
1

File Systems

Tanenbaum Chapter 4

Silberschatz Chapters 10, 11, 12

2

Essential requirements for long-term

information storage:

• It must be possible to store a very large amount

of information.

• The information must survive the termination of

the process using it.

• Multiple processes must be able to access the

information concurrently.

File Systems

3

File Structure

• None:
– File can be a sequence of words or bytes

• Simple record structure:
– Lines

– Fixed Length

– Variable Length

• Complex Structure:
– Formatted documents

– Relocatable load files

• Who decides?

4

Think of a disk as a linear sequence of fixed-size

blocks and supporting reading and writing of

blocks. Questions that quickly arise:

• How do you find information?

• How do you keep one user from reading another’s data?

• How do you know which blocks are free?

File Systems

5
Figure 4-1. Some typical file extensions.

File Naming

6

File Access Methods

• Sequential Access

– Based on a magnetic tape model

– read next, write next

– reset

• Direct Access

– Based on fixed length logical records

– read n, write n

– position to n

– relative or absolute block numbers

7

Figure 4-2. Three kinds of files. (a) Byte sequence.

(b) Record sequence. (c) Tree.

File Structure

File Types

• Regular Files:
– ASCII files or binary files

– ASCII consists of lines of text; can be displayed and
printed

– Binary, have some internal structure known to programs
that use them

• Directory
– Files to keep track of files

• Character special files (a character device file)
– Related to I/O and model serial I/O devices

• Block special files (a block device file)
– Mainly to model disks

9
Figure 4-3. (a) An executable file. (b) An archive.

File Types

10

Figure 4-4a. Some possible file attributes.

File Attributes

File

Owner
Group

Owner

Everyone

Else

Write

Permission

Read

Permission

Execute
Permission

File

Owner

Group

Owner

Everyone

Else

UNIX

13

The most common system calls relating to files:

File Operations

• Append

• Seek

• Get Attributes

• Set Attributes

• Rename

• Create

• Delete

• Open

• Close

• Read

• Write

14

Information in a Device Directory

• File name:

• File Type:

• Address:

• Current Length

• Maximum Length

• Date Last accessed (for archiving)

• Date Last updated (for dumping)

• Owner ID

• Protection information

Figure 4-6. A single-level directory system containing four files.

Hierarchical Directory Systems (1)

Single-level directory system:

The simpliest

Figure 4-7. A hierarchical directory system.

Hierarchical Directory Systems (2)

17

Directory Operations

• Search for a file

• Create a file

• Delete a file

• List a directory

• Rename a file

• Traverse the file system

18

Objectives for a Directory System

• Make it efficient

– It should be easy to locate a file quickly

• Make file (and directory) naming convenient

– Allow 2 users to have the same name for different

files

– Allow the same file to have more than 1 name

• Allow logical grouping of files

– All word processing files together

– All c++ files together

– etc.

19

Figure 4-8. A UNIX directory tree.

Path Names

Directory operation

• Hard link

– Linking allows a file to appear in more than

one directory; increments the counter in the

file’s i-node

• Symbolic link

– A name is created pointing to a tiny file

naming another file

File System Implementation

• Users:

– How files are names, what operations are

allowed on them, what the directory tree

looks like

• Implementors

– How files and directories are stored, how disk

space is managed and how to make every

thing work efficiently and reliably

File System Layout

• File system are stored on disks.

• Most disks are divided up into several partitions

• Sector 0 is called MBR (master boot record), to boot
the computer

• BIOS reads in and executes MBR, MBR locates the
active partition, reads in the boot block, and execute

• The boot block reads in the OS contained in the
partition

• Superblock: contains all the key parameters about
a file system; read into memory the booted or the FS
is used

23

Carving up the disk

Master

boot record

Partition table

Partition 1 Partition 2 Partition 3 Partition 4

Entire disk

Boot

block

Super

block

Free space

management

Index

nodes
Files & directories

24

Allocation Methods
Contiguous Allocation

• Each file occupies a set of contiguous blocks on the

disk.

• Number of blocks needed identified at file creation

– May be increased using file extensions

• Advantages:

– Simple to implement

– Good for random access of data

• Disadvantages

– Files cannot grow

– Wastes space

25

Contiguous Allocation

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

FileA

FileB

FileC

FileE

FileD

File Allocation Table

File Name Start Block Length

FileA

FileB

FileC

FileD

FileE

2 3

9 5

18 8

30 2

26 3

FileA

26

Allocation Methods
Linked Allocation

• Each file consists of a linked list of disk

blocks.

• Advantages:

– Simple to use (only need a starting address)

– Good use of free space

• Disadvantages:

– Random Access is difficult

ptr data ptr data ptr data Null data

27

Linked Allocation

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

FileB
File Allocation Table

File Name Start Block End

...

... ...
FileB 28

...
1

28

Linked Allocation

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

FileB
File Allocation Table

File Name Start Block End

...

... ...
FileB 28

...
1

29

Allocation Methods
Indexed Allocation

• Collect all block pointers into an index block.

• Advantages:

– Random Access is easy

– No external fragmentation

• Disadvantages

– Overhead of index block

Index Table

30

Indexed Allocation

1

8

3

14

28

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File Allocation Table

File Name Index Block

Jeep 24

31

Indexed Allocation

1

8

3

14

28

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File Allocation Table

File Name Index Block

Jeep 24

Linked List Allocation Using a Table in Memory

• FAT-File Allocation Table

• Advantage

– Can take use of the whole block

– Random access is easy

– only to store the starting block number

• Disadvantage

– To keep the entire table in memory

– Can’t scale well

Figure 4-13. An example i-node.

I-nodes

i-nodes

• Advantage

– i-node need only be in memory when the

corresponding file is open; file table grows

linearly with the disk

• Disadvantage

– Each i-node has fixed size

35

What’s in a directory?

• Two types of information

– File names

– File metadata (size, timestamps, etc.)

• Basic choices for directory information

– Store all information in directory

• Fixed size entries

• Disk addresses and attributes in directory entry

– Store names & pointers to index nodes (i-nodes)

games attributes

mail attributes

news attributes

research attributes

games

mail

news

research

attributes

attributes

attributes

attributes
Storing all information

in the directory

Using pointers to

index nodes

Figure 4-14. (a) A simple directory containing fixed-size entries

with the disk addresses and attributes in the directory entry.

(b) A directory in which each entry just refers to an i-node.

Implementing Directories (1)

Figure 4-15. Two ways of handling long file names in a directory.

(a) In-line. (b) In a heap.

Implementing Directories (2)

Figure 4-17. (a) Situation prior to linking. (b) After the link is

created. (c) After the original owner removes the file.

Shared Files (2)

39

Sharing files
Root

directory

A

foo

?

???

B

foo

A B C

C

bar

C

foo

C

blah
A

Papers

A

Photos

A

Family

A

sunset

A

sunset

A

os.tex

A

kids

B

Photos

B

lake

40

Solution: use links

• A creates a file, and inserts into her directory

• B shares the file by creating a link to it

• A unlinks the file

– B still links to the file

– Owner is still A (unless B explicitly changes it)

a.tex

Owner: A

Count: 1

a.tex

Owner: A

Count: 2

b.tex

Owner: A

Count: 1

b.tex

A A B B

41

Figure 4-31. The MS-DOS directory entry.

The MS-DOS File System (1)

42

Figure 4-32. Maximum partition size for different block sizes. The empty

boxes represent forbidden combinations.

The MS-DOS File System (2)

4-43

i (index)-nodes (UNIX)

File mode

Number of links

UID

GID

File size

Time created

Time last accessed

Time last modified

10 disk block numbers

Single indirect block

Triple indirect block

Double indirect block

Indirect blocks Data blocks

4-44

i-nodes (Cont.)

• Assume each block is 1 KB in size and 32 bits

(4 bytes) are used as block numbers

• Each indirect block holds 256 block numbers

• First 10 blocks : file size <= 10 KB

• Single indirect : file size <= 256+10 =

266 KB

• Double indirect : file size <= 256*256

+266 = 65802 KB = 64.26 MB

• Triple indirect : file size <= 256*256*256 +

65802= 16843018 KB = ~16 GB

EXT Details

• Directory Structure

– The improved byte allocation is as follows:

• 0-3 Inode value

• 4-5 Length of entry

• 6 Length of name (up to 255 now)

• 7 File type

» 0 unknown

» 1 regular file

» 2 directory

» 3 character device

» 4 block device

» 5 FIFO

» 6 Unix Socket

» 7 Symbolic link

• 8- Name in ASCII

46

Linux File System Structure

• Linux uses a Virtual File System (VFS)

– Defines a file object

– Provides an interface to manipulate that object

• Designed around OO principles

– File system object

– File object

– Inode object (index node)

• Primary File System - ext2fs

– Supports (or maps) several other systems

(MSDOS, NFS (network drives), VFAT (W95),

HPFS (OS/2), etc.

47

Virtual Filesystem

• A kernel software layer that handles all system

calls related to a standard UNIX filesystem.

• Supports:

– Disk-based filesystems

• IDE Hard drives (UNIX, LINUX, SMB, etc.)

• SCSI Hard drives

• floppy drives

– Network filesystems

• remotely connected filesystems

– Special filesystems

• /proc

48

VF Example

inf = open (“/floppy/test”,

 O_RDONLY, 0);

outf = open (“/tmp/test”,

O_WRONLY|O_CREATE|O_TRUNC,

0600);

do {

 cnt = read(inf, buf, 4096);

 write (outf, buf, cnt);

} while (cnt);

close (outf);

close (inf);

ext2 MS-DOS

VFS

cp

49

Virtual File system and Processes

Disk Space Management

• Files are normally stored on disk, so

management of disk space is a major

concern to file-system designers.

• Two general strategies are possible for

storing an n byte file

– n consecutive bytes of disk space are

allocated, or the file is split up into a number

of (not necessarily) contiguous blocks

– chop files up into fixed-size blocks that need

not be adjacent 50

Disk Space Management

• Block size

– the question arises how big the block should

be

51

Disk space Management

52

• As an example, consider a disk with 1 MB

per track, a rotation time of 8.33 msec,

and an average seek time of 5 msec. The

time in milliseconds to read a block of k

bytes is then the sum of the seek,

rotational delay, and transfer times:

 5 + 4. 165 + (k/1000000) × 8. 33

53

4-54

Disk Space Management

• Dark line (left hand scale) gives data rate of a disk

• Dotted line (right hand scale) gives disk space
efficiency

• All files 2KB

Block size

55

Free Space Management

• Bit Vector management

• One bit for each block

– 0 = free; 1 = occupied

• Use bit manipulation commands to find free

block

• Bit vector requires space

– block size = 4096 = 2 12

– disk size = 1 gigabyte = 2 30

– bits = 2 (30-12) = 2 18 = 32k bytes

0 1 1 1 0

56

Free Space Management

• Bit vector (advantages):

– Easy to find contiguous blocks

• Bit vector (disadvantages):

– Wastes space (bits allocated to unavailable

blocks)

• Issues:

– Must keep bit vector on disk (reliability)

– Must keep bit vector in memory (speed)

57 Figure 4-22. (a) Storing the free list on a linked list. (b) A bitmap.

Keeping Track of Free Blocks (1)

58

Free Space Management

• Linked List management

– Use linked list to identify free space

• Advantages:

– no wasted space

• Disadvantages:

– harder to identify contiguous space.

• Issues:

– Must protect pointer to free list

59

Free Space Management

• Grouping of blocks

Boot

block

File

system

descriptor

File

descriptors

60

Backups to tape are generally made to handle

one of two potential problems:

• Recover from disaster.

• Recover from stupidity.

File System Backups (1)

61

• should the entire file system be backed up or only
part of it?

• it is wasteful to back up files that have not
changed since the previous backup

• since immense amounts of data are typically
dumped, it may be desirable to compress the data
before writing them to tape

• it is difficult to perform a backup on an active file
system

• making backups introduces many nontechnical
problems into an organization

File System Backups (1)

62

• Tw o strategies can be used for dumping a
disk to a backup disk
• Physical dump

• Issues
• there is no value in backing up

unused disk blocks.
• dumping bad blocks

• The main advantages of physical
dumping are simplicity and great speed

• Logical dump

File System Backups (1)

63

Figure 4-25. A file system to be dumped. Squares are directories,

circles are files. Shaded items have been modified since last

dump. Each directory and file is labeled by its i-node number.

File System Backups (2)

64

Figure 4-26. Bitmaps used by the logical dumping algorithm.

File System Backups (3)

65

Figure 4-27. File system states. (a) Consistent. (b) Missing block.

(c) Duplicate block in free list. (d) Duplicate data block.

File System Consistency

66

Figure 4-28. The buffer cache data structures.

Caching (1)

