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Figure 8-1. (a) A shared-memory multiprocessor. (b) A message-

passing multicomputer. (c) A wide area distributed system. 

(a) is a Uniform Memory Access (UMA) architecture, while (b) and 

(c) are Non-Uniform Memory Access (NUMA) architectures 
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Figure 8-2. Three bus-based multiprocessors. (a) Without 

caching. (b) With caching. (c) With caching and private 

memories. 

UMA Multiprocessors with  

Bus-Based Architectures 
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Figure 8-3. The “Dance Hall” approach: (a) An 8 × 8 crossbar 

switch. (b) An open crosspoint. (c) A closed crosspoint. 

 

UMA Multiprocessors  

Using Crossbar Switches 
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Figure 8-16. Various interconnect topologies.  

(a) A single switch. (b) A ring. (c) A grid.  
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Figure 8-16. Various interconnect topologies.   

(d) A double torus. (e) A cube. (f) A 4D hypercube. 
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Figure 8-4. (a) A 2 × 2 switch with two input lines, A and B, and 

two output lines, X and Y. (b) A message format. 
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Figure 8-5. An omega switching network. 
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NUMA Multiprocessors (1) 

Characteristics of NUMA machines: 

1. There is a single address space visible to all 

CPUs. 

2. Access to remote memory is via LOAD and 

STORE instructions. 

3. Access to remote memory is slower than 

access to local memory. 

4. Tow Types 

  CC_NUMA (Cache Coherence NUMA) 

  NC_NUMA 
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Figure 8-6. (a) A 256-node directory-based multiprocessor. 

NUMA Multiprocessors (2) 
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Directory based method is a famous model for CC_NUMA 



Figure 8-6. (b) Division of a 32-bit memory address into fields.  

(c) The directory at node 36. 
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Figure 8-7. Partitioning multiprocessor memory among four CPUs, 

but sharing a single copy of the operating system code.  

The boxes marked Data are the operating system’s private 

data for each CPU. 

Each CPU Has Its Own  

Operating System 
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Figure 8-8. A master-slave multiprocessor model. 

Master-Slave Multiprocessors 
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Figure 8-9. The SMP multiprocessor model. 

Symmetric Multiprocessors 
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Figure 8-10. The TSL instruction can fail if the bus cannot be 

locked. These four steps show a sequence of events where 

the failure is demonstrated. 

Multiprocessor Synchronization (1) 
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TSL solution for multi-processors 

TSL involves testing and setting memory, this can require 2 

memory accesses 

Not a problem to implement this in single-processor system 

Now, bus must be locked to avoid split transaction 

Bus provides a special line for locking 

A process that fails to acquire lock checks repeatedly issuing 

more TSL instructions 

Requires Exclusive access to memory block 

Cache coherence protocol would generate lots of traffic 

Goal: To reduce number of checks 

1. Exponential back-off: instead of constant polling, check only after 

delaying (1, 2, 4, 8 instructions) 

2. Maintain a list of processes waiting to acquire lock.  
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Busy-Waiting vs Process switch 

In single-processors, if a process is waiting to acquire lock, 

OS schedules another ready process 

OS must decide whether to switch (choice between spinning 

and switching) 

spinning wastes CPU cycles 

switching uses up CPU cycles also 

possible to make separate decision each time locked mutex encountered 



Figure 8-11. Use of multiple locks to avoid cache thrashing. 
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Figure 8-12. Using a single data structure for scheduling a 

multiprocessor. 

Timesharing 
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Figure 8-13. A set of 32 CPUs split into four partitions,  

with two CPUs available. 

Space Sharing 
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Figure 8-14. Communication between two threads belonging to 

thread A that are running out of phase. 

Gang Scheduling (1) 
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Gang Scheduling (2) 

The three parts of gang scheduling: 

1. Groups of related threads are scheduled as a 

unit, a gang. 

2. All members of a gang run simultaneously, on 

different timeshared CPUs. 

3. All gang members start and end their time 

slices together. 
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Figure 8-15. Gang scheduling. 
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Figure 8-17. Store-and-forward packet switching. 
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Figure 8-18. Position of the network interface boards  

in a multicomputer. 

Network Interfaces 
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Figure 8-19. (a) A blocking send call. 

Blocking versus Nonblocking Calls (1) 
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Figure 8-19. (b) A nonblocking send call. 

Blocking versus Nonblocking Calls (2) 
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Blocking versus Nonblocking Calls (3) 

Choices on the sending side: 

1. Blocking send (CPU idle during message 

transmission). 

2. Nonblocking send with copy (CPU time wasted 

for the extra copy). 

3. Nonblocking send with interrupt (makes 

programming difficult). 

4. Copy on write (extra copy probably needed 

eventually). 
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Figure 8-20. Steps in making a remote procedure call.  

The stubs are shaded gray. 
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Figure 8-21. Various layers 

where shared memory 

can be implemented.  

(a) The hardware.  

Distributed 

Shared Memory 

(1)  

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall 



Figure 8-21. Various layers 

where shared memory 

can be implemented.  

(b) The operating 

system.  

Distributed 

Shared Memory 

(2)   
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Figure 8-21. Various layers 

where shared memory 

can be implemented.  

(c) User-level software. 

Distributed 

Shared Memory 

(3)  
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Figure 8-22. (a) Pages of the address space  

distributed among four machines.  

Distributed Shared Memory (4) 
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Figure 8-22. (b) Situation after CPU 1 references  

page 10 and the page is moved there.  

Distributed Shared Memory (5) 
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Figure 8-22. (c) Situation if page 10 is read only  

and replication is used. 

Distributed Shared Memory (6) 
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Figure 8-23. False sharing of a page  

containing two unrelated variables. 

False Sharing 
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Figure 8-24. Two ways of allocating  

nine processes to three nodes. 

A Graph-Theoretic  

Deterministic Algorithm 
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Figure 8-25. (a) An overloaded node looking for a  

lightly loaded node to hand off processes to.  

(b) An empty node looking for work to do. 

A Sender-Initiated Distributed  

Heuristic Algorithm 
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