
1

Inter-Process Communication:
Network Programming using

TCP Java Sockets

Ali Fanian,

Isfahan University of Technology

2

INTERPROCESS

COMMUNICATION
From Chapter 4 of Distributed Systems

Concepts and Design

Outline: Communications Models

 Communication Models:

 General concepts.

 Message passing.

 Distributed shared memory (DSM).

 Remote procedure call (RPC) [Birrel et al.]

 Light-weight RPC [Bershad et al.]

 DSM case studies

 IVY [Li et al.]

 Linda [Carriero et al.]

http://www.sysproject.info/ivy.php
http://www.sysproject.info/linda.php

Communication Paradigms

 2 models

 Message Passing (MP)

 Distributed Shared Memory (DSM)

 Message Passing

 Processes communicate by sending messages.

 Distributed Shared Memory

 Communication through a “virtual shared
memory”.

Message Passing

 Basic communication primitives:

 Send message.

 Receive message.

 Modes of communication:

 Blocking versus non-blocking.

 Semantics:

 Reliable versus unreliable.

...
Send

Sending Q

...

Receiving Q

Receive

non-Blocking Communication

 Non-blocking send: sending process continues as
soon message is queued.

 Blocking or non-blocking receive:

 Blocking:

 Timeout.

 Threads.

 Non-blocking: proceeds while waiting for
message.

 Message is queued upon arrival.

 Process needs to poll or be interrupted.

Reliability of Communication

 Unreliable communication:

 “best effort” - send and hope for the best

 No ACKs or retransmissions.

 Application must provide its own reliability.

 Example: User Datagram Protocol (UDP)

 Applications using UDP either don’t need

reliability or build their own (e.g., UNIX NFS

and DNS (both UDP and TCP), some audio or

video applications)

Reliability of Communication

 Reliable communication:

 Processes have some guarantee that messages
will be delivered.

 Example: Transmission Control Protocol (TCP)

 Reliability mechanisms:

 Positive acknowledgments (ACKs).

 Negative Acknowledgments (NACKs).

 Possible to build reliability atop unreliable service

11

Interprocess communication

 There are some APIs for interprocess
communication in the internet provides
both datagram and stream
communication.

 The two communication patterns that are
most commonly used in distributed
programs:

Client-Server communication
 The request and reply messages provide

the basis for remote method invocation
(RMI) or remote procedure call (RPC).

Group communication

12

Interprocess communication

 Remote Method Invocation (RMI)

 It allows an object to invoke a method in
an object in a remote process.

 E.g. CORBA and Java RMI

 Remote Procedure Call (RPC)

 It allows a client to call a procedure in a
remote server.

13

Interprocess communication

 This chapter is concerned with
middleware.

Middleware layers

14

Interprocess communication

 Request-reply protocols are designed to
support client-server communication in the
form of either RMI or RPC.

 Group multicast is a form of interprocess
communication in which one process in a
group of processes transmits the same
message to all members of the group.

Communication Models

15

16

TCP Vs UDP Communication

A B

A B

…

…

 Connection-Oriented Communication

 Connectionless Communication

17

Understanding Ports

 The TCP and UDP

protocols use ports to

map incoming data to

a particular process

running on a

computer.

server

 P

o

r

t

Client
TCP

TCP or UDP

port port port port

app app app app

port# data Data

Packet

18

Understanding Ports

 Port is represented by a positive (16-bit) integer
value

 Some ports have been reserved to support
common/well known services:
 ftp 21/tcp

 telnet 23/tcp

 smtp 25/tcp

 login 513/tcp

 User-level processes/services generally use
port number value >= 1024

19

Sockets

 Sockets provide an interface for programming networks
at the transport layer

 Network communication using Sockets is very much
similar to performing file I/O
 In fact, socket handle is treated like file handle.

 Socket-based communication is programming language
independent.
 That means, a socket program written in Java language can

also communicate to a program written in Java or non-Java
socket program

20

Socket Communication

 A server (program) runs on a specific

computer and has a socket that is bound

to a specific port. The server waits and

listens to the socket for a client to make a

connection request.

server

Client
Connection request

p
o

rt

21

Socket Communication

 If everything goes well, the server accepts the
connection. Upon acceptance, the server gets a new
socket so it can continue to communicate the client.

server

Client

Connection

p
o

rt

p
o

rt

23

Client- Server communication

(UDP)

socket() to

create socket

bind() to

a receiving port

recvfrom ()

sendto()

socket() to

create scoket

bind() to

any port

recvfrom ()

sendto ()

server

client

24

Client- Server communication (TCP)

socket()
bind() to

a receiving port

listen ()

to socket

Accept()

 connection

socket()
bind() to

any port

connect ()

to server

send()

 recv()

send()

 recv()

server

client

26

TCP Stream Communication

 Use of TCP

Many services that run over TCP

connections, with reserved port number

are:

 HTTP (Hypertext Transfer Protocol)

 FTP (File Transfer Protocol)

 Telnet

 SMTP (Simple Mail Transfer Protocol)

Multicast = Efficient Data Distribution

Src Src

Why Not Broadcast or Unicast?

 Broadcast:

 Send a copy to every machine on the net

 Simple, but inefficient
 All nodes must process packet even if they don’t

care
 Wastes more CPU cycles of slower machines

 Network loops lead to “broadcast storms”

 Replicated Unicast:

 Sender sends a copy to each receiver in turn

 Receivers need to register or sender must be
pre-configured

 Reliability => per-receiver state, separate
sessions/processes at sender

IP Multicast model: RFC 1112

 Message sent to multicast “group” (of

receivers)

 Senders need not be group members

 A group identified by a single “group address”

 Use “group address” instead of destination address

in IP packet sent to group

 Groups can have any size;

 Group members can be located anywhere on

the Internet

 Group membership is not explicitly known

 Receivers can join/leave at will

IP Multicast Addresses

 Class D IP addresses

 224.0.0.0 – 239.255.255.255

 Address allocation:

 Well-known (reserved) multicast addresses,
224.0.0.x and 224.0.1.x

 Each multicast address represents a group of
arbitrary size, called a “host group”

 There is no structure within class D address space like
subnetting => flat address space

Group ID

IP Multicast Service — Receiving

 Two new operations

 Join-IP-Multicast-Group

 Leave-IP-Multicast-Group

 Receive multicast packets for joined

groups via normal IP-Receive operation

Using Link-Layer Multicast Addresses
 Ethernet and other LANs using 802

addresses:

 Direct mapping! Simpler than unicast! No ARP
etc.

 32 class D addrs may map to one MAC addr

 Special OUI for IETF: 0x01-00-5E.

 No mapping needed for point-to-point links

LAN multicast address

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0

1 1 1 0 28 bits

23 bits

IP multicast address

Group bit

IP Multicast Architecture

Hosts

Routers

Service model

Host-to-router protocol

(IGMP)

Multicast routing protocols

(various)

34

External Data Representation

 The information stored in running programs is

represented as data structures, whereas the

information in messages consists of sequences

of bytes.

 Irrespective of the form of communication used,

the data structure must be converted to a

sequence of bytes before transmission and

rebuilt on arrival.

36

External Data Representation

 Marshalling

 Marshalling is the process of taking a collection of

data items and assembling them into a form

suitable for transmission in a message.

 Unmarshalling

 Unmarshalling is the process of disassembling a

collection of data on arrival to produce an

equivalent collection of data items at the

destination.

37

External Data Representation

 Three approaches to external data

representation and marshalling are:

CORBA

 Java’s object serialization

XML

38

External Data Representation

 Marshalling and unmarshalling activities is

usually performed automatically by

middleware layer.

39

CORBA Common Data Representation (CDR)

 CORBA Common Data Representation (CDR)

 CORBA CDR is the external data representation

defined with CORBA 2.0.

 It consists 15 primitive types:
 Short (16 bit)

 Long (32 bit)

 Unsigned short

 Unsigned long

 Float(32 bit)

 Double(64 bit)

 Char

 Boolean(TRUE,FALSE)

 Octet(8 bit)

 Composite type are shown in Figure 8.

40

CORBA Common Data Representation (CDR)

CORBA CDR for constructed types

41

Client-Server Communication

 The client-server communication is designed to

support the roles and message exchanges in

typical client-server interactions.

 In the normal case, request-reply communication

is synchronous because the client process

blocks until the reply arrives from the server.

 Asynchronous request-reply communication is

an alternative that is useful where clients can

afford to retrieve replies later.

42

Client-Server Communication

 It is better this model is implemented over UDP

datagrams

 Client-server protocol consists of request/response

pairs, hence no acknowledgements at transport layer

are necessary

 Avoidance of connection establishment overhead

 No need for flow control due to small amounts of

data are transferred

43

Client-Server Communication

 The request-reply protocol was based on a trio

of communication primitives: doOperation,

getRequest, and sendReply shown in the

followin

44

Client-Server Communication

 The designed request-reply protocol matches requests

to replies.

 If UDP datagrams are used, the delivery guarantees

must be provided by the request-reply protocol, which

may use the server reply message as an

acknowledgement of the client request message

45

Client-Server Communication

 The information to be transmitted in a request

message or a reply message is shown in the

following figure

Request-reply message structure

46

Client-Server Communication

 In a protocol message

 The first field indicates whether the message is a

request or a reply message.

 The second field request id contains a message

identifier.

 The third field is a remote object reference .

 The forth field is an identifier for the method to be

invoked.

47

Client-Server Communication

 Message identifier

A message identifier consists of two parts:

 A requestId, which is taken from an

increasing sequence of integers by the

sending process

 An identifier for the sender process, for

example its port and Internet address.

48

Client-Server Communication

 Failure model of the request-reply protocol

 If the three primitive doOperation,

getRequest, and sendReply are

implemented over UDP datagram, they

have the same communication failures.

 Omission failure

Messages are not guaranteed to be

delivered in sender order.

Remote Procedure Call

 the style of programming promoted by

RPC – programming with interfaces;

 the call semantics associated with RPC;

 the key issue of transparency and how it

relates to remote procedure calls

49

Programming With Interfaces

 Most programming languages organize a program as a
set of module

 Communication between modules can be by means of
 Procedure call between them

 Direct access to the their variables

 Interface: it specifies the procedure and the variables
that can be accessed from other modules

 Modules are implemented so as to hide all the
information about them except that which is available
through its interface
 The implementation of a module may be changed without

affecting the users of the module

50

Interface in distributed systems

 In a distributed program, the module can

run in separate process.

 Service Interface

 The specification of the procedures offered

by a server

 Defining the types of the arguments of each

of the procedures

51

benefits of interface

 Programmers are concerned only with the

abstraction offered by the service

interface

 Programmers do not

 Need be aware of implementation details

 Need to know the programming language

 Need to know underlying platform used to

implement the service

52

Influence of DS to SI

 Client can not access to the variables in a

module in another process

 Call by reference is not supported

 Addresses in on process are not valid in

another remote one

 The parameters in the interface in DS are

specified by input, output or both

53

Interface Definition Language(IDL)

 An RPC mechanism can be integrated with a
particular programming language
 if it includes an adequate notation for defining interfaces

 allowing input and output parameters to be mapped onto
the language’s normal use of parameters

 Interface definition languages (IDLs) are designed to
allow procedures implemented in different languages
to invoke one another

 An IDL provides a notation for defining interfaces in
which each of the parameters of an operation may be
described as for input or output in addition to having
its type specified

54

Simple Example of CORBA IDL

55

RPC Call Semantics

 Request-replay protocol can be implemented in
different ways to provide different delivery
guarantees
 Retry request message

 Controls whether to retransmit the request message until
either a reply is received or the server is assumed to have
failed

 Duplicate filtering
 Controls when retransmissions are used and whether to

filter out duplicate requests at the server

 Retransmission of the results
 Controls whether to keep a history of result messages to

enable lost results to be retransmitted without re-executing
the operations at the server

56

Call Semantic

 Combinations of these choice lead to a
variety of possible semantic for the reliability
of remote invocations as seen by the invoker

57

Call Semantics

 Maybe call semantics

 After a RPC time-out (or a client crashed and
restarted), the client is not sure if the RP may or
may not have been called.

 This is the case when no fault tolerance is built into
RPC mechanism.

 Clearly, maybe semantics is not desirable.

58

Call Semantics

 At-least-once call semantics

 With this call semantics, the client can assume that
the RP is executed at least once (on return from the
RP).

 Can be implemented by retransmission of the (call)
request message on time-out.

59

Call Semantics

 At-most-once call semantics

 When a RPC returns, it can assumed that the remote
procedure (RP) has been called exactly once or not
at all.

 Implemented by the server's filtering of duplicate
requests (which are caused by retransmissions due
to IPC failure, slow or crashed server) and caching
of replies (in reply history, refer to RRA protocol).

60

RPC Mechanism

 How does the client know the procedure
(names) it can call and which parameters it
should provide from the server?

 Server interface definition

 RPC interface specifies those characteristics of the
procedures provided by a server that are visible to
the clients.

 The characteristics includes: names of the
procedures and type of parameters.

 Each parameter is defined as input or output.

61

RPC Mechanism

 In summary, an interface contains a list of procedure
signatures - the names and types of their I/O
arguments (to be discussed later).

 This interface is made known to the clients through
a server process binder (to be discussed later).

62

RPC Mechanism

 How does the client transfer its call request
(the procedure name) and the arguments to
the server via network?

 Marshalling and communication with server:

 For each remote procedure call, a (client) stub
procedure is generated and attached to the (client)
program.

 Replace the remote procedure call to a (local) call to
the stub procedure.

63

RPC Mechanism

 The (codes in the) stub procedure marshals (the
input) arguments and places them into a message
together with the procedure identifier (of the remote
procedure).

 Use IPC primitive to send the (call request) message
to the server and wait the reply (call return)
message (DoOperation).

64

RPC Mechanism

 How does the server react the request of the
client? From which port? How to select the
procedure? How to interpret the arguments?

 Dispatching, Un-marshalling, communication
with client:

 A dispatcher is provided. It receives the call request
message from the client and uses the procedure
identifier in the message to select one of the server
stub procedures and passes on the arguments.

65

RPC Mechanism

 For each procedure at the server which is declared
(at the sever interface) as callable remotely, a
(server) stub procedure is generated.

 The task of a server stub procedure is to un-marshal
the arguments, call the corresponding (local) service
procedure.

66

RPC Mechanism

 How does the server transmit the reply back?

 On return, the stub marshals the output
arguments into a reply (call return) message
and sends it back to the client.

67

RPC Mechanism

 How does the client receive the reply?

 The stub procedure of the client unmarshals
the result arguments and returns (local call
return). Note that the original remote
procedure call was transformed into a (local)
call to the stub procedure.

68

RPC Mechanism

client

stub

proc.

Communication

module

Local

return

Local

call

Client computer Server computer

server

stub

proc.

client

service

procedure

Receive

reply

Send

request

Unmarshal

results

Marshal

arguments

Receive

request

Send

reply

Select procedure

Unmarshal

arguments

Marshal

results

Execute procedure

69

Case Studies: SUN RPC

 Interface definition language: XDR

 a standard way of encoding data in a portable
fashion between different systems;

 Interface compiler: rpcgen
 A compiler that takes the definition of a remote

procedure interface, and generates the client stubs
and the server stubs;

 Communication handling: TCP or UDP

 Version: RPCSRC 3.9 (4.3BSD UNIX)
 A run-time library to handle all the details.

70

 Most languages allow interface names to be
specified, but Sun RPC does not

 instead of this, a program number and a
version number are supplied
 The program numbers can be obtained from a

central authority to allow every program to have
its own unique number

 The version number is intended to be changed
when a procedure signature changes

 Both program and version number are passed in
the request message

71

Case Studies: SUN RPC

 A procedure definition specifies a procedure
signature and a procedure number. The procedure
number is used as a procedure identifier in request
messages.
 The procedure signature consists of the result type, the

name of the procedure and the type of the input
parameter

 Only a single input parameter is allowed.
Therefore, procedures requiring multiple
parameters must include them as components of a
single structure.

 The output parameters of a procedure are
returned via a single result.

72

Case Studies: SUN RPC

73

Case Studies: SUN RPC

