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Single CPU Computers

the CPU can execute only one instruction at a time
program execution is purely sequential
multiprogramming is possible thanks to time division
increasing performance means making the clock faster
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fundamental limit #1: ¢ ~ 20 cm/ ns in wire or fiber
s 10 GHz system must be smaller than 2 cin

fundamental limit #2: heat dissipation
s the smaller the system the more heat it generates

e
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Solution: Parallelization

#» many CPUs running at “normal” speed, for some
definition of “normal”

#® speed up computations
s at least those that can be parallelized

® deal with heavier loads
s different CPUs deal with different transactions, users

# enormous range of systems:
s single servers with 2, 4, 8, 16, and more CPUs

s supercomputers and clusters (10 = 10° CPUs)
s Internet-wide computations (e.g. SETI@home)
s grid computing
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Locality of Reference

a concept related to accessing a resource multiple times
# locality comes in flavours:

s temporal: a resource referenced at one point will be
referenced again in the near future

s spatial: a resource is more likely to be referenced if a
nearby resource has been referenced recently

s sequential: memory is accessed sequentially

# reason: related data are stored sequentially in memory
» structures, arrays, etc

® related data items are often accessed one after another
s loops
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Locality of Reference 11
-

useful for performance optimization
# caching is based on temporal locality

# caching also uses spatial locality
» data are brought into cache in cache lines
» hearby data will be brought into cache with the
referenced item
# paging benefits from spatial locality
# data that are referenced often can be kept in CPU
registers

s In C we can declare variables as register (a
suggestion to the compiler)
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Multiple Processor Systems
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Figure 8-1. (a) A shared-memory multiprocessor. (b) A message-
passing multicomputer. (¢) A wide area distributed system.

(a) Is a Uniform Memory Access (UMA) architecture, while (b) and
(c) are Non-Uniform Memory Access (NUMA) architectures
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UMA Multiprocessors with
Bus-Based Architectures

Shared memory

Private memory —
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Figure 8-2. Three bus-based multiprocessors. (a) Without
caching. (b) With caching. (c) With caching and private
memories.
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UMA Multiprocessors
Using Crossbar Switches
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Figure 8-3. The “Dance Hall” approach: (a) An 8 x 8 crossbar
switch. (b) An open crosspoint. (c) A closed crosspoint.
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Interconnection Technology (1)
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Figure 8-16. Various interconnect topologies.
(a) A single switch. (b) Aring. (c) A grid.
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Interconnection Technology (2)
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Figure 8-16. Various interconnect topologies.
(d) A double torus. (e) A cube. (f) A 4D hypercube.
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UMA Multiprocessors Using Multistage
Switching Networks (1)

Module | Address | Opcode Value |

(a) (b)

Figure 8-4. (a) A 2 x 2 switch with two input lines, A and B, and
two output lines, X and Y. (b) A message format.
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UMA Multiprocessors Using Multistage
Switching Networks (2)
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Figure 8-5. An omega switching network.
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NUMA Multiprocessors (1)

Characteristics of NUMA machines:

1.

There Is a single address space visible to all
CPUs.

Access to remote memory is via LOAD and
STORE instructions.

Access to remote memory is slower than
access to local memory.

Tow Types
CC_NUMA (Cache Coherence NUMA)
NC_NUMA
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NUMA Multiprocessors (1)

CC_NUMA (Cache Coherence NUMA)
NC_ NUMA
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NUMA Multiprocessors (2)

Directory based method is a famous model for CC_NUMA

Node 0 Node 1 Node 255
CPU Memory CPU Memory CPU Memory
Directory
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Interconnection network

(a)

Figure 8-6. (a) A 256-node directory-based multiprocessor.
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NUMA Multiprocessors (3)
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Figure 8-6. (b) Division of a 32-bit memory address into fields.
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Each CPU Has Its Own
Obperatina Svstem

CPU 1 CPU 2 CPU 3 CPU 4 Memory /O
Has Has Has Has Dllta Dita
private private private private 3 | 4
0S oS 0OS 0S | Data | Data
OS code
\ Bus

Figure 8-7. Partitioning multiprocessor memory among four CPUSs,
but sharing a single copy of the operating system code.
The boxes marked Data are the operating system’s private
data for each CPU.
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Multiprocessors with Private OS II
- o

# Dbetter than n iIndependent computers
s shared |/O
s flexible memory allocation

s effective inter-processor communication

system calls are handled locally — private tables etc

no process sharing: CPU 1 idle while CPU 2 overloaded
no page sharing: CPUs cannot borrow/loan pages

e o o b

local buffer caches (of recently used disk blocks)

s If a block is present and dirty in multiple buffer
caches the system is in inconsistent state

s eliminating buffer caches hurts performance
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Master-Slave Multiprocessors

CPU 1 CPU 2 CPU 3 CPU 4 Memory I/O
Master Slave Slave Slave User

runs runs user runs user runs user processes

0S processes processes processes 0S

N

Bus

Figure 8-8. A master-slave multiprocessor model.
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Master-Slave Multiprocessors I1

-

#® solves most of the problems of the private OS scheme
s there is a single set of OS data structures
s a CPU will never stay idle when another is

overloaded

» pages can be allocated among all the processes
dynamically

» there is one buffer cache, so no inconsistencies will
occur

#® problem: the master CPU is a bottleneck
s must handle all the system calls from all the slaves

s example: if 10% of the time is spent in system calls,
the master will be saturated by 10 CPUs
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Symmetric Multiprocessors

CPU 1 CPU 2 CPU3 CPU 4 Memory I/O
Runs Runs Runs Runs
users and users and users and users and
shared OS[ |shared OS| |shared OS| [shared OS 0S O
\ Locks
Bus

Figure 8-9. The SMP multiprocessor model.
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Symmetric Multiprocessors 11

balances processes and memory dynamically
there is only one set of OS tables
eliminates the master CPU bottleneck

o o o 0

problem: need to synchronize the CPUs
s Imagine 2 CPUs scheduling the same process to run
s or claiming the same free memory page

# solution: protect the OS with a mutex
s any CPU can run the OS, but only one at a time can
do it
s almost as bad as master-slave: CPUs will queue to
get the OS
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SMP Synchronization

# solution: split the OS into independent critical regions,
protect each with its own mutex
# some tables may be used by multiple critical sections

s e.g. process table is used by
s scheduler

s fork()
s signal handling

s such tables need their own mutexes
# such organization is hard to design...
# ... andis even harder to program
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Multiprocessor Synchronization (1)

Word
1000 is
initially O
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Figure 8-10. The TSL instruction can falil if the bus cannot be
locked. These four steps show a sequence of events where
the failure is demonstrated.
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TSL solution for multi-processors

TSL involves testing and setting memory, this can require 2
memory accesses

Not a problem to implement this in single-processor system

Now, bus must be locked to avoid split transaction
Bus provides a special line for locking

A process that fails to acquire lock checks repeatedly issuing
more TSL instructions
Requires Exclusive access to memory block
Cache coherence protocol would generate lots of traffic

Goal: To reduce number of checks

1.  Exponential back-off: instead of constant polling, check only after
delaying (1, 2, 4, 8 instructions)

2. Maintain a list of processes waiting to acquire lock.



Busy-Waiting vs Process switch

In single-processors, if a process is waiting to acquire lock,
OS schedules another ready process

OS must decide whether to switch (choice between spinning
and switching)
spinning wastes CPU cycles
switching uses up CPU cycles also
possible to make separate decision each time locked mutex encountered



Multiprocessor Synchronization (2)

CPU3=—— 3

CPU 3 spins on this (private) lock

/

CPU 2 spins on this (private) lock _ _ _
\ / CPU 4 spins on this (private) lock
2 =t 4

[ When CPU 1 is finished with the
Shared memory / /‘ real lock, it releases it and also
CPU 1 releases the private lock CPU 2
holds the 1 is spinning on
real lock

Figure 8-11. Use of multiple locks to avoid cache thrashing.
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Timesharing
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Figure 8-12. Using a single data structure for scheduling a
multiprocessor.
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Space Sharing
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Figure 8-13. A set of 32 CPUs split into four partitions,
with two CPUs available.
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Gang Scheduling (1)

Thread A, running

.
.
CPU O A B, B, Ay B,
i Flequfest 1 equest iE | i i
| i eply ° | Reply 2 | |
CPU 1 B, A, B, A, B, A
Time 0 100 200 300 400 500 600

Figure 8-14. Communication between two threads belonging to
thread A that are running out of phase.
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Gang Scheduling (2)

The three parts of gang scheduling:

1.

Groups of related threads are scheduled as a
unit, a gang.

All members of a gang run simultaneously, on
different timeshared CPUSs.

All gang members start and end their time
slices together.
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Time
slot

~ o O A& W = O

Gang Scheduling (3)
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Figure 8-15. Gang scheduling.
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Interconnection Technology (3)
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Figure 8-17. Store-and-forward packet switching.
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Network Interfaces
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Figure 8-18. Position of the network interface boards
In a multicomputer.
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Blocking versus Nonblocking Calls (1)

Sender running

i i

i,

- Sender blocked

Trap to kernel,
sender blocked
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~——— Message being sent

(a)

-

Sender running

i =

Return from kernel,
sender released

Figure 8-19. (a) A blocking send call.
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Blocking versus Nonblocking Calls (2)
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Figure 8-19. (b) A nonblocking send call.
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Blocking versus Nonblocking Calls (3)

Choices on the sending side:

1.

Blocking send (CPU idle during message
transmission).

Nonblocking send with copy (CPU time wasted
for the extra copy).

Nonblocking send with interrupt (makes
programming difficult).

Copy on write (extra copy probably needed
eventually).
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Remote Procedure Call
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Figure 8-20. Steps in making a remote procedure call.
The stubs are shaded gray.
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Network
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RPC Mechanism
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Distributed
Shared Memory

(1)

Figure 8-21. Various layers
where shared memory
can be implemented.
(a) The hardware.
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Distributed
Shared Memory

(2)

Figure 8-21. Various layers
where shared memory
can be implemented.
(b) The operating
system.
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Distributed
Shared Memory

(3)

Figure 8-21. Various layers
where shared memory
can be implemented.
(c) User-level software.
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Distributed Shared Memory (4)

Globally shared virtual memory consisting of 16 pages

o112 |13 |4]|5|6|7]|8]289 12113114 | 15
13| |1
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ofl2]]5 1|]|3]]s al|7 5
9 8|10 12| |14 ~ Memory
CPU 0 CPU 1 CPU 2 CPU 3

Network

(a)

Figure 8-22. (a) Pages of the address space
distributed among four machines.
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Distributed Shared Memory (5)

011215 1 3116 4117 (|11 13|15
91110 8 12| |14
CPUO CPU 1 CPU 2 CPU3

Figure 8-22. (b) Situation after CPU 1 references
page 10 and the page is moved there.
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Distributed Shared Memory (6)

of[2]]5 11]|3]]6 a7 ([1 13 [15
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Figure 8-22. (c) Situation if page 10 is read only
and replication Is used.
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False Sharing

CPU 1 CPU 2
]
L |_ Aand B are unrelated
Shared [ /-""""___""‘“"-n\.l A 4| shared variables that just
page B / \rh', happen to be on the same page
Code using Code using
variable A variable B

~

Network

Figure 8-23. False sharing of a page
containing two unrelated variables.
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A Graph-Theoretic
Deterministic Algorithm
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Figure 8-24. Two ways of allocating
nine processes to three nodes.
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A Sender-Initiated Distributed
Heuristic Algorithm
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Figure 8-25. (a) An overloaded node looking for a
lightly loaded node to hand off processes to.
(b) An empty node looking for work to do.
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