Multiple Processor Systems

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Single CPU Computers

the CPU can execute only one instruction at a time
program execution is purely sequential
multiprogramming is possible thanks to time division
increasing performance means making the clock faster

o o o o @

fundamental limit #1: ¢ ~ 20 cm/ ns in wire or fiber
s 10 GHz system must be smaller than 2 cin

fundamental limit #2: heat dissipation
s the smaller the system the more heat it generates

e

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Solution: Parallelization

#» many CPUs running at “normal” speed, for some
definition of “normal”

#® speed up computations
s at least those that can be parallelized

® deal with heavier loads
s different CPUs deal with different transactions, users

enormous range of systems:
s single servers with 2, 4, 8, 16, and more CPUs

s supercomputers and clusters (10 = 10° CPUs)
s Internet-wide computations (e.g. SETI@home)
s grid computing

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Locality of Reference

a concept related to accessing a resource multiple times
locality comes in flavours:

s temporal: a resource referenced at one point will be
referenced again in the near future

s spatial: a resource is more likely to be referenced if a
nearby resource has been referenced recently

s sequential: memory is accessed sequentially

reason: related data are stored sequentially in memory
» structures, arrays, etc

® related data items are often accessed one after another
s loops

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Locality of Reference 11
-

useful for performance optimization
caching is based on temporal locality

caching also uses spatial locality
» data are brought into cache in cache lines
» hearby data will be brought into cache with the
referenced item
paging benefits from spatial locality
data that are referenced often can be kept in CPU
registers

s In C we can declare variables as register (a
suggestion to the compiler)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Multiple Processor Systems

Local
CPU memory N Complete system
J/ M M] M] [m
cl el c] [c cl [c] [c] [c C+M C+M| C+M‘I|
| |
C Shared C MACH Inter- HCHM
are L connect L a1 Internet
memory
C C | |
c[[C]] Ic v GG c M| C M| c M|
|] | |
M| [M] [M] [m * i i
(a) (b) (c)

Figure 8-1. (a) A shared-memory multiprocessor. (b) A message-
passing multicomputer. (¢) A wide area distributed system.

(a) Is a Uniform Memory Access (UMA) architecture, while (b) and
(c) are Non-Uniform Memory Access (NUMA) architectures

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

UMA Multiprocessors with
Bus-Based Architectures

Shared memory

Private memory —

CPU CPU M CPU CPU M
L]
Cache
Bus
(a) (b)

Shared
memory

}

CPU

CPU M

Figure 8-2. Three bus-based multiprocessors. (a) Without
caching. (b) With caching. (c) With caching and private
memories.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

UMA Multiprocessors
Using Crossbar Switches

Memaories
gl =21 1= 18] 5] (2] |1 Crosspoint

switch is open

Fa Y Fai Fai Fai Fai Fal P Y Fa I — {}
DD[} ol K = ol ™ = ol K = = “J T %
4
{ J \
| Y 1

g
\\
f,
S

g It T
001 P——p———Pp———9 \ 4 /
. \\ /
: ——9
b
011 P——p————F— (®)
Crosspoint

00 switch is closed

s Fai Fai Fai Fai Fai P Y Fa
= = K = = = K = = = K = = __'E_ —_—
] — ____\-""-.. =
s T
101 4L / \(
./ \
Y
10 |——a /u G—d———9 N /,

CPUs
|

B

R . SO S S S S -
/ r
Closed o)
crosspoint pen
cwiteh crosspoint
switch
(a)

Figure 8-3. The “Dance Hall” approach: (a) An 8 x 8 crossbar
switch. (b) An open crosspoint. (c) A closed crosspoint.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Interconnection Technology (1)

E\T”““/J
| O >+ 0
O—e—o—o—o—17

O] O—e———+—101
i/-!\:::l

O O O O 0O

Figure 8-16. Various interconnect topologies.
(a) A single switch. (b) Aring. (c) A grid.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Interconnection Technology (2)

O 0
. +—+ -y
Ej t
(M| I/L'I O
(e)

Figure 8-16. Various interconnect topologies.
(d) A double torus. (e) A cube. (f) A 4D hypercube.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

- — — -
- o
e -)
& -
= —_
= T
T
._-r-
a "
" -._r

UMA Multiprocessors Using Multistage
Switching Networks (1)

Module | Address | Opcode Value |

(a) (b)

Figure 8-4. (a) A 2 x 2 switch with two input lines, A and B, and
two output lines, X and Y. (b) A message format.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

UMA Multiprocessors Using Multistage
Switching Networks (2)

3 Stages
CPUs ‘ . ’ Memories
000 1A 2A 3A 000
001 b b T~ 007
010 _—— loto
1B oB 3B
011 T~ To11
100 b - _——1100
1C 2C 3C
101 1 101
110 a A 110
111 1D _ 2D . 3D 111

Figure 8-5. An omega switching network.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

NUMA Multiprocessors (1)

Characteristics of NUMA machines:

1.

There Is a single address space visible to all
CPUs.

Access to remote memory is via LOAD and
STORE instructions.

Access to remote memory is slower than
access to local memory.

Tow Types
CC_NUMA (Cache Coherence NUMA)
NC_NUMA

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

NUMA Multiprocessors (1)

CC_NUMA (Cache Coherence NUMA)
NC_ NUMA

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

NUMA Multiprocessors (2)

Directory based method is a famous model for CC_NUMA

Node 0 Node 1 Node 255
CPU Memory CPU Memory CPU Memory
Directory
+ — — —
Local bus Local bus Local bus

Interconnection network

(a)

Figure 8-6. (a) A 256-node directory-based multiprocessor.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

NUMA Multiprocessors (3)

Bits 8 18 6
Node Block Offset
(b)

2181

i

%

82

O = N W A

ol|lo|=|o|o

(c)

Figure 8-6. (b) Division of a 32-bit memory address into fields.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

(c) The directory at node 36.

Each CPU Has Its Own
Obperatina Svstem

CPU 1 CPU 2 CPU 3 CPU 4 Memory /O
Has Has Has Has Dllta Dita
private private private private 3 | 4
0S oS 0OS 0S | Data | Data
OS code
\ Bus

Figure 8-7. Partitioning multiprocessor memory among four CPUSs,
but sharing a single copy of the operating system code.
The boxes marked Data are the operating system’s private
data for each CPU.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Multiprocessors with Private OS II
- o

Dbetter than n iIndependent computers
s shared |/O
s flexible memory allocation

s effective inter-processor communication

system calls are handled locally — private tables etc

no process sharing: CPU 1 idle while CPU 2 overloaded
no page sharing: CPUs cannot borrow/loan pages

e o o b

local buffer caches (of recently used disk blocks)

s If a block is present and dirty in multiple buffer
caches the system is in inconsistent state

s eliminating buffer caches hurts performance

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Master-Slave Multiprocessors

CPU 1 CPU 2 CPU 3 CPU 4 Memory I/O
Master Slave Slave Slave User

runs runs user runs user runs user processes

0S processes processes processes 0S

N

Bus

Figure 8-8. A master-slave multiprocessor model.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Master-Slave Multiprocessors I1

-

#® solves most of the problems of the private OS scheme
s there is a single set of OS data structures
s a CPU will never stay idle when another is

overloaded

» pages can be allocated among all the processes
dynamically

» there is one buffer cache, so no inconsistencies will
occur

#® problem: the master CPU is a bottleneck
s must handle all the system calls from all the slaves

s example: if 10% of the time is spent in system calls,
the master will be saturated by 10 CPUs

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Symmetric Multiprocessors

CPU 1 CPU 2 CPU3 CPU 4 Memory I/O
Runs Runs Runs Runs
users and users and users and users and
shared OS[|shared OS| |shared OS| [shared OS 0S O
\ Locks
Bus

Figure 8-9. The SMP multiprocessor model.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Symmetric Multiprocessors 11

balances processes and memory dynamically
there is only one set of OS tables
eliminates the master CPU bottleneck

o o o 0

problem: need to synchronize the CPUs
s Imagine 2 CPUs scheduling the same process to run
s or claiming the same free memory page

solution: protect the OS with a mutex
s any CPU can run the OS, but only one at a time can
do it
s almost as bad as master-slave: CPUs will queue to
get the OS

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

SMP Synchronization

solution: split the OS into independent critical regions,
protect each with its own mutex
some tables may be used by multiple critical sections

s e.g. process table is used by
s scheduler

s fork()
s signal handling

s such tables need their own mutexes
such organization is hard to design...
... andis even harder to program

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Multiprocessor Synchronization (1)

Word
1000 is
initially O

CPU 1 Memory CPU 2

\n:u
| M H

I
L1.GPU1readsa(}J LE.GF‘UEreadsaD J

oy

3. CPU 1 writes a 1 4. CPU 2 writes a 1 \E
us

Figure 8-10. The TSL instruction can falil if the bus cannot be
locked. These four steps show a sequence of events where
the failure is demonstrated.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

TSL solution for multi-processors

TSL involves testing and setting memory, this can require 2
memory accesses

Not a problem to implement this in single-processor system

Now, bus must be locked to avoid split transaction
Bus provides a special line for locking

A process that fails to acquire lock checks repeatedly issuing
more TSL instructions
Requires Exclusive access to memory block
Cache coherence protocol would generate lots of traffic

Goal: To reduce number of checks

1. Exponential back-off: instead of constant polling, check only after
delaying (1, 2, 4, 8 instructions)

2. Maintain a list of processes waiting to acquire lock.

Busy-Waiting vs Process switch

In single-processors, if a process is waiting to acquire lock,
OS schedules another ready process

OS must decide whether to switch (choice between spinning
and switching)
spinning wastes CPU cycles
switching uses up CPU cycles also
possible to make separate decision each time locked mutex encountered

Multiprocessor Synchronization (2)

CPU3=—— 3

CPU 3 spins on this (private) lock

/

CPU 2 spins on this (private) lock _ _ _
\ / CPU 4 spins on this (private) lock
2 =t 4

[When CPU 1 is finished with the
Shared memory / /‘ real lock, it releases it and also
CPU 1 releases the private lock CPU 2
holds the 1 is spinning on
real lock

Figure 8-11. Use of multiple locks to avoid cache thrashing.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Timesharing

o|[1][2]]3 ol [1]]2]]3 o|[1][2]]3
4||5]|e ?/GF’U /A 5|[6]]|7 crutz (Al[s]Le][7
8] [9] [10] [11 CPU 47 Tg] [9] [10] [11 goeside Tg][9a] [10] [11
goes idle
12] [13] [14] [15 12] [13] [14] [15 B| [13] [14] [15
Priurit_} Priority Priority
T®®O 71 F+®0© (EYG
6| —TOH® 6| —T{OHE 6l TO®
51 1+® 51| +® 51 1+®
4 4 4
316600 | i 0 O G20 | i n ©2G20)
2l TO® o[+O® 2l TOW®
1 1 1
o T O-M-W o OO o TOM®m

(b) (c)

Figure 8-12. Using a single data structure for scheduling a
multiprocessor.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Space Sharing

8-CPU Pa"““"“\M;---------------------.,--------------:. _____ .
| 0 1 213 ii 4 S||#6 H 7 E‘...-d-CF-'U partition
53 9 | [10] [11 12 13 14”155
6-CPU partition --._.L1e1?13 19 520 21| |22 23|
|24] |25 26?2?%28 29 :30“31?
Unassigned CPU / ™~ 12-CPU partition

Figure 8-13. A set of 32 CPUs split into four partitions,
with two CPUs available.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Gang Scheduling (1)

Thread A, running

.
.
CPU O A B, B, Ay B,
i Flequfest 1 equest iE | i i
| i eply ° | Reply 2 | |
CPU 1 B, A, B, A, B, A
Time 0 100 200 300 400 500 600

Figure 8-14. Communication between two threads belonging to
thread A that are running out of phase.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Gang Scheduling (2)

The three parts of gang scheduling:

1.

Groups of related threads are scheduled as a
unit, a gang.

All members of a gang run simultaneously, on
different timeshared CPUSs.

All gang members start and end their time
slices together.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Time
slot

~ o O A& W = O

Gang Scheduling (3)

CPU

0 1 2 3 4 5
A'i] A‘l AQ AS 1":"&4 AE
B, B, B, Co C Co
D, D, D, D, D, E,
E, E, E, E, E. E.
Ag Ay A, Aq A, As
B, B, B, C, C, C,
D, D, D, D, D, E,
E, E, E, E, E. E.

Figure 8-15. Gang scheduling.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Interconnection Technology (3)

CPU 1 Four-port Input port
switch Output port
i:i A i:i B i:i A i:i B | I L A i:| B
Tmgl g Thgieg] tegl g
Entlre/I:iC i:iD i:ic I:iD |E|;C i:iD
ot | H e e | ':'[[z--: D 1 v = [
I I I \\ I I I \\
Entire Entire
packet packet
(a) (b) (c)

Figure 8-17. Store-and-forward packet switching.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Network Interfaces

Node 1 Node 2
Main RAM| Main RAM
X A
os (1 L] 7s
2 4
|
Switch
Main RAM Main RAM
I Optional f I
i::-nélg:bard
Interface
Node 3 Interface board Node 4
board
RAM

Figure 8-18. Position of the network interface boards
In a multicomputer.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Blocking versus Nonblocking Calls (1)

Sender running

i i

i,

- Sender blocked

Trap to kernel,
sender blocked

—fe

~——— Message being sent

(a)

-

Sender running

i =

Return from kernel,
sender released

Figure 8-19. (a) A blocking send call.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Blocking versus Nonblocking Calls (2)

Sender
| blocked
e o

Sender running Sender running

L 1;——..__,--..__,__—..,_ B S S S S W S S S R S

l, Trap Return
- > Message being sent >
| Message }4

copied to a

kernel buffer

Figure 8-19. (b) A nonblocking send call.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Blocking versus Nonblocking Calls (3)

Choices on the sending side:

1.

Blocking send (CPU idle during message
transmission).

Nonblocking send with copy (CPU time wasted
for the extra copy).

Nonblocking send with interrupt (makes
programming difficult).

Copy on write (extra copy probably needed
eventually).

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Remote Procedure Call

Client CPU
- Client
tub

Client N St

"

Operating system

Y

Server CPU
Server,
stub (""\
A |Server
4
A Operating system
_/

Figure 8-20. Steps in making a remote procedure call.
The stubs are shaded gray.

N\

Network

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

RPC Mechanism

Client computer _ Server computer
service

procedure

client

Server

_ stub
client proc.

stub
proc.

Communication
module

Distributed
Shared Memory

(1)

Figure 8-21. Various layers
where shared memory
can be implemented.
(a) The hardware.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Machine 1 Machine 2
Application Application
Run-time Run-time
system system
Operating Operating
system system
Hardware Hardware

Shared memory

Distributed
Shared Memory

(2)

Figure 8-21. Various layers
where shared memory
can be implemented.
(b) The operating
system.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Machine 1 Machine 2
Application Application
Run-time Run-time
system system
Operating Operating
system system

Hardware Hardware

Shared memory

Distributed
Shared Memory

(3)

Figure 8-21. Various layers
where shared memory
can be implemented.
(c) User-level software.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Machine 1 Machine 2
Application Application
Run-time Run-time
system system
Operating Operating
system system
Hardware Hardware

Shared memory

Distributed Shared Memory (4)

Globally shared virtual memory consisting of 16 pages

o112 |13 |4]|5|6|7]|8]289 12113114 | 15
13| |1

| /1]

ofl2]]5 1|]|3]]s al|7 5
9 8|10 12| |14 ~ Memory
CPU 0 CPU 1 CPU 2 CPU 3

Network

(a)

Figure 8-22. (a) Pages of the address space
distributed among four machines.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Distributed Shared Memory (5)

011215 1 3116 4117 (|11 13|15
91110 8 12| |14
CPUO CPU 1 CPU 2 CPU3

Figure 8-22. (b) Situation after CPU 1 references
page 10 and the page is moved there.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Distributed Shared Memory (6)

of[2]]5 11]|3]]6 a7 ([1 13 [15

9 |[10 8|10 12 |14

CPU 0 CPU 1 CPU 2 CPU 3
(©)

Figure 8-22. (c) Situation if page 10 is read only
and replication Is used.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

False Sharing

CPU 1 CPU 2
]
L |_ Aand B are unrelated
Shared [/-""""___""‘“"-n\.l A 4| shared variables that just
page B / \rh', happen to be on the same page
Code using Code using
variable A variable B

~

Network

Figure 8-23. False sharing of a page
containing two unrelated variables.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

A Graph-Theoretic
Deterministic Algorithm

| |
Node 1 : Node 2 | Node 3 Node 1 : Node 2 : Node 3
R | 4| - , - - | & e -
| I Traffic | |
| I | |
A—2 1 (B 21 @) 2 (D) between A2 1 B2 0-+2> ®
| I | |
|

Dandl

Process

Figure 8-24. Two ways of allocating
nine processes to three nodes.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

A Sender-Initiated Distributed
Heuristic Algorithm

-

‘% -

O O O]
O O O /
I’'m bored

I'm overloaded
f;
h
%
3.
@
q&‘
®
®
Q,
%%
(AL
§"T
S >
Q&‘
S
S
oy
S
I'm free tonight

@a

O O O =

(a) (b)

Figure 8-25. (a) An overloaded node looking for a
lightly loaded node to hand off processes to.
(b) An empty node looking for work to do.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

