
Multiple Processor Systems

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-1. (a) A shared-memory multiprocessor. (b) A message-

passing multicomputer. (c) A wide area distributed system.

(a) is a Uniform Memory Access (UMA) architecture, while (b) and

(c) are Non-Uniform Memory Access (NUMA) architectures

Multiple Processor Systems

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-2. Three bus-based multiprocessors. (a) Without

caching. (b) With caching. (c) With caching and private

memories.

UMA Multiprocessors with

Bus-Based Architectures

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-3. The “Dance Hall” approach: (a) An 8 × 8 crossbar

switch. (b) An open crosspoint. (c) A closed crosspoint.

UMA Multiprocessors

Using Crossbar Switches

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-16. Various interconnect topologies.

(a) A single switch. (b) A ring. (c) A grid.

Interconnection Technology (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-16. Various interconnect topologies.

(d) A double torus. (e) A cube. (f) A 4D hypercube.

Interconnection Technology (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-4. (a) A 2 × 2 switch with two input lines, A and B, and

two output lines, X and Y. (b) A message format.

UMA Multiprocessors Using Multistage

Switching Networks (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-5. An omega switching network.

UMA Multiprocessors Using Multistage

Switching Networks (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

NUMA Multiprocessors (1)

Characteristics of NUMA machines:

1. There is a single address space visible to all

CPUs.

2. Access to remote memory is via LOAD and

STORE instructions.

3. Access to remote memory is slower than

access to local memory.

4. Tow Types

 CC_NUMA (Cache Coherence NUMA)

 NC_NUMA

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

NUMA Multiprocessors (1)

CC_NUMA (Cache Coherence NUMA)

NC_NUMA

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-6. (a) A 256-node directory-based multiprocessor.

NUMA Multiprocessors (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Directory based method is a famous model for CC_NUMA

Figure 8-6. (b) Division of a 32-bit memory address into fields.

(c) The directory at node 36.

NUMA Multiprocessors (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-7. Partitioning multiprocessor memory among four CPUs,

but sharing a single copy of the operating system code.

The boxes marked Data are the operating system’s private

data for each CPU.

Each CPU Has Its Own

Operating System

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-8. A master-slave multiprocessor model.

Master-Slave Multiprocessors

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-9. The SMP multiprocessor model.

Symmetric Multiprocessors

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-10. The TSL instruction can fail if the bus cannot be

locked. These four steps show a sequence of events where

the failure is demonstrated.

Multiprocessor Synchronization (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

2

5

TSL solution for multi-processors

TSL involves testing and setting memory, this can require 2

memory accesses

Not a problem to implement this in single-processor system

Now, bus must be locked to avoid split transaction

Bus provides a special line for locking

A process that fails to acquire lock checks repeatedly issuing

more TSL instructions

Requires Exclusive access to memory block

Cache coherence protocol would generate lots of traffic

Goal: To reduce number of checks

1. Exponential back-off: instead of constant polling, check only after

delaying (1, 2, 4, 8 instructions)

2. Maintain a list of processes waiting to acquire lock.

2

6

Busy-Waiting vs Process switch

In single-processors, if a process is waiting to acquire lock,

OS schedules another ready process

OS must decide whether to switch (choice between spinning

and switching)

spinning wastes CPU cycles

switching uses up CPU cycles also

possible to make separate decision each time locked mutex encountered

Figure 8-11. Use of multiple locks to avoid cache thrashing.

Multiprocessor Synchronization (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-12. Using a single data structure for scheduling a

multiprocessor.

Timesharing

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-13. A set of 32 CPUs split into four partitions,

with two CPUs available.

Space Sharing

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-14. Communication between two threads belonging to

thread A that are running out of phase.

Gang Scheduling (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Gang Scheduling (2)

The three parts of gang scheduling:

1. Groups of related threads are scheduled as a

unit, a gang.

2. All members of a gang run simultaneously, on

different timeshared CPUs.

3. All gang members start and end their time

slices together.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-15. Gang scheduling.

Gang Scheduling (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-17. Store-and-forward packet switching.

Interconnection Technology (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-18. Position of the network interface boards

in a multicomputer.

Network Interfaces

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-19. (a) A blocking send call.

Blocking versus Nonblocking Calls (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-19. (b) A nonblocking send call.

Blocking versus Nonblocking Calls (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Blocking versus Nonblocking Calls (3)

Choices on the sending side:

1. Blocking send (CPU idle during message

transmission).

2. Nonblocking send with copy (CPU time wasted

for the extra copy).

3. Nonblocking send with interrupt (makes

programming difficult).

4. Copy on write (extra copy probably needed

eventually).

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-20. Steps in making a remote procedure call.

The stubs are shaded gray.

Remote Procedure Call

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

RPC Mechanism

client
stub
proc.

Communication
module

Local
return

Local
call

Client computer Server computer

server
stub
proc.

client

service
procedure

Receive
reply

Send
request

Unmarshal
results

Marshal
arguments

Receive
request

Send
reply

Select procedure

Unmarshal
arguments

Marshal
results

Execute procedure

39

Figure 8-21. Various layers

where shared memory

can be implemented.

(a) The hardware.

Distributed

Shared Memory

(1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-21. Various layers

where shared memory

can be implemented.

(b) The operating

system.

Distributed

Shared Memory

(2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-21. Various layers

where shared memory

can be implemented.

(c) User-level software.

Distributed

Shared Memory

(3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-22. (a) Pages of the address space

distributed among four machines.

Distributed Shared Memory (4)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-22. (b) Situation after CPU 1 references

page 10 and the page is moved there.

Distributed Shared Memory (5)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-22. (c) Situation if page 10 is read only

and replication is used.

Distributed Shared Memory (6)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-23. False sharing of a page

containing two unrelated variables.

False Sharing

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-24. Two ways of allocating

nine processes to three nodes.

A Graph-Theoretic

Deterministic Algorithm

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

Figure 8-25. (a) An overloaded node looking for a

lightly loaded node to hand off processes to.

(b) An empty node looking for work to do.

A Sender-Initiated Distributed

Heuristic Algorithm

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall

