File Systems

Tanenbaum Chapter 4
Silberschatz Chapters 10, 11, 12

File Systems

Essential requirements for long-term
Information storage:

* |t must be possible to store a very large amount
of information.

° The information must survive the termination of
the process using it.

« Multiple processes must be able to access the
Information concurrently.

File Structure

None:

— File can be a sequence of words or bytes
Simple record structure:

— Lines

— Fixed Length

— Variable Length

Complex Structure:
— Formatted documents
— Relocatable load files

Who decides?

File Systems

Think of a disk as a linear sequence of fixed-size
blocks and supporting reading and writing of
blocks. Questions that quickly arise:

How do you find information?
How do you keep one user from reading another’s data?
How do you know which blocks are free?

File Naming

Extension Meaning

file.bak Backup file

file.c C source program

file.qgif Compuserve Graphical Interchange Format image
file.hlp Help file

file.ntml World Wide Web HyperText Markup Language document
file.jpg Still picture encoded with the JPEG standard
file.mp3 Music encoded in MPEG layer 3 audio format
file.mpg Movie encoded with the MPEG standard

file.o Object file (compiler output, not yet linked)

file.pdf Portable Document Format file

file.ps PostScript file

file.tex Input for the TEX formatting program

file.txt General text file

file.zip Compressed archive

Figure 4-1. Some typical file extensions.

File Access Methods

e Seqguential Access
— Based on a magnetic tape model
— read next, write next
— reset

* Direct Access
— Based on fixed length logical records
— read n, write n
— position to n
— relative or absolute block numbers

File Structure

1 Byte 1 Record
e Ve

Ant

Fox

Pig

_—

Cat

Cow

Dog

Goat

Lion

Owil

Pony

Rat

Worm

(@) (b)

Figure 4-2. Three kinds of files. (a) Byte sequence.

Hen

Ibis

Lamb

(b) Record sequence. (c) Tree.

(c)

File Types

Regular Files:
— ASCII files or binary files

— ASCII consists of lines of text; can be displayed and
printed

— Binary, have some internal structure known to programs
that use them

Directory
— Files to keep track of files

Character special files (a character device file)
— Related to I/0O and model serial /0O devices

Block special files (a block device file)
— Mainly to model disks

File Types

/ Module
Magic number name
Header
Text size
Data size Dat
ate
_g BSS size
E Symbol table size r(r?:éicl;}e Owner
Entry point Protection
Size
Fl
- i Header
22 Text &2
Object
module
T Data F Header
A Relocation A,
T bits T
Object
module
L Symbol A
T table T

(a) (b)

Figure 4-3. (a) An executable file. (b) An archive.

File Attributes

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator ID of the person who created the file
Owner Current owner

Read-only flag

0 for read/write; 1 for read only

Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag 0 for has been backed up; 1 for needs to be backed up

ASClIl/binary flag

0 for ASCII file; 1 for binary file

Random access flag

0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags

0 for unlocked; nonzero for locked

Record length

Number of bytes in a record

Key position

Offset of the key within each record

Key length

Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file was last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

Figure 4-4a. Some possible file attributes.

10

File Group Everyone
Owner Owner Else

Write Read Execute
Permission Permission Permission

UNIX

File Group Everyone
Owner Owner Else

1
[1]o]1]
|
S

File Operations

The most common system calls relating to files:

Create Append
Delete Seek

Open Get Attributes
Close Set Attributes
Read Rename

Write

13

Information in a Device Directory

* File name:

* File Type:

e Address:

« Current Length

« Maximum Length

« Date Last accessed (for archiving)
« Date Last updated (for dumping)

« Owner ID

* Protection information

14

Hierarchical Directory Systems (1)

Single-level directory system:
The simpliest

- Root directory

001010

Figure 4-6. A single-level directory system containing four files.

Hierarchical Directory Systems (2)

—~—Root directory

User
directory__

Figure 4-7. A hierarchical directory system.

Directory Operations

Search for a file

Create afile

Delete a file

_ist a directory

Rename a file

Traverse the file system

17

ODbjectives for a Directory System

« Make It efficient
— It should be easy to locate a file quickly

« Make file (and directory) naming convenient

— Allow 2 users to have the same name for different
files

— Allow the same file to have more than 1 name
 Allow logical grouping of files
— All word processing files together

— All c++ files together

— eflc.
18

Path Names

bin [<~— Root directory

etc
lib

usr

P AN
lib usr

ast

jim

lib

:

ast lib

)

jim

tmp

dict.

Figure 4-8. A UNIX directory tree.

~— /ustr/jim

19

Directory operation

 Hard link

— Linking allows a file to appear in more than
one directory; increments the counter in the
file's I-node

« Symbolic link

— A name Is created pointing to a tiny file
naming another file

File System Implementation

e Users:

— How files are names, what operations are
allowed on them, what the directory tree
looks like

* Implementors

— How files and directories are stored, how disk
space is managed and how to make every
thing work efficiently and reliably

File System Layout

File system are stored on disks.
Most disks are divided up into several partitions

Sector 0 is called MBR (master boot record), to boot
the computer

BIOS reads in and executes MBR, MBR locates the
active partition, reads in the boot block, and execute

The boot block reads in the OS contained in the
partition

Superblock: contains all the key parameters about
a file system; read into memory the booted or the FS
IS used

Carving up the disk

« Entire disk >
Partition table
Mast
aster Partition 1 Partition 2 Partition 3| Partition 4
boot record
Boot Super Free space | Index : : :
block block | management| nodes Files & directories

23

Allocation Methods
Contiguous Allocation

Each file occupies a set of contiguous blocks on the
disk.

Number of blocks needed identified at file creation
— May be increased using file extensions

Advantages:
— Simple to implement
— Good for random access of data

Disadvantages

— Files cannot grow

— Wastes space
24

Contiguous Allocation

el I . .
FileA File Allocation Table
4 .
° ' ? ’ File Name Start Block Length
5 6 7L_1 8 9 2 3
FileB FileB 9 5
10— 11 J1pL 1131 114 FileC 18 8
30 2
HoLe 7 18 - FileE 26 3
FileC
20- 21- 22- 23-24-
FileE
2o 260 1270 1os[19
FileD
30- 31- 32- 33 34
\

/

Allocation Methods

Linked Allocation

 Each file consists of a linked list of disk

nlocks.

data

ptr

— data

ptr

« Advantages:

— Simple to use (only need a starting address)
— Good use of free space

« Disadvantages:
— Random Access is difficult

data

ptr

data

Null

26

Linked Allocation

— | I
0 1 2 3 4 File Allocation Table
N T File Name Start Block End

5 6 7 8 9
1 11| 12 13 14500 28
13 16 17 18 19

2 2 27 23 Y

v

25 26 21 28 | 2¢

30 3 32 33 3
— -

27

Linked Allocation

File Allocation Table

File Name Start Block End

FileB

=l I
FileB
0 1 | 2 3 T 4
R

5 6 7 8 9

1 11| 12 13 14500

15 16 17 18 16

2 2 272 23 2

v

24 26 21 28 29

3(3 32 34 3
\ /

28

Allocation Methods
Indexed Allocation

« Collect all block pointers into an index block.
Ihdex Tab‘e

/TN NN

« Advantages:
— Random Access Is easy
— No external fragmentation

« Disadvantages
— Overhead of index block

\\

Indexed Allocation

I

;0

o 9

—

0 1 — 2

S 6 7
10 11 12
15 16 17
20 21 22
25 26 27
30 31 32

File Allocation Table
File Name Index Block
Jeep

30

Indexed Allocation

— I File Allocation Table
0 1 - 2 3 - 4 File Name Index Block
Jee 24
5 6 7 s o P
10 11 12 13 n
15 16 17 18 19
ool lo1l Jool loal Joa 0 1
\\‘ 8
25 26 27 g o9 . 3
N\
N 14
30 31 32 33 34 O | 28
‘\ / N

31

Linked List Allocation Using a Table in Memory

« FAT-File Allocation Table

« Advantage
— Can take use of the whole block
— Random access is easy
— only to store the starting block number

* Disadvantage
— To keep the entire table in memory
— Can’t scale well

l-nodes

File Attributes
Address of disk block 0 —
Address of disk block 1 N
Address of disk block 2 i
Address of disk block 3 —
Address of disk block 4 —
Address of disk block 5 —
Address of disk block 6 >
Address of disk block 7 —
Address of block of pointers 2

Disk block

containing

additional
disk addresses

Figure 4-13. An example i-node.

I-nodes

« Advantage

— I-node need only be in memory when the
corresponding file is open,; file table grows
linearly with the disk

* Disadvantage
— Each I-node has fixed size

Two types of information

What's in a directory?

— File names
— File metadata (size, timestamps, etc.)
Basic choices for directory information

— Store all information in directory

* Fixed size entries

» Disk addresses and attributes in directory entry
— Store names & pointers to index nodes (i-nodes)

games attributes
mail attributes
news attributes
research | attributes

Storing all information

in the directory

Using pointers to
index nodes

/v attributes
games
mail _— attributes
news :
osearch B attributes
\‘ attributes

35

Implementing Directories (1)

|
games | attributes

T
I

games

mail

mail , attributes
news i attributes
work i attributes

news

(@)

work

T

Data structure
containing the
attributes

Figure 4-14. (a) A simple directory containing fixed-size entries
with the disk addresses and attributes in the directory entry.
(b) A directory in which each entry just refers to an i-node.

File 1 entry length L Pointer to file 1's name Entry
for one
File 1 attributes File 1 attributes file
Entry : : :
for one < P r o J Pointer to file 2's name ~
file e c t - , _
b 0 d 9 File 2 attributes
° : X , Pointer to file 3's name
File 2 entry length {
File 3 attributes
File 2 attributes
p e r
o n n e 2
| X p r o j
File 3 entry length 2 - t -
b u d g
File 3 attributes e t X p
> Heap
f | o I o I X e r S o
n e I
XM ¢ o o
X J

(@) (b)

Figure 4-15. Two ways of handling long file names in a directory.
(@) In-line. (b) In a heap.

Shared Files (2)

C's directory B's directory C's directory B's directory
\ 1
/ \ / \
Owner = C Owner =C Owner = C
Count = 1 Count=2 Count = 1

l l l
O O O

(a) (b) ()

Figure 4-17. (a) Situation prior to linking. (b) After the link is
created. (c) After the original owner removes the file.

Sharing files

Root
directory

A A B B
Papers Photos foo Photos

39

Solution: use links

« A creates a file, and inserts into her directory
* B shares the file by creating a link to it

* A unlinks the file
— B still links to the file
— Owner is still A (unless B explicitly changes it)

A A B B

b.tex b.tex

a.tex a.tex

Owner: A Owner: A Owner: A
Count: 1 Count: 2 Count: 1

40

The MS-DOS File System (1)

Bytes 8 3

2

2

2 4

Size

/

\M//%/A .

|

\

N

Extension Attributes Reserved Time Date First

Figure 4-31. The MS-DOS directory entry.

block
number

41

The MS-DOS File System (2)

Block size | FAT-12 | FAT-16 | FAT-32
0.5 KB 2 MB
1 KB 4 MB
2 KB 8 MB 128 MB
4 KB 16 MB 256 MB 1TB
8 KB 512 MB 2 1B
16 KB 1024 MB 21B
32 KB 2048 MB 21B

Figure 4-32. Maximum partition size for different block sizes. The empty
boxes represent forbidden combinations.

42

| (Index)-nodes (UNIX)

File mode

Number of links

UID

GID

File size

Time created

Time last accessed

Time last modified

10 disk block numbe

Single indirect block

Double indirect bloc

Triple indirect block

Indirect blocks Data blocks
4-43

I-nodes (Cont.)

Assume each block is 1 KB in size and 32 bits
(4 bytes) are used as block numbers

Each indirect block holds 256 block humbers

First 10 blocks

Single indirect
266 KB

Double indirect

- fi
- fi

e size <= 10 KB

e size <= 256+10 =

- file size <= 256*256

+266 = 65802 KB = 64.26 MB

Triple indirect: file size <= 256*256*256 +
65802= 16843018 KB = ~16 GB

4-44

EXT Detalls

 Directory Structure

— The improved byte allocation is as follows:
* 0-3 Inode value
* 4-5 Length of entry
* 6 Length of name (up to 255 now)
« 7 File type

» 0 unknown

» 1 regular file

» 2 directory

» 3 character device
» 4 block device

» 5 FIFO

» 6 Unix Socket

» 7 Symbolic link

« 8- Name in ASCII

Linux File System Structure

* Linux uses a Virtual File System (VFS)
— Defines a file object
— Provides an interface to manipulate that object

« Designed around OO principles
— File system object
— File object
— Inode object (index node)

* Primary File System - ext2fs

— Supports (or maps) several other systems
(MSDOS, NFS (network drives), VFAT (W95),
HPFS (0S/2), etc.

46

Virtual Filesystem

* A kernel software layer that handles all system
calls related to a standard UNIX filesystem.

e Supports:

— Disk-based filesystems
- IDE Hard drives (UNIX, LINUX, SMB, etc.)
« SCSI Hard drives
« floppy drives

— Network filesystems
* remotely connected filesystems

— Special filesystems
* /proc

a7

VF Example

VES

inf = open (“/floppy/test”,
O_RDONLY, 0);

outf = open (“/tmp/test”,
O _WRONLY |O CREATE |O_TRUNC,
0600) ;

do {
cnt = read(inf, buf, 4096);
write (outf, buf, cnt);

} while (cnt);

close (outf) ;

close (inf);

48

Virtual File system and Processes
K

File
Process descriptors
table

Function
\poinlers

Call from
VFS into
FS1

Read
function

FSA1

49

Disk Space Management

* Files are normally stored on disk, so
management of disk space Is a major
concern to file-system designers.

* Two general strategies are possible for
storing an n byte file

— n consecutive bytes of disk space are
allocated, or the file is split up into a number
of (not necessarily) contiguous blocks

— chop files up into fixed-size blocks that need
not be adjacent

50

Disk Space Management

* Block size

— the guestion arises how big the block should
be

51

Disk space Management

Length | VU 1984 | VU 2005 | Web Length | VU 1984 | VU 2005 Web
1 1.79 1.38 6.67 16 KB 92.53 78.92 86.79

2 1.88 1.53 7.67 32 KB 97.21 85.87 91.65

4 2.01 1.65 8.33 64 KB 99.18 90.84 94.80

8 2.31 180 | 11.30 128 KB 99.84 93.73 96.93

16 3.32 215 | 11.48 256 KB 99.96 96.12 08.48
32 513 315 | 12.33 512 KB 100.00 97.73 08.99
64 8.71 498 | 2610 1 MB 100.00 98.87 99.62
128 14.73 8.03 | 2849 2 MB 100.00 99.44 99.80
256 23.09 13.29 | 32.10 4 MB 100.00 99.71 99.87
512 34.44 2062 | 39.94 8 MB 100.00 99.86 09.94
1 KB 48.05 3091 | 47.82 16 MB 100.00 99.94 09.97
2 KB 60.87 46.09 | 59.44 32 MB 100.00 99.97 99.99
4 KB 75.31 59.13 | 70.64 64 MB 100.00 99.99 99.99
8 KB 84.97 69.96 | 79.69 128 MB 100.00 99.99 | 100.00

Figure 4-20. Percentage of files smaller than a given size (in bytes).

52

* As an example, consider a disk with 1 MB
per track, a rotation time of 8.33 msec,
and an average seek time of 5 msec. The
time in milliseconds to read a block of k
bytes Is then the sum of the seek,
rotational delay, and transfer times:

5 + 4. 165 + (k/2000000) x 8. 33

53

Disk Space Management

1000 |- . s e o . s s s e,] s gl — 1000
Disk space utilization \\

S 800 |- {80 &
Q ©
& N
48] = e
X 600 [—{60 5§
) =
© o D
o 400 | Ja o8&
a 5

200 | | 5 ©

Data rate Se
0 Py I | I 0
0 128 256 512 1K 2K 4K 8K 16K O

Block size

« Dark line (left hand scale) gives data rate of a disk

» Dotted line (right hand scale) gives disk space
efficiency

e All files 2KB 4-54

Free Space Management

Bit Vector management

o(1(1(0| ... 1

One Dbit for each block

— 0 =free; 1 = occupied

Use bit manipulation commands to find free
block

Bit vector requires space

— block size = 4096 = 212

— disk size = 1 gigabyte = 230

— bits = 2 30-12) = 218 = 32k bytes

55

Free Space Management

 Bit vector (advantages):.
— Easy to find contiguous blocks

 Bit vector (disadvantages):

— Wastes space (bits allocated to unavailable
blocks)

* |ssues:
— Must keep bit vector on disk (reliability)
— Must keep bit vector in memory (speed)

56

Keeping Track of Free Blocks (1)

Free disk blocks: 16, 17, 18

42 /-b— 230 rbr 86 1001101101101100
136 162 234 0110110111110111
210 612 897 1010110110110110
97 342 422 0110110110111011
41 214 140 1110111011101111
63 160 223 1101101010001111
21 664 223 0000111011010111
48 216 160 1011101101101111
262 320 126 1100100011101111
310 180 142 0111011101110111
516 —/ 482 —/ 141 1101111101110111
A 1-KB disk block can hold 256 A bitmap

32-bit disk block numbers
(a) (b)

Figure 4-22. (a) Storing the free list on a linked list. (b) A bitmagp.

Free Space Management

Linked List management
— Use linked list to identify free space

Advantages:
— no wasted space

Disadvantages:
— harder to identify contiguous space.

Issues:
— Must protect pointer to free list

58

Free Space Management

* Grouping of blocks

59

File System Backups (1)

Backups to tape are generally made to handle
one of two potential problems:

Recover from disaster.
Recover from stupidity.

60

File System Backups (1)

should the entire file system be backed up or only
part of it?

it is wasteful to back up files that have not
changed since the previous backup

since immense amounts of data are typically
dumped, it may be desirable to compress the data
before writing them to tape

it is difficult to perform a backup on an active file
system

making backups introduces many nontechnical
problems into an organization

61

File System Backups (1)

Tw o strategies can be used for dumping a
disk to a backup disk
e Physical dump
* Issues
» there is no value in backing up
unused disk blocks.
» dumping bad blocks
« The main advantages of physical
dumping are simplicity and great speed
e Logical dump

62

File System Backups (2)

/ g e ey

2 5 16 18 2f

!5/\EI 6 ﬁa 19 d;A\%

Directory /\

that has not —>{ 7 10 20 22 30
changed
® © 14 23 @) @2
(L File that File that has
12 13 15 haS Changed 24 25 26 nnt ~rhannad

Figure 4-25. A file system to be dumped. Squares are directories,
circles are files. Shaded items have been modified since last

dump. Each directory and file is labeled by its i-node number.
63

File System Backups (3)

(a) |112|3|4|5|6|7|8]|9|10]11|12{13|14|15[16]17]|18]|19|20|21|22|23|24|25|26|27|28|29]|30]31|32
(b) |112|3]|4|5|6|7|8]|9|10]11|12{13|14|15|16]17]|18]|19|20|21|22|23|24]|25|26|27|28|29|30]31|32
(c) |1]12|3|4]|5|6]|7]|8|9|10]11|12{13|14|15[|16]17|18|19]20]|21|22]|23|24|25|26|27|28]|29|30|31|32
(d) |1112]|3|4|5]|6]|7|8]|9|10|11]12]13|14|15|16|17]|18]19|20|21]|22|23|24|25|26|27]|28|29|30|31|32

Figure 4-26. Bitmaps used by the logical dumping algorithm.

64

File System Consistency

DIOCK TuITioel

01234567 89101112131415

T{1{of1{of1{1f{1{10]0]1j111]0]0

01234567 89101112131415

1{1{oj1]011{1{1{1]0|0|1{1[1]0]O

Blocks in use

Free blocks

Blocks in use

Free blocks

DIOCK TUITIDEI

012345678 9101112131415

T{1{of1{of1{1{1|1j0j0j111|1|0|0

012345678 9101112131415

1{1{o}11012(1{1{1]0(0f1{1]1]0]0

Blocks in use

Free blocks

Blocks in use

Free blocks

Figure 4-27. File system states. (a) Consistent. (b) Missing block.
(c) Duplicate block in free list. (d) Duplicate data block.

65

Caching (1)

LRU

Hash table Front ()
L N

f
f
f

Rear (MRU)

- —>-¢

|
|

T A N A
4

Figure 4-28. The buffer cache data structures.

66

