
1

Indirect Communication

Chapter 6

Ali Fanian,

Isfahan University of Technology

Indirect Communication

 The essence of indirect communication is to

communicate through an intermediary and

hence have no direct coupling between the

sender and the one or more receivers.

Direct Coupling

 RPC and RMI are all based on a direct

coupling between a sender and a receiver,

and this leads to a certain amount of rigidity

in the system in terms of dealing with

change.

 In client-server interaction, because of the direct

coupling, it is more difficult to replace a server

 If the server fails, this directly affects the client,

which must explicitly deal with the failure

3

Indirect Coupling

 In contrast, indirect communication avoids this
direct coupling

 The literature refers to two key properties
stemming from the use of an intermediary:
 Space uncoupling, in which the sender does not

know or need to know the identity of the receiver(s),
and vice versa.

 Participants (senders or receivers) can be replaced,
updated, replicated or migrated.

 Time uncoupling, in which the sender and
receiver(s) can have independent lifetimes.

 The sender and receiver(s) do not need to exist at the same
time to communicate.

4

Space and time coupling in distributed systems

 The main disadvantage is that there will
inevitably be a performance overhead
introduced by the added level of indirection

5

Asynchronous communication vs time

uncoupling

 In asynchronous communication, a

sender sends a message and then

continues

 Time uncoupling adds the extra

dimension that the sender and receiver(s)

can have independent existences

6

Indirect Communication Tech.

 Group communication

 Publish-subscriber

 Message queue system

 Shared memory

7

Group Communication

 Group communication offers a service
whereby a message is sent to a group

 the sender is not aware of the identities of

the receivers

8

 Open and closed groups

 A group is said to be closed if only members
of the group may multicast to it

9

 Overlapping and non-overlapping groups

 In overlapping groups, entities (processes or

objects) may be members of multiple groups,

and non-overlapping groups imply that

membership does not overlap

10

Implementation issues

 Reliability and ordering in multicast

 In group communication, all members of a group
must receive copies of the messages sent to the
group, generally with delivery guarantees.

 Group communication services offer ordered
multicast, with the option of one or more of the
following properties (with hybrid solutions also
possible)
 FIFO ordering

 Causal ordering

 Total ordering

11

Implementation issues

 Group membership management

 The key elements of group communication

management are summarized in the following

12

Implementation issues

 Group membership management

 a group membership service has four main

tasks

 Providing an interface for group membership
changes

 Failure detection

 Notifying members of group membership changes

 Performing group address expansion

13

Implementation issues

 IP multicast is a weak case of a group

membership service, with some but not

all of these properties.

 Support join and leave

 Performs address expansion

 Doesn’t provide group member information

 Multicast delivery is not coordinated with

membership changes

14

Case study: the JGroups toolkit

 JGroups is a toolkit for reliable group

communication written in Java

 The architecture of JGroups is shown in

the following

15

Case study: the JGroups toolkit

 the main components of the JGroups

implementation are

 Channels

 A process interacts with a group through a

channel object, which acts as a handle onto a

group.

 getView, getState

16

Case study: the JGroups toolkit

 the main components of the JGroups

implementation are

 Building blocks

 Building blocks are higher-level abstractions on

top of the channel

 Examples of building blocks in JGroups are

 MessageDispatcher

 RpcDispatcher

 NotificationBus

17

Case study: the JGroups toolkit

 The protocol stack

 The layer referred to as UDP is the most common
transport layer in Jgroups

 FRAG implements message packetization and is
configurable in terms of the maximum message size

 MERGE is a protocol that deals with unexpected
network partitioning and the subsequent merging of
subgroups after the partition

 GMS implements a group membership protocol to
maintain consistent views of membership across the
group

 CAUSAL implements causal ordering

18

Publish-Subscribe Systems

 A system where publishers publish
structured events to an event service and

subscribers express interest in particular
events through subscriptions which can
be arbitrary patterns over the structured
events

19

Applications of publish-subscribe systems

 financial information systems

 support for cooperative working, where a

number of participants need to be

informed of events of shared interest

 a broad set of monitoring applications,

including network monitoring in the

Internet.

 ….

20

Dealing room system

21

The publish-subscribe paradigm

22

The Subscription (filter) Model

 Channel-based
 publishers publish events to named channels and

subscribers then subscribe to one of these named
channels to receive all events sent to that channel

 Topic-based
 each notification is expressed in terms of a number

of fields, with one field denoting the topic

 Subscriptions are then defined in terms of the topic
of interest

 Content-based
 a content-based filter is a query defined in terms of

compositions of constraints over the values of event
attributes

23

Implementation issues

 Centralized versus distributed

implementations

 Centralized model: implementation in a

single node with a server on that node acting

as an event broker

 Interaction with the broker is then through a

series of point-to-point messages

 this can be implemented using message passing

24

A network of brokers

 Distributed model : In such schemes, the
centralized broker is replaced by a network of
brokers that cooperate to offer he desired
functionality as illustrated in Figure

25

Overall systems architecture

 the implementation of centralized

schemes is relatively straightforward

 the implementations of channel-based or

topic-based schemes are relatively

straightforward

 The distributed implementation of

content-based approaches is more

complex

26

Content Based Approch

 For content-based approaches, this

problem is referred to as content-based
routing (CBR), with the goal being to
exploit content information to efficiently
route events to their required destination

27

The architecture of publish-subscribe

systems in Content Based

28

 Flooding
 sending an event notification to all nodes in the

network and then carrying out the appropriate
matching at the subsciber end.

 Filtering
 Brokers forward notifications through the

network only where there is a path to a valid
subscriber

 This is achieved by propagating subscription
information through the network towards
potential publishers and then storing associated
state at each broker

29

 Rendezvous

 this approach defines rendezvous nodes,

which are broker nodes responsible for a

given subset of the event space

30

Message queues

 Provide a point-to-point service using the
concept of a message queue as an
indirection, thus achieving the desired

properties of space and time uncoupling

 sender places the message into a queue,

and it is then removed by a single

process

31

styles of receive

 A blocking receive, which will block until an

appropriate message is available;

 A non-blocking receive (a polling operation),

which will check the status of the queue and

return a message if available, or a not

available indication otherwise;

 A notify operation, which will issue an event

notification when a message is available in

the associated queue.

32

The message queue paradigm

33

Distributed Shared memory

approaches

34

