
1

Inter-Process Communication:
Network Programming using

TCP Java Sockets

Ali Fanian,

Isfahan University of Technology

2

INTERPROCESS

COMMUNICATION
From Chapter 4 of Distributed Systems

Concepts and Design

Outline: Communications Models

 Communication Models:

 General concepts.

 Message passing.

 Distributed shared memory (DSM).

 Remote procedure call (RPC) [Birrel et al.]

 Light-weight RPC [Bershad et al.]

 DSM case studies

 IVY [Li et al.]

 Linda [Carriero et al.]

http://www.sysproject.info/ivy.php
http://www.sysproject.info/linda.php

Communication Paradigms

 2 models

 Message Passing (MP)

 Distributed Shared Memory (DSM)

 Message Passing

 Processes communicate by sending messages.

 Distributed Shared Memory

 Communication through a “virtual shared
memory”.

Message Passing

 Basic communication primitives:

 Send message.

 Receive message.

 Modes of communication:

 Blocking versus non-blocking.

 Semantics:

 Reliable versus unreliable.

...
Send

Sending Q

...

Receiving Q

Receive

non-Blocking Communication

 Non-blocking send: sending process continues as
soon message is queued.

 Blocking or non-blocking receive:

 Blocking:

 Timeout.

 Threads.

 Non-blocking: proceeds while waiting for
message.

 Message is queued upon arrival.

 Process needs to poll or be interrupted.

Reliability of Communication

 Unreliable communication:

 “best effort” - send and hope for the best

 No ACKs or retransmissions.

 Application must provide its own reliability.

 Example: User Datagram Protocol (UDP)

 Applications using UDP either don’t need

reliability or build their own (e.g., UNIX NFS

and DNS (both UDP and TCP), some audio or

video applications)

Reliability of Communication

 Reliable communication:

 Processes have some guarantee that messages
will be delivered.

 Example: Transmission Control Protocol (TCP)

 Reliability mechanisms:

 Positive acknowledgments (ACKs).

 Negative Acknowledgments (NACKs).

 Possible to build reliability atop unreliable service

11

Interprocess communication

 There are some APIs for interprocess
communication in the internet provides
both datagram and stream
communication.

 The two communication patterns that are
most commonly used in distributed
programs:

Client-Server communication
 The request and reply messages provide

the basis for remote method invocation
(RMI) or remote procedure call (RPC).

Group communication

12

Interprocess communication

 Remote Method Invocation (RMI)

 It allows an object to invoke a method in
an object in a remote process.

 E.g. CORBA and Java RMI

 Remote Procedure Call (RPC)

 It allows a client to call a procedure in a
remote server.

13

Interprocess communication

 This chapter is concerned with
middleware.

Middleware layers

14

Interprocess communication

 Request-reply protocols are designed to
support client-server communication in the
form of either RMI or RPC.

 Group multicast is a form of interprocess
communication in which one process in a
group of processes transmits the same
message to all members of the group.

Communication Models

15

16

TCP Vs UDP Communication

A B

A B

…

…

 Connection-Oriented Communication

 Connectionless Communication

17

Understanding Ports

 The TCP and UDP

protocols use ports to

map incoming data to

a particular process

running on a

computer.

server

 P

o

r

t

Client
TCP

TCP or UDP

port port port port

app app app app

port# data Data

Packet

18

Understanding Ports

 Port is represented by a positive (16-bit) integer
value

 Some ports have been reserved to support
common/well known services:
 ftp 21/tcp

 telnet 23/tcp

 smtp 25/tcp

 login 513/tcp

 User-level processes/services generally use
port number value >= 1024

19

Sockets

 Sockets provide an interface for programming networks
at the transport layer

 Network communication using Sockets is very much
similar to performing file I/O
 In fact, socket handle is treated like file handle.

 Socket-based communication is programming language
independent.
 That means, a socket program written in Java language can

also communicate to a program written in Java or non-Java
socket program

20

Socket Communication

 A server (program) runs on a specific

computer and has a socket that is bound

to a specific port. The server waits and

listens to the socket for a client to make a

connection request.

server

Client
Connection request

p
o

rt

21

Socket Communication

 If everything goes well, the server accepts the
connection. Upon acceptance, the server gets a new
socket so it can continue to communicate the client.

server

Client

Connection

p
o

rt

p
o

rt

23

Client- Server communication

(UDP)

socket() to

create socket

bind() to

a receiving port

recvfrom ()

sendto()

socket() to

create scoket

bind() to

any port

recvfrom ()

sendto ()

server

client

24

Client- Server communication (TCP)

socket()
bind() to

a receiving port

listen ()

to socket

Accept()

 connection

socket()
bind() to

any port

connect ()

to server

send()

 recv()

send()

 recv()

server

client

26

TCP Stream Communication

 Use of TCP

Many services that run over TCP

connections, with reserved port number

are:

 HTTP (Hypertext Transfer Protocol)

 FTP (File Transfer Protocol)

 Telnet

 SMTP (Simple Mail Transfer Protocol)

Multicast = Efficient Data Distribution

Src Src

Why Not Broadcast or Unicast?

 Broadcast:

 Send a copy to every machine on the net

 Simple, but inefficient
 All nodes must process packet even if they don’t

care
 Wastes more CPU cycles of slower machines

 Network loops lead to “broadcast storms”

 Replicated Unicast:

 Sender sends a copy to each receiver in turn

 Receivers need to register or sender must be
pre-configured

 Reliability => per-receiver state, separate
sessions/processes at sender

IP Multicast model: RFC 1112

 Message sent to multicast “group” (of

receivers)

 Senders need not be group members

 A group identified by a single “group address”

 Use “group address” instead of destination address

in IP packet sent to group

 Groups can have any size;

 Group members can be located anywhere on

the Internet

 Group membership is not explicitly known

 Receivers can join/leave at will

IP Multicast Addresses

 Class D IP addresses

 224.0.0.0 – 239.255.255.255

 Address allocation:

 Well-known (reserved) multicast addresses,
224.0.0.x and 224.0.1.x

 Each multicast address represents a group of
arbitrary size, called a “host group”

 There is no structure within class D address space like
subnetting => flat address space

Group ID

IP Multicast Service — Receiving

 Two new operations

 Join-IP-Multicast-Group

 Leave-IP-Multicast-Group

 Receive multicast packets for joined

groups via normal IP-Receive operation

Using Link-Layer Multicast Addresses
 Ethernet and other LANs using 802

addresses:

 Direct mapping! Simpler than unicast! No ARP
etc.

 32 class D addrs may map to one MAC addr

 Special OUI for IETF: 0x01-00-5E.

 No mapping needed for point-to-point links

LAN multicast address

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0

1 1 1 0 28 bits

23 bits

IP multicast address

Group bit

IP Multicast Architecture

Hosts

Routers

Service model

Host-to-router protocol

(IGMP)

Multicast routing protocols

(various)

34

External Data Representation

 The information stored in running programs is

represented as data structures, whereas the

information in messages consists of sequences

of bytes.

 Irrespective of the form of communication used,

the data structure must be converted to a

sequence of bytes before transmission and

rebuilt on arrival.

36

External Data Representation

 Marshalling

 Marshalling is the process of taking a collection of

data items and assembling them into a form

suitable for transmission in a message.

 Unmarshalling

 Unmarshalling is the process of disassembling a

collection of data on arrival to produce an

equivalent collection of data items at the

destination.

37

External Data Representation

 Three approaches to external data

representation and marshalling are:

CORBA

 Java’s object serialization

XML

38

External Data Representation

 Marshalling and unmarshalling activities is

usually performed automatically by

middleware layer.

39

CORBA Common Data Representation (CDR)

 CORBA Common Data Representation (CDR)

 CORBA CDR is the external data representation

defined with CORBA 2.0.

 It consists 15 primitive types:
 Short (16 bit)

 Long (32 bit)

 Unsigned short

 Unsigned long

 Float(32 bit)

 Double(64 bit)

 Char

 Boolean(TRUE,FALSE)

 Octet(8 bit)

 Composite type are shown in Figure 8.

40

CORBA Common Data Representation (CDR)

CORBA CDR for constructed types

41

Client-Server Communication

 The client-server communication is designed to

support the roles and message exchanges in

typical client-server interactions.

 In the normal case, request-reply communication

is synchronous because the client process

blocks until the reply arrives from the server.

 Asynchronous request-reply communication is

an alternative that is useful where clients can

afford to retrieve replies later.

42

Client-Server Communication

 It is better this model is implemented over UDP

datagrams

 Client-server protocol consists of request/response

pairs, hence no acknowledgements at transport layer

are necessary

 Avoidance of connection establishment overhead

 No need for flow control due to small amounts of

data are transferred

43

Client-Server Communication

 The request-reply protocol was based on a trio

of communication primitives: doOperation,

getRequest, and sendReply shown in the

followin

44

Client-Server Communication

 The designed request-reply protocol matches requests

to replies.

 If UDP datagrams are used, the delivery guarantees

must be provided by the request-reply protocol, which

may use the server reply message as an

acknowledgement of the client request message

45

Client-Server Communication

 The information to be transmitted in a request

message or a reply message is shown in the

following figure

Request-reply message structure

46

Client-Server Communication

 In a protocol message

 The first field indicates whether the message is a

request or a reply message.

 The second field request id contains a message

identifier.

 The third field is a remote object reference .

 The forth field is an identifier for the method to be

invoked.

47

Client-Server Communication

 Message identifier

A message identifier consists of two parts:

 A requestId, which is taken from an

increasing sequence of integers by the

sending process

 An identifier for the sender process, for

example its port and Internet address.

48

Client-Server Communication

 Failure model of the request-reply protocol

 If the three primitive doOperation,

getRequest, and sendReply are

implemented over UDP datagram, they

have the same communication failures.

 Omission failure

Messages are not guaranteed to be

delivered in sender order.

Remote Procedure Call

 the style of programming promoted by

RPC – programming with interfaces;

 the call semantics associated with RPC;

 the key issue of transparency and how it

relates to remote procedure calls

49

Programming With Interfaces

 Most programming languages organize a program as a
set of module

 Communication between modules can be by means of
 Procedure call between them

 Direct access to the their variables

 Interface: it specifies the procedure and the variables
that can be accessed from other modules

 Modules are implemented so as to hide all the
information about them except that which is available
through its interface
 The implementation of a module may be changed without

affecting the users of the module

50

Interface in distributed systems

 In a distributed program, the module can

run in separate process.

 Service Interface

 The specification of the procedures offered

by a server

 Defining the types of the arguments of each

of the procedures

51

benefits of interface

 Programmers are concerned only with the

abstraction offered by the service

interface

 Programmers do not

 Need be aware of implementation details

 Need to know the programming language

 Need to know underlying platform used to

implement the service

52

Influence of DS to SI

 Client can not access to the variables in a

module in another process

 Call by reference is not supported

 Addresses in on process are not valid in

another remote one

 The parameters in the interface in DS are

specified by input, output or both

53

Interface Definition Language(IDL)

 An RPC mechanism can be integrated with a
particular programming language
 if it includes an adequate notation for defining interfaces

 allowing input and output parameters to be mapped onto
the language’s normal use of parameters

 Interface definition languages (IDLs) are designed to
allow procedures implemented in different languages
to invoke one another

 An IDL provides a notation for defining interfaces in
which each of the parameters of an operation may be
described as for input or output in addition to having
its type specified

54

Simple Example of CORBA IDL

55

RPC Call Semantics

 Request-replay protocol can be implemented in
different ways to provide different delivery
guarantees
 Retry request message

 Controls whether to retransmit the request message until
either a reply is received or the server is assumed to have
failed

 Duplicate filtering
 Controls when retransmissions are used and whether to

filter out duplicate requests at the server

 Retransmission of the results
 Controls whether to keep a history of result messages to

enable lost results to be retransmitted without re-executing
the operations at the server

56

Call Semantic

 Combinations of these choice lead to a
variety of possible semantic for the reliability
of remote invocations as seen by the invoker

57

Call Semantics

 Maybe call semantics

 After a RPC time-out (or a client crashed and
restarted), the client is not sure if the RP may or
may not have been called.

 This is the case when no fault tolerance is built into
RPC mechanism.

 Clearly, maybe semantics is not desirable.

58

Call Semantics

 At-least-once call semantics

 With this call semantics, the client can assume that
the RP is executed at least once (on return from the
RP).

 Can be implemented by retransmission of the (call)
request message on time-out.

59

Call Semantics

 At-most-once call semantics

 When a RPC returns, it can assumed that the remote
procedure (RP) has been called exactly once or not
at all.

 Implemented by the server's filtering of duplicate
requests (which are caused by retransmissions due
to IPC failure, slow or crashed server) and caching
of replies (in reply history, refer to RRA protocol).

60

RPC Mechanism

 How does the client know the procedure
(names) it can call and which parameters it
should provide from the server?

 Server interface definition

 RPC interface specifies those characteristics of the
procedures provided by a server that are visible to
the clients.

 The characteristics includes: names of the
procedures and type of parameters.

 Each parameter is defined as input or output.

61

RPC Mechanism

 In summary, an interface contains a list of procedure
signatures - the names and types of their I/O
arguments (to be discussed later).

 This interface is made known to the clients through
a server process binder (to be discussed later).

62

RPC Mechanism

 How does the client transfer its call request
(the procedure name) and the arguments to
the server via network?

 Marshalling and communication with server:

 For each remote procedure call, a (client) stub
procedure is generated and attached to the (client)
program.

 Replace the remote procedure call to a (local) call to
the stub procedure.

63

RPC Mechanism

 The (codes in the) stub procedure marshals (the
input) arguments and places them into a message
together with the procedure identifier (of the remote
procedure).

 Use IPC primitive to send the (call request) message
to the server and wait the reply (call return)
message (DoOperation).

64

RPC Mechanism

 How does the server react the request of the
client? From which port? How to select the
procedure? How to interpret the arguments?

 Dispatching, Un-marshalling, communication
with client:

 A dispatcher is provided. It receives the call request
message from the client and uses the procedure
identifier in the message to select one of the server
stub procedures and passes on the arguments.

65

RPC Mechanism

 For each procedure at the server which is declared
(at the sever interface) as callable remotely, a
(server) stub procedure is generated.

 The task of a server stub procedure is to un-marshal
the arguments, call the corresponding (local) service
procedure.

66

RPC Mechanism

 How does the server transmit the reply back?

 On return, the stub marshals the output
arguments into a reply (call return) message
and sends it back to the client.

67

RPC Mechanism

 How does the client receive the reply?

 The stub procedure of the client unmarshals
the result arguments and returns (local call
return). Note that the original remote
procedure call was transformed into a (local)
call to the stub procedure.

68

RPC Mechanism

client

stub

proc.

Communication

module

Local

return

Local

call

Client computer Server computer

server

stub

proc.

client

service

procedure

Receive

reply

Send

request

Unmarshal

results

Marshal

arguments

Receive

request

Send

reply

Select procedure

Unmarshal

arguments

Marshal

results

Execute procedure

69

Case Studies: SUN RPC

 Interface definition language: XDR

 a standard way of encoding data in a portable
fashion between different systems;

 Interface compiler: rpcgen

 A compiler that takes the definition of a remote
procedure interface, and generates the client stubs
and the server stubs;

 Communication handling: TCP or UDP

 Version: RPCSRC 3.9 (4.3BSD UNIX)
 A run-time library to handle all the details.

70

 Most languages allow interface names to be
specified, but Sun RPC does not

 instead of this, a program number and a
version number are supplied
 The program numbers can be obtained from a

central authority to allow every program to have
its own unique number

 The version number is intended to be changed
when a procedure signature changes

 Both program and version number are passed in
the request message

71

Case Studies: SUN RPC

 A procedure definition specifies a procedure
signature and a procedure number. The procedure
number is used as a procedure identifier in request
messages.
 The procedure signature consists of the result type, the

name of the procedure and the type of the input
parameter

 Only a single input parameter is allowed.
Therefore, procedures requiring multiple
parameters must include them as components of a
single structure.

 The output parameters of a procedure are
returned via a single result.

72

Case Studies: SUN RPC

73

Case Studies: SUN RPC

