
1

OS Support for Building 
Distributed Applications:

Multithreaded Programming

Ali Fanian
Isfahan University of Technology

http://www.fanian.iut.ac.ir



2

Outline

 Introduction
 Thread Applications
 Defining Threads
 Architecture of Multithreaded servers
 Threads Synchronization
 Thread Concurrency Models
 Summary



3

Learning objectives

 Know what a modern operating system 
does to support distributed applications 
and middleware
 Definition of network OS
 Definition of distributed OS

 Understand the relevant abstractions and 
techniques, focussing on:
 processes, threads, ports and support for 

invocation mechanisms.

*



4

Networked OS to Distributed OS

 Distributed OS
 Presents users (and applications) with an integrated 

computing platform that hides the individual 
computers.

 Has control over all of the nodes (computers) in the 
network and allocates their resources to tasks 
without user involvement.
 In a distributed OS, the user doesn't know (or care)  where 

his programs are running.
 One OS managing resources on multiple machines
 Examples:

 Cluster computer systems
 Amoeba, V system, Sprite, Globe OS



 Network Operation system
 system retain autonomy in managing their 

own processing resources
 there are multiple system images, one per 

node
 a user can remotely log into another 

computer and run processes there

5

Networked OS to Distributed OS



6

Middleware and the Operating 
System

 In fact, there are no distributed operating 
systems in general use, only network operating 
systems such as UNIX, Mac OS and Windows

 The combination of middleware and network 
operating systems provides an acceptable 
balance between the requirement for 
autonomy on the one hand and network 
transparent resource access on the other.

*



7

The support required by middleware and distributed 
applications

 OS manages the basic resources of computer 
systems

 Tasks:
 programming interface for these resources:

 abstractions such as: processes, virtual memory, files, 
communication channels

 Protection of the resources used by applications
 Concurrent processing 

 provide the resources needed for (distributed) 
services and applications:
 Communication - network access
 Processing - processors scheduled at the relevant 

computers

*



8

System layers

Applications, services

Computer & 

Platform

Middleware

OS: kernel,
libraries & 
servers 

network hardware

OS1

Computer & 
network hardware

Node 1 Node 2

Processes, threads,
communication, ...

OS2
Processes, threads,
communication, ...

Figure 6.1

Figure 2.1
Software and hardware service layers in distributed 

systems

Applications, services

Computer and network hardware

Platform

Operating system 

Middleware

*



 Middleware
 High-level features for DS

 Communication
 Management
 Application specific

 Uniform layer where to build DS services
 Runtime environment of applications

 Operating System
 Low / medium level (core)  features

 Process / threads management
 Local hardware (CPU, disk, memory)
 Security (users, groups, domain, ACLs)
 Basic networking

Building Distributed Systems



10

Core OS functionality

Communication
manager

Thread manager Memory manager

Supervisor

Process manager

Figure 6.2

*



11

Processes and Threads
 Process

A process consists of an execution 
environment together with one or more 
threads. 

An execution environment consists of :
 An address space
 Thread synchronization and communication 

resources (e.g., semaphores, sockets)
 Higher-level resources (e.g., file systems, 

windows)



12

Processes and Threads: Process 
address space

Stack

Text

Heap

Auxiliary
regions

0

2
N

*

Figure 6.3



13

Processes and Threads
 Threads

Threads are schedulable activities 
attached to processes.

The aim of having multiple threads of 
execution is :
 To maximize degree of concurrent execution 

between operations
 To enable the overlap of computation with 

input and output
 To enable concurrent processing on 

multiprocessors.



14

Processes and Threads
 Thread synchronization

The main difficult issues in multi-threaded 
programming are the sharing of objects 
and the techniques used for thread 
coordination and cooperation.

Each thread’s local variables in methods 
are private to it.
 Threads have private stack.



Creation of a new process in 
Distributed Systems

 The creation of a new process can be 
separated into two independent aspects
 the choice of a target host

 The choice of the node at which the new process 
will reside is a matter of policy

 the creation of an execution environment

15



The choice of a target

 Eager et al. distinguish two policy categories for load 
sharing 
 transfer policy

 determines whether to situate a new process locally or 
remotely. This may depend whether the local node is lightly or 
heavily loaded. 

 location policy
 determines which node should host a new process selected for 

transfer
 This decision may depend on the loads of nodes and 

specialized resources they may possess
 V system and Sprite both provide commands for users to 

execute a program at a currently idle workstation
 In the Amoeba system the run server chooses a host for each 

process from a shared pool of processors

16



 Process location policies may be static or 
adaptive
 Static scheme

 operate without regard to the current state of the 
system

 they are designed according to the system’s 
expected long-term characteristics

 They may implement deterministic or probabilistic

17



 Adaptive scheme
 apply heuristics to make their allocation decisions, 

based on unpredictable runtime factors such as a 
measure of the load on each node

 Load-sharing systems may be centralized, 
hierarchical or decentralized

18



 Load-sharing systems may be centralized, 
hierarchical or decentralized
 In the centralized and hierarchical scheme

 there is one load manager component for 
centralized and in the second there are several

 Load managers collect information about the 
nodes and use it to allocate new processes to 
nodes

 In Decentralized manager
 nodes exchange information with one another 

directly to make allocation decisions

19



load-sharing algorithms

 sender-initiated
 One node that requires a new process to be 

created is responsible for initiating the transfer 
decision

 It typically initiates a transfer when its own load 
crosses a threshold

 receiver-initiated
 a node whose load is below a given threshold 

advertises its existence to other nodes so that 
relatively loaded nodes can transfer work to it

20



load-sharing algorithms

 Migratory
 systems can shift load at any time, not just 

when a new process is created
 Eager et al. studied three approaches to 

load sharing 
 He concluded that simplicity is an important 

property of any load-sharing scheme
 This is because relatively high overheads

21



Creation of a new execution 
environment

 Once the host computer has been 
selected, a new process requires 
 an execution environment consisting of 

 an address space with initialized contents 
 and perhaps other resources, such as default 

open files

22



Process Creation
 There are two approaches

 The first approach is used where the address 
space is of a statically defined format

 Alternatively, the address space can be 
defined with respect to an existing execution 
environment (for ex. Fork).
 the newly created child process physically shares 

the parent’s text region and has heap and stack 
regions that are copies of the parent’s in extent

23



Some improvement scheme

 copy-on-write
 The region is copied, but no physical copying 

takes place by default
 A page in the region is only physically copied 

when one or another process attempts to 
modify it

24



25

Processes and Threads (6): Copy-
on-write

a) Before write b) After write

Shared
frame

A's page
table

B's page
table

Process A’s address space Process B’s address space

Kernel

RA RB

RB copied
from RA

*



26

Process
Thread activations

Activation stacks
(parameters, local variables)

Processes and Threads (7): 
Thread memory regions

'text' (program code)Heap (dynamic storage, 
objects, global variables) 

system-provided resources
(sockets, windows, open files)

*



27

Processes and Threads (8): Client 
and server

Client

Thread 2 makes

Thread 1

requests to server

generates 
results

Server

N threads

Input-output

Requests

Receipt &
queuing

*

The 'worker pool' architecture



28

Processes and Threads (9)

 average interval of successive job completions
 one request: 2 milliseconds of processing and 8 for i/o 

delay
 one thread: 2+8 = 10 milliseconds, 100 requests/second

 two threads: 125 requests/second, serial i/o, why?
 two threads: 200 requests/second, concurrent i/o, why?
 two threads with cache (75% hit): 

 2 milliseconds (.75*0 + .25*8), 500 requests/sec
 cpu overhead of caching: 2.5 milliseconds, 400 

requests/sec



29

Processes and Threads (10): server threading architectures

a. Thread-per-request b. Thread-per-connection c. Thread-per-object

*

remote

workers

I/O

objects

server
process

remote

per-connection threads

objects

server
process

remoteI/O

per-object threads

objects

server
process



30

Execution environment Thread
Address space tables Saved processor registers
Communication interfaces, open files Priority and execution state (such as

BLOCKED )
Semaphores, other synchronization

objects
Software interrupt handling information

List of thread identifiers Execution environment identifier

Pages of address space resident in memory; hardware cache entries

State associated with execution environments and threads

Processes and Threads (11): 
Threads vs processes

 Creating a thread is (much) cheaper than a process (~10-20 times)
 Switching to a different thread in same process is (much) cheaper (5-50 

times)
 Threads within same process can share data and other resources more 

conveniently and efficiently (without copying or messages)
 Threads within a process are not protected from each other

*



31

Processes and Threads (12): 
Concurrency

 Issues in concurrency:
 Race condition
 Deadlock

 Programming support
 library (POSIX pthreads)
 language support (Ada95, Modula-3, Java)



32

Processes and Threads (13)

 thread (process) execution
 create/fork
 exit
 join/wait
 yield



33

Processes and Threads (14)

 Synchronization
 coordinate current tasks and prevent race conditions 

on shared objects
 Critical region: only one thread/process at a time is 

allowed
 Why critical regions should be as small as possible?

 Programming support
 Mutual exclusion
 Condition Variables
 Semaphores



34

Processes and Threads (15): 
Mutual Exclusion

 Mutual exclusion (mutex)
 critical region/section
 before entering critical region, try to lock
 mutex_lock(l):  

 if try to lock is successful
 lock and continue

 else
 blocked

 mutex_unlock(l): release the lock



35

Processes and Threads (17): 
Condition Variables

 Condition variable
 wait for an event (condition) before proceeding
 Assoicated mutex with the condition

 Waiting for an event
1. lock associated mutex m
2. while (predicate is not true)     // "if" could work, but less safe
3. cv_wait( c, m ) 
4. do work
5. unlock associated mutex m

 Signaling an event
1. lock associated mutex m 
2. set predicate to true
3. cv_signal( c )             // signal condition variable (wake-up one or 

all)
4. unlock associated mutex m



36

Thread scheduling
 Preemptive

 a thread can be suspended at any point for 
another thread to run

 Non-preemptive
 a thread can only be suspended when it de-

schedules itself (e.g. blocked by I/O, sync...) 
[critical region between calls that de-schedule]

 any section of code that does not contain a call 
to the threading system is automatically a 
critical section

 Race conditions are thus conveniently avoided
 The programmer may need to insert special 

yield() calls



Threads implementation

 Some kernels provide 
 Thread creation, management and scheduling

 Some other kernels have only a single-threaded 
process abstraction
 Multithreaded processes must then be implemented in a 

library of procedures linked to application programs
 the kernel has no knowledge of these user-level threads 

and therefore cannot schedule them independently
 A threads runtime library organizes the scheduling of 

threads
 A thread would block the process, and therefore all 

threads within it, if it made a blocking system call

37



Threads implementation

 user-level threads implementation suffers 
from the following problems
 The threads within a process cannot take 

advantage of a multiprocessor.
 A thread that takes a page fault blocks the 

entire process and all threads within it.

38



Threads implementation

 Advantages user-level threads 
implementation
 Certain thread operations are significantly 

less costly 
 Switching between threads belonging to the same 

process does not necessarily involve a system call
 scheduling can be customized
 more user-level threads can be supported

39



40

Processes and Threads 

 Mixed
 Mach:

 user-level code to provide scheduling hints to the 
kernel

 Solaris: 
 assign each user-level thread to a kernel-level 

thread (multiple user threads can be in one 
kernel thread)

 creation/switching at the user level
 scheduling at the kernel level



41

Processes and Threads 

 FastThread package
 hierarchical, event-based scheduling
 each process has a user-level thread scheduler
 virtual processors are allocated to processes

 the # of virtual processors depends on a process's 
needs

 physical processors are assigned to virtual processors
 virtual processors can be dynamically allocated and 

deallocated to a process according to its needs.
 Scheduler Activation (SA)

 event/call from kernel to user-level scheduler
 user-level scheduler can assign threads to SA's



42

Processes and Threads : 
Scheduler activations

Process
A

Process
B

Virtual processors Kernel

Process

Kernel

P idle

P needed

P added

SA blocked

SA unblocked

SA preempted

A. Assignment of virtual processors 
    to processes

B. Events between user-level scheduler & kerne
   Key: P = processor; SA = scheduler activation

Skip Sections 6.5 and 6.6



43

Operating System Architecture
 The kernel would provide only the most basic 

mechanisms upon which the general resource 
management tasks at a node are carried out. 

 Server modules would be dynamically loaded as 
required, to implement the required resourced 
management policies for the currently running 
applications.

 The major kernel architectures:
Monolithic kernels
Micro-kernels



44

Operating System Architecture
 Monolithic Kernels

A monolithic kernel can contain some 
server processes that execute within its 
address space, including file servers and 
some networking. 

The code that these processes execute is 
part or the standard kernel configuration.



45

Operating System Architecture

Monolithic kernel and microkernel

Monolithic Kernel Microkernel

Server: Dynamically loaded server program:Kernel  code and data:

.......

.......S4

S1 .......

S1 S2 S3

S2 S3 S4



46

Operating System Architecture
 Microkernel

The microkernel appears as a layer 
between hardware layer and a layer 
consisting of major systems.

 If performance is the goal, rather than 
portability, then middleware may use the  
facilities of the microkernel directly.



47

Operating System Architecture

Middleware

Language
support

subsystem

Language
support

subsystem

OS emulation
subsystem ....

Microkernel

Hardware

The microkernel supports middleware via subsystems

Figure 6. The role of the microkernel



48

Operating System Architecture
 Monolithic and Microkernel comparison

The advantages of a microkernel
 Its extensibility
 Its ability to enforce modularity behind 

memory protection boundaries.
 Its small kernel has less complexity.

The advantages of a monolithic 
 The relative efficiency with which operations 

can be invoked because even invocation to 
a separate user-level address space on the 
same node is more costly.



49

Operating System Architecture
 Hybrid Approaches

Pure microkernel operating system such 
as Chorus & Mach have changed over a 
time to allow servers to be loaded 
dynamically into the kernel address space 
or into a user-level address space. 

 In some operating system such as SPIN, 
the kernel and all dynamically loaded 
modules grafted onto the kernel execute 
within a single address space.


