they are checked only on open()

 The client can modify the RPC calls to include the user ID of any

user(impersonating the user), unless the userID and groupID are

protected by encryption

 Kerberos has been integrated with NFS to provide a stronger

security solution.

 NFS access control and authentication

NFS

Mount service

 The mounting of subtrees of remote filesystems by clients is supported

by a separate mount service that runs at each NFS server.

 the well-known name (/etc/exports) containing the names of local

filesystems that are available for remote mounting in server.

 Request mounting in operation:

 mount(remotehost, remotedirectory, localdirectory)

 Each client maintains a table of mounted file systems in NFS client

and VFS layer,holding

 < IP address, port number, file handle>

NFS

jim jane joeann

usersstudents

usrvmunix

Client Server 2

. . . nfs

Remote

mount
staff

big bobjon

people

Server 1

export

(root)

Remote

mount

. . .

x

(root) (root)

the meaning of this is that programs running at Client can access files at Server 1

and Server 2 by using pathnames such as /usr/students/jon and /usr/staff/ann.

Figure 12.10 Local and remote filesystems accessible on an NFS client

NFS

Securing NFS with Kerberos

 Kerberos protocol is too costly to apply on each file access

request

 Kerberos is used in the mount service:

– to authenticate the user's identity

– User's UserID and GroupID are stored at the server with the client's IP address

 For each file request:

– The UserID and GroupID sent must match those stored at the server

– IP addresses must also match

 This approach has some problems

– all remote filestores must be mounted each time a user logs in

NFS

pages (blocks) from disk are held in a main memory buffer cache

until the space is required for newer pages.

 Read-ahead and delayed-write optimizations

To guard against loss of data in a system crash, the UNIX sync

operation flushes altered pages to disk every 30 seconds.

 NFS optimization - server caching

NFS

Works well in local context, but in the remote case extra measures are needed

to ensure that clients can be confident that the results of the write operations

are persistent, even when server crashes occur.

NFS v3 servers offers two strategies for updating the disk:

write-through :

 altered pages are written to disk as soon as they are received at the

server. When a reply is sent, the NFS client knows that the page is on

the disk.

delayed commit:

pages are held only in the cache until a commit() call is received for the

relevant file. A commit() is issued by the client whenever a file is closed.

NFS

 Server caching does nothing to reduce RPC traffic between client

and server.

 NFS client module caches the results of read, write, getattr, lookup

and readdir operations.

 synchronization of file contents (one-copy semantics) is not

guaranteed when two or more clients are sharing the same file.

 Instead, clients are responsible for polling the server to check the

currency of the cached data that they hold.

 NFS optimization - client caching

NFS

Timestamp-based to validate cached blocks before use:

A cache entry is valid at time T if this statement is true

t freshness interval

Tc time when cache entry
was last validated

Tm time when block was last
updated

T current time

(T - Tc < t) v (Tmclient = Tmserver)

 t is configurable (per file) but is typically

set to 3 seconds for files and 30 secs for

directories.

 There is one value of Tmserver for all the

data blocks in a file and another for the file

attributes.

 if the first part is false, the current value of

Tmserver is obtained (by a getattr call to the

server)

NFS

NFS summary

• Early measurements (1987) established that:

– write() operations are responsible for only 5% of server calls in typical UNIX

environments

• hence write-through at server is acceptable

– lookup() accounts for 50% of operations -due to step-by-step pathname

resolution necessitated by the naming and mounting semantics.

• Single-CPU implementations based on PC hardware achieve

throughputs in excess of 12,000 server ops/sec

• large multi-processor configurations with many disks achieved

throughputs of up to 300,000 server ops/sec.

NFS

NFS summary

• An excellent example of a simple, high-performance distributed service.

• Achievement of transparencies:

Access: Excellent; the UNIX system call interface for both local and remote

files. No modifications to existing programs are required to enable

them to operate correctly with remote files.

Location: Not guaranteed but normally achieved; naming of filesystems is

controlled by client mount operations, have different pathnames on

different clients;but transparency can be ensured by an appropriate

system configuration.

NFS

 Mobility: Hardly achieved; Filesystems may be moved between

servers, but the remote mount tables in each client must then be updated

separately to enable the clients to access the filesystems in their new

locations

Replication: Limited to read-only file systems; for writable files on several

server, the SUN Network Information Service (NIS) separately runs over

NFS and is used to replicate essential system files.

Scaling: Good; NFS servers can be built to handle very large real-world

loads in an efficient manner. The performance of a single server can be

increased by the addition of processors, disks

 When the limits of that process are reached, additional servers must be

installed and the filesystems must be reallocated between them that need

to support replication

NFS

Concurrency: Limited when read-write files are shared concurrently between

clients, consistency is not perfect.

Fault tolerance: Limited but effective; service is suspended if a server

fails. but once it has been restarted user-level client processes proceed from the

point at which the service was interrupted, unaware of the failure.(except in soft-

mounted

Security: The integration of Kerberos with NFS was a major step forward.

 Recent developments include the option to use a secure RPC implementation

for authentication of the data transmitted with read and write operations.

Efficiency: Good; The measured performance of several implementations show

that NFS protocols can be implemented for use in situations that generate very

heavy loads.

NFS

Distributed File systems provide illusion of a local file system and hide

complexity from end users.

Sun NFS is an excellent example of a distributed service designed to meet

many important design requirements

Effective client caching can produce file service performance equal to or

better than local file systems

Superior scalability can be achieved with whole-file serving (Andrew FS)

 Summery

Future requirements:

– support for mobile users.

– Full Replication

– support for data streaming and video file server

Advance

