
based on Distributed Systems: Concepts and Design, Edition 5

Ali Fanian

Isfahan University of Technology
www.Fanian.iut.ac.ir

 What are transactions?
 Concurrency control
 Recoverability from aborts
 Locks
 Optimistic concurrency control
 Timestamp ordering

2

In some situations, clients require a sequence of separate
requests to a server to be atomic in the sense that:

 They are free from interference by operations being
performed on behalf of other concurrent clients.

 Either all of the operations must be completed
successfully or they must have no effect at all in the
presence of server crashes.

3

 Example

Transaction T:
a.withdraw(100);
b.deposit(100);
c.withdraw(200);
b.deposit(200);

4

 Atomicity: a transaction must be all or nothing.

 Consistency: a transaction takes the system from
one consistent state to another consistent state.

 Isolation: each transaction must be performed
without interference from other transactions.

 Durability: after a transaction has completed
successfully, all its effects are saved in permanent
storage.

5

 Problems of concurrent transactions:

 The lost update problem

 Inconsistent retrievals problem

 We assume throughout that each of the
operations deposit, withdraw, getBalance and
setBalance are atomic.

6

Initial balances: A=100$; B=200$; C=300$

 Transaction T Transaction U

balance = b.getBalance(); balance = b.getBalance();

b.setBalance(balance*1.1); b.setBalance(balance*1.1);

a.withdraw(balance/10) c.withdraw(balance/10)

T U Balance A Balance B Balance C

balance =b.getBalance(); 200$ 100 200 300

balance=b.getBalance(); $200 100 200 300

b.setBalance(balance*1.1); 100 220 300

b.setBalance(balance*1.1); 100 220 300

a.withdraw(balance/10) 80 220 300

c.withdraw(balance/10) 80 220 280

7

Initial balances: A=200$; B=200$

Transaction V Transaction W

a.withdraw(100) aBranch.branchTotal()

b.deposit(100)

Transaction V Transaction W Balance A Balance B

a.withdraw(100); 100 200

total = a.getBalance() $100 100 200

total += b.getBalance() $300 100 200

b.deposit(100) 100 300

8

 If we have a set of transactions and we don't
have any particular order on them then we
could say a correct result is some sequence of
them.

 For example consider the set of transaction S,
T,U then we could take any order:

 S;T;U, S;U;T, T;S;U, T;U;S, U;S;T, U;T;S.

9

 An interleaving of the operations of transactions
in which the combined effect is the same as if
the transactions had been performed one at a
time in some order is a serially equivalent
interleaving.

 The goal of concurrency control is to ensure
serial equivalence while trying to be as efficient
as possible.

10

 The lost update problem occurs when two transactions read the old value
of a variable and then use it to calculate the new value.

 As a serially equivalent interleaving of two transactions produces the
same effect as a serial one, we can solve the lost update problem by
means of serial equivalence.

 Transaction T Transaction U

balance = b.getBalance() $200

b.setBalance(balance*1.1) $220

balance = b.getBalance() $220

b.setBalance(balance*1.1) $242

a.withdraw(balance/10) $80

c.withdraw(balance/10) $278

11

 The inconsistent retrievals problem can occur when a retrieval
transaction runs concurrently with an update transaction.

 It cannot occur if the retrieval transaction is performed before or after
the update transaction.

Transaction V Transaction W

a.withdraw(100); $100

b.deposit(100) $300

total = a.getBalance() $100

total += b.getBalance() $400

12

 When we say that a pair of operations conflicts we
mean that their combined effect depends on the
order in which they are executed.

The conflict rules for read and write operations:

 Operations of different transactions Conflict

Read Read No

Read Write Yes

Write Write Yes

13

Transaction T Transaction U

x = read(i) y = read(j)

write(i, 10) write(j, 30)

write(j, 20) z = read (i)

A serially-equivalent interleaving of operations of transactions T and U

A non–serially-equivalent interleaving of operations of transactions T and U

14

 This section illustrates two problems
associated with aborting transactions:

 dirty reads

 Premature writes

 Both of this problems can occur in the
presence of serially equivalent executions of
transactions.

15

 The isolation property of transactions requires that
transactions do not see the uncommitted state of
other transactions.

 This problem is caused by the interaction between a
read operation in one transaction and an earlier
write operation in another transaction on the same
object.

16

 Transaction T Transaction U

a.getBalance() a.getBalance()

a.setBalance(balance + 10) a.setBalance(balance + 20)

Transaction T Transaction U

a.getBalance() $100

a.setBalance(balance + 10) $110

a.getBalance() $110

a.setBalance(balance + 20) $130

commit transaction

abort transaction

17

 If a transaction has committed after it has
seen the effects of a transaction that
subsequently aborted, the situation is not
recoverable.

 To ensure that such situations will not arise,
any transaction that is in danger of having a
dirty read delays its commit operation.

18

 Transaction T Transaction U

a.getBalance() $100

a.setBalance(balance + 10) $110

a.getBalance() $110

a.setBalance(balance + 20) $130

abort transaction

abort transaction

• To avoid cascading aborts, transactions are only allowed to read objects that were
written by committed transactions.

19

 Transaction T Transaction U

a.setBalance(105) a.setBalance(110)

Transaction T Transaction U

a.setBalance(105) $105

a.setBalance(110) $110

To ensure correct results in a recovery scheme that uses before images, write operations must
be delayed until earlier transactions that updated the same objects have either committed or
aborted.

20

• The executions of transactions are called strict if the service
delays both read and write operations on an object until all
transactions that previously wrote that object have either
committed or aborted.

• Enforces isolation

Strict executions of transactions

• All of the update operations performed during a transaction are
done in tentative versions of objects in volatile memory.

• The tentative versions are transferred to the objects only when a
transaction commits.

Tentative versions

21

 Nested transactions extend the transaction
model by allowing transactions to be
composed of other transactions.

 The outermost transaction in a set of nested
transactions is called the top-level
transaction.

 Transactions other than the top-level
transaction are called subtransactions.

 22

 Example
 T1=open SubTransaction T2=openSubTransaction

openSubTransaction openSubtransaction openSubTransaction

openSubTransaction

T:top-level transaction

commit

provisional commit

provisional commit provisional commit

provisional commit

provisional commit

abort

T1: T2:

T11: T12: T21:

T211:

23

 Main advantages:

 Additional concurrency in a transaction.

 Subtransactions can commit or abort
independently.

24

 The rules for committing of nested transactions:
 A transaction may commit or abort only after its child

transactions have completed.
 When a subtransaction completes, it makes an independent

decision either to commit provisionally or to abort. Its decision
to abort is final.

 When a parent aborts, all of its subtransactions are aborted.
 When a subtransaction aborts, the parent can decide whether

to abort or not.
 If the top-level transaction commits, then all of the

subtransactions that have provisionally committed can commit
too, provided that none of their ancestors has aborted.

25

 Example
 T1=open SubTransaction T2=openSubTransaction

openSubTransaction openSubtransaction openSubTransaction

openSubTransaction

T:top-level transaction

commit

provisional commit

provisional commit provisional commit

provisional commit

provisional commit

abort

T1: T2:

T11: T12: T21:

T211:

26

 Example
 Transaction T Transaction U

Operations Locks Operations Locks

openTransaction

bal = b.getBalance() lock B

b.setBalance(bal*1.1) openTransaction

a.withdraw(bal/10) lock A bal = b.getBalance() waits for T’s lock on B

closeTransaction unlock A,B …

lock B

b.setBalance(bal*1.1)

c.withdraw(bal/10) lock c

closeTransaction unlock B, C
27

 Two-phase locking (2PL)
 All pairs of conflicting operations of two transactions

should be executed in the same order.
 To ensure this, a transaction is not allowed any new locks

after it has released a lock.
 The first phase of each transaction is a ‘growing phase’,

and the second phase is a ‘shrinking phase’.
 This is called two-phase locking.

 Strict two-phase locking (S2PL)
 Any locks acquired are not given back until the transaction

completed or aborts (ensures recoverability).
 the locks must be held until all the objects it updated have

been written to permanent storage.

28

 Two types of locks are used:

 Read locks .

 Write locks.

For one object Lock requested

read write

Lock already set none OK OK

read OK wait

write wait wait

29

 Solving inconsistent retrieval problem
 Inconsistent retrievals are prevented by performing

the retrieval transaction before or after the update
transaction.

 Solving lost update problem
 Lost updates occur when two transactions read a

value of an object and then use it to calculate a new
value.

 Lost updates are prevented by making later
transactions delay their reads until the earlier ones
have completed.

30

 1. When an operation accesses an object within a transaction:

If the object is not locked locked Operation proceeds

If the object has a conflicting
lock

wait

If the object has a non-
conflicting lock

Share the lock Operation proceeds

If the object has already been
locked in the same transaction

Promote it if necessary Operation proceeds

2. When a transaction is committed or aborted, the server unlocks all objects it
locked for the transaction.

31

 Lock implementation

 The granting of locks will be implemented by a
separate object in the server that we call the lock
manager.

 The lock manager holds a set of locks, for
example in a hash table.

 Each lock is an instance of the class Lock and is
associated with a particular object.

32

33

 Locking rules for nested transactions

 Each set of nested transactions is a single entity
that must be prevented from observing the partial
effects of any other set of nested transactions.

 Each transaction within a set of nested
transactions must be prevented from observing
the partial effects of the other transactions in the
set.

34

 The following rules describe lock acquisition and release:
 For a subtransaction to acquire a read lock on an object, no

other active transaction can have a write lock on that object,
and the only retainers of a write lock are its ancestors.

 For a subtransaction to acquire a write lock on an object, no
other active transaction can have a read or write lock on that
object, and the only retainers of read and write locks on that
object are its ancestors.

 When a subtransaction commits, its locks are inherited by its
parent, allowing the parent to retain the locks in the same
mode as the child.

 When a subtransaction aborts, its locks are discarded. If the
parent already retains the locks, it can continue to do so.

35

 Deadlocks

36

 Deadlock prevention

 Lock all of the objects used by a transaction when
it starts.

 This would need to be done as a single atomic
step.

 Disadvantages

 Unnecessarily restricts access to shared resources.

 It is sometimes impossible to predict at the start
of a transaction which objects will be used.

37

 Deadlock detection

 Deadlocks may be detected by finding cycles in
the wait-for graph.

 Having detected a deadlock, a transaction must
be selected for abortion to break the cycle.

38

 Timeouts

 Each lock is given a limited period in which it is
invulnerable.

39

 Drawbacks of locking:

 Lock maintenance represents an overhead that is
not present in systems that do not support
concurrent access to shared data.

 The use of locks can result in deadlock.

 To avoid cascading aborts, locks cannot be
released until the end of the transaction. This may
reduce significantly the potential for concurrency.

40

Each transaction has the following phases:
 Working phase
 Validation phase
 Update phase

41

 Working phase:

 Each transaction has a tentative version of each of
the objects that it updates.

 The use of tentative versions allows the
transaction to abort with no effect on the objects.

 Read operations are performed immediately.

42

 Working phase:
 Write operations record the new values of the objects

as tentative values.

 When there are several concurrent transactions,
several different tentative values of the same object
may coexist.

 Two records are kept of the objects accessed within a
transaction.

 All read operations are performed on committed
versions of the objects (or copies of them), dirty reads
cannot occur.

43

 Validation phase:

 When the closeTransaction request is received,
this phase begins.

 If the validation is successful, then the transaction
can commit.

 If the validation fails, then some form of conflict
resolution must be used.

44

 Update phase:

 If a transaction is validated, all of the changes
recorded in its tentative versions are made
permanent.

 Read-only transactions can commit immediately
after passing validation.

 Write transactions are ready to commit once the
tentative versions of the objects have been
recorded in permanent storage.

45

 Overlapping transactions

46

 Validation of transactions

 Validation uses the read-write conflict rules to
ensure that the scheduling of a particular
transaction is serially equivalent with respect to all
other overlapping transactions.

 Each transaction is assigned a transaction number
when it enters the validation phase.

47

 Validation of transactions
The validation test on transaction Tv is based on conflicts between operations in
pairs of transactions Ti and Tv. For a transaction Tv to be serializable with respect to
an overlapping transaction Ti, their operations must conform to the following rules:

Tv Ti Rule

write read 1. Ti must not read objects written by Tv.

read write 2. Tv must not read objects written by Ti.

write write 3. Ti must not write objects written by Tv and
Tv must not write objects written by Ti.

Note that this restriction on write operations, together with the fact that no dirty
reads can occur, produces strict executions.

48

 Backward validation

 Rule 1 is satisfied, why?

boolean valid = true;
for (int Ti = startTn+1; Ti <= finishTn; Ti++)
{
 if (read set of Tv intersects write set of Ti) valid = false;
}

49

 Forward validation

 Rule 2 is satisfied, why?

boolean valid = true;
for (int Tid = active1; Tid <= activeN; Tid++)
{
 if (write set of Tv intersects read set of Tid) valid = false;
}

50

