
1

2

Flat and nested distributed transactions

Atomic commit protocols

Concurrency control in distributed transactions

Distributed deadlocks

Transaction recovery

Summery

Examples

 Flat & Nested Transaction

 Coordinator & Participants
 of DistributedTransaction

What is Distributed Transaction

3

A client transaction becomes distributed if it
invokes operations in several different Servers

There are two different ways that distributed
transactions can be structured:

– flat transactions

– nested transactions

4

 In a flat transaction
– a client makes requests to more than one server

– A flat transaction completes each of its requests
before going on to the next one

 In a nested transaction
– the top-level transaction can open subtransactions,

and each subtransaction can open further
subtransactions

– subtransactions at the same level can run
concurrently

5

6

X

Y

M

N T
1

T
2

T
11

Client

P

T

T
12

T
21

T
22

Nested transactions

T

Client

X

Y

Z

T

Flat transaction

7

 The coordinator that is contacted, carries out the
openTransaction and returns the resulting
transaction identifier (TID) to the client.

 (TID) for distributed transactions must be unique
within a distributed system.

 A simple way is for a TID to contain two parts

– the identifier (for example, an IP address) of the
server that created it

– a number unique to the server

8

a.withdraw(10)

c . deposit(10)

b.withdraw(20)

d.deposit(20)

Client A

B

C

T
1

T
2

T
3

T
4

T

D

X

Y

Z

T = openTransaction

 openSubTransaction
a.withdraw(10);

 closeTransaction

 openSubTransaction
b.withdraw(20);

 openSubTransaction
c.deposit(10);

 openSubTransaction
d.deposit(20);

The coordinator of Distributed Transaction

– The coordinator that opened the transaction
becomes the coordinator for the distributed
transaction

– It starts commit protocol and It’s responsible for
committing or aborting of That Transaction

– Record a list of references to the participants

9

The participant

– servers that manages an object accessed by a
transaction is a participant

– It’s responsible for keeping track of all of the
recoverable objects at that server that are
involved, in the transaction

– cooperate with the coordinator in carrying out the
commit protocol

– Record a reference to the coordinator

10

11

. .

BranchZ

BranchX

participant

participant

C

D

Client

BranchY

B

A

participant join

 join

 join

T

 a.withdraw(4);

 c.deposit(4);

 b.withdraw(3);

 d.deposit(3);

openTransaction

 b.withdraw(T, 3);

closeTransaction

T = openTransaction
 a.withdraw(4);
 c.deposit(4);
 b.withdraw(3);
 d.deposit(3);

 closeTransaction

join(Trans, reference to participant)
Informs a coordinator that a new participant has joined the transaction Trans.

 Timeout actions & performance in
the two-phase commit protocol

 two-phase commit(2pc) Protocol

 Two-phase commit protocol for
 nested transactions

One Phase Commit protocol &
 Problems

12

Why do we need Atomic Commit Protocol

Hierarchic & Flat two-phase commit
protocol

 The atomicity property of transactions requires that
when a distributed transaction comes to an end,
either all of its operations are carried out or none of
them

 A simple way is one-phase atomic commit protocol

13

The protocol

– Client request to end a transaction

– The coordinator communicates the commit or
abort request to all of the participants and to keep
on repeating the request until all of them have
acknowledged that they had carried it out

The problem

– some servers commit, some servers abort

– How to deal with the situation that some servers
decide to abort?

14

 Allow for any participant to abort unilaterally.
Transaction is committed by consensus.

 First phase

– Each participant votes to commit or abort

 The second phase

– All participants reach the same decision

– If any one participant votes to abort, then all
abort

– If all participants votes to commit, then all commit

 It works correctly when error happens

 15

methods in the interface of the participant
– canCommit?(trans)-> Yes / No
– doCommit(trans)
– doAbort(trans)

methods in the interface of the coordinator
– haveCommitted(trans, participant)
– getDecision(trans) -> Yes / No

16

 If the client requests abortTransaction,the
coordinator informs all participants immediately

When the client asks the coordinator to commit the
transaction that the two-phase commit protocol

comes into use.

17

Phase 1 (voting phase):
1. The coordinator sends a canCommit? request to

each of the participants in the transaction.
2. When a participant receives a canCommit?

request it replies with its vote (Yes or No) to the
coordinator. Before voting Yes, it prepares to
commit by saving objects in permanent
storage(prepared). If the vote is No the
participant aborts immediately.

18

Recall that
server may
crash

Phase 2 (completion according to outcome of
vote):

3. The coordinator collects the votes
– (a)If there are no failures and all the votes

are Yes the coordinator decides to commit
the transaction and sends a doCommit
request to each of the participants.

– (b)Otherwise the coordinator decides to
abort the transaction and sends doAbort
requests to all participants that voted Yes.

 19

Phase 2 (completion according to outcome of
vote):

4. Participants that voted Yes are waiting for a
doCommit or doAbort request from the
coordinator. When a participant receives one of
these messages it acts accordingly and in the
case of commit, makes a haveCommitted call as
confirmation to the coordinator.

20

21

 Commit
•Send COMMIT
to each
participant

All
YES

NO

 Abort
•Send NO to

Coordinator

not ready

 Abort
•Send ABORT to
each participant

Time out
or a NO ABORT

decision

 Abort

 Commit
• Make
transaction
visible

COMMIT
decision

• Prepared
(uncertain)
• send YES to
coordinator
• Wait for
decision

ready

YES

(wait)
•Send request
to each
participant
• Wait for
replies (time out
possible)

request

 init Participant init(execute)

CloseTrans()

Coordinator

It is assumed that

– an underlying request-reply protocol removes
corrupt and duplicated messages

 Servers may crash and messages may be lost

22

To deal with the possibility of crashing

– each server saves information relating to the two-
phase commit protocol in permanent storage

– Crashed process of coordinator and participant
will be replaced by new processes and the
information can be retrieved by a new process

23

Time out for the participant

1. Timeout of waiting for canCommit(by timeout
period on a lock): abort

2. Timeout of waiting for doCommit :

• Participant is in uncertain status

• send getDecision request to the coordinator
and if coordinator fails,alternative strategies
are available for the participants to obtain a
decision cooperatively,but sometimes it
doesn’t work!(all in uncertain status)

24

Time out for the coordinator

1. Timeout of waiting for vote result: abort

• Some tardy participants may try to vote Yes
after this, but their votes will be ignored and
they will enter the uncertain state as described
previous page(2)

2. Timeout of waiting for haveCommited: do
nothing,The protocol can work correctly without
the confirmation

 25

 the cost in messages with N participants is 3N, and
the cost in time is three rounds of messages

 Protocol is guaranteed to complete eventually,
although it is not possible to specify a time limit
within which it will be completed

 It can cause considerable delays to participants in the
uncertain state when coordinator fails

26

 ID of subtransaction must be an extension of its
parent’s TID

 Subtransaction status can be:

– Commit provisionally : updates are not saved in
the permanent storage

– Abort: it will abort all of its child.

27

 Each subtransaction

– If commit provisionally report the status of it and
its descendants to its parent

– If abort just report abort to its parent without any
information about its descendants

Operations in coordinator for nested transactions

– Open subtransaction(trans)subTrans

– getStatus(trans)commited, aborted, provisional

28

29

1

2

T
11

T
12

T
22

T
21

abort (at M)

provisional commit (at N)

provisional commit (at X)

aborted (at Y)

provisional commit (at N)

provisional commit (at P)

T

T

T

We have hierarchic or flat two-phase commit protocol .In both,phase two is same

as for flat transaction

30

Coordinator
of transaction

Child
transaction

Participant Provisional
commit list

Abort list

T T1,T2 Yes T1,T12 T11,T2

T1 T11,T12 Yes T1,T12 T11

T2 T21,T22 No(aborted) T2

T11 No(aborted) T11

T12,T21 T12 but not T21 T21,T12

T22 No(parent aborted) T22

Messages are transferred according to the hierarchic
relationship between successful participants

– canCommit?(trans, subTrans) Yes / No

 Each participant collects the replies from its
descendants before replying to its parent

31

 the coordinator of the top-level transaction sends
canCommit? Messages to the coordinators of all of
the subtransactions in the provisional commit list

– canCommit?(trans, abortList) Yes / No

 If the participant has any provisionally committed it

checks that they do not have aborted
ancestors in the abortList, then prepares to
commit

• aborts those with aborted ancestors;

• sends a Yes vote to the coordinator.

 32

 hierarchic protocol has the advantage that at each
stage, the participant only need look for
subtransactions of its immediate parent

 flat protocol has the advantage that allows the
coordinator of the top-level transaction to
communicate directly with all of the participants,less
messages

33

34

timestamp ordering

locking

optimistic concurrency control

Concurrency control in Distributed
Transaction

 Each server is responsible for applying concurrency
control to its own objects

 But we need Serial equivalence on all involved
servers means:

– If transaction T is before transaction U in their
conflicting access to objects at one of the server
then they must be in that order at all of the
servers whose objects are accessed in a conflicting
manner by both T and U

35

 Locks are held locally, and cannot be released until all
servers involved in a transaction have committed or
aborted.

 Locks are released after 2PC protocol unless
transaction abort in phase 1

 Since lock managers work independently, deadlocks
are very likely.

36

T U

Write(A) Locks A At X

Read(B) Wait for U At Y

Write(B) Locks B At Y

Read(A) Wait for T At X

Globally unique transaction timestamp

– timestamp consists of <localtimestamp, server-id>
pair

– it’s passed to the coordinator of servers involved
in the transaction

– for efficiency it is required that the timestamps
issued by one coordinator be roughly
synchronized with other coordinators
(synchronized local physical clocks)

37

 Each server accesses shared objects according to the
timestamp

 conflicts are resolved using the rules given in Section
16.6.

 If the resolution of conflict requires a transaction to
be aborted, it will abort the transaction at all the
participants

38

The validation

– takes place during the first phase of two phase
commit protocol

– Serial validation is not suitable

39

Read (A) At X

Read(B) At Y

Write (A)

Write (B)

Read (B) At Y

Read(A) At X

Write (B)

Write (A)

T U

Parallel validation

– Suitable for distributed transaction

– write-write conflict must be checked as well as
write-read for backward validation

– Possibly different validation order on different
server, to solve it each server validates according to
a globally unique transaction number of each
transaction

40

Phantom deadlocks

41

 Distributed deadlock detection

Centralized deadlock detection

 Solve Distributed deadlocks

What’s distributed deadlock

Transaction Priority

42

U V W
d.deposit(10) lock D

 at Z

b.deposit(10) lock B

 at Y

a.deposit(20) lock A

 at X

c.deposit(30) lock C

 at Z

b.withdraw(30) wait

 at Y

c.withdraw(20) wait

 at Z

a.withdraw(20) wait

 at X

A cycle in the global wait-for graph

43

W

V

U

D

Waits for

Waits
for

Held by

Held
by

B

Waits for
Held

by

X

Y

Z
Held by

W

U V

A C

Simple Approach : centralized deadlock
detection

– one server takes the role of global deadlock
detector

– each server sends the latest copy of its local wait-
for graph to the global deadlock detector

– The coordinator constructs a global graph and
checks for cycles and makes a decision on how to
resolve the deadlock

44

The Problems

– usual problems associated with centralized
solutions in distributed systems:
 poor availability
 lack of fault tolerance
 poor scalability

– cost of collecting information is high

– Phantom deadlock

45

 A deadlock that is ‘detected’ but is not really a
deadlock is called a phantom deadlock

 It may occur when some deadlocked transactions
abort or release locks

46

47

X

T U

Y

V T
T

U V

 local wait-for graph local wait-for graph global deadlock detector

– at server Y: U request lock V

– at server X: U release lock for T

– at global deadlock detector: message from server
Y arrives earlier than message from server X,
then phantom deadlock happens

A distributed Aproach : Edge Chasing

– Each server involved in the dead-lock forwards the
partial knowledge of wait-for edge which is called
probes to other servers to construct the wait-for
graph

– But when to send a probe?

48

Edge-chasing algorithms have three steps:
 Initiation

– When a server finds that a transaction T starts
waiting for another transaction U, where U is
waiting to access an object at another server, it
initiates detection by sending a probe containing
the edge <TU> to the server of the object at
which transaction U is blocked

Detection

– Receive probes

49

Detection...

– Detect whether deadlock has occurred

• Merge the local wait-for knowledge and that of
the probes, find cycle

– Decide whether to forward the probes

• If there is a new transaction V is waiting for
another object elsewhere, the probe is
forwarded

 Resolution

– When a cycle is detected, a transaction in the
cycle is aborted

50

V

Held by

W

Waits for Held by

Waits
for

U

C

A

B

Z

Y

X

 U V

 V W

51

W U V W

W U V
Initiation

W U

Waits for

Deadlock
detected

