Time and Global States

based on Distributed Systems: Concepts and Design,
Edition 5

All Fanian

Isfahan University of Technology
' www.Fanian.iut.ac.ir

Titles

> Introduction

> Clocks, events and process states
> Synchronizing physical clocks

> Logical time and logical clocks

> Global states

> Distributed debugging

> Summary

Why time?

 Time 1s important because:
1. time is a quantity we often want to measure accurately,
e.g. In e-commerce transactions
2. consistency of distributed data, checking the authenticity
of a request sent to a server, eliminating the processing of
duplicate updates

» But time 1s Problematic in DS.

» Fach computer has its own physical clock, clocks typically
deviate, we cannot synchronize them perfectly.

What we study?

We will examine algorithms for synchronization physical

clocks using message passing
We will study logical clocks: vector clocks.

o We will also look at algorithms to capture global states of DS

as they execute.

Events

As each process p; executes it takes a series of actions such as:
1. message send or receive operation
2. an operation that transforms p; s state

We define an event to be the occurrence of a single action that a
process carries out as it executes — a communication action or a
state-transforming action.

The sequence of events within a single process p; denote by the
relation —>1 between the events.

That is, e —>1 e'if and only if the event e occurs before e’ at p; .
history of process p;:

hi.ﬂnrj.fpi) = hi = n:e?, r:,e?, -

Clock skew and clock drift

The instantaneous difference between the readings of any two
clocks 1s called their skew.

Clock drift means that clocks count time at different rates.

Skew between computer clocks

—d —d —d —d

cRcHIcRe

Network

Coordinated Universal Time

* Computer clocks can be synchronized to external sources.

* The most accurate physical clocks use atomic oscillators,
whose drift rate is about one part in 1013.

* Coordinated Universal Time — abbreviated as UTC — is an
international standard for timekeeping.

- UTC signals are synchronized and broadcast regularly from
land based radio stations and satellites.

* Satellite sources include the Global Positioning System (GPS).

* Signals received from land-based stations have an accuracy on
the order of 0.1-10 milliseconds.

* Signals received from GPS satellites are accurate to about 1
microsecond.

* Computers with receivers attached can synchronize their
clocks with these timing signals.

Synchronizing physical clocks

In order to know at what time of day events occur, it is

necessary to synchronize the processes’clocks, C;

If we synchronize them with an authoritative, external source

of time, it 1s external synchronization.

And if the clocks C; are synchronized with one another to a

known degree of accuracy, this is internal synchronization.

External synchronization: For a synchronization bound D > 0,
and for a source S of UTC time, |S(t)— C;(t) |<D, fori =1, 2,

...IN and for all real times t in 1.

Internal synchronization: For a synchronization bound D > 0,

Synchronizing physical clocks

Clocks that are internally synchronized are not necessarily

externally synchronized.

If the system P is externally synchronized with a bound D,
then the same system is internally synchronized with a bound

of 2D.

We define a hardware clock H to be correct if its drift rate falls

within a known bound p > 0, (such as 10° seconds/second).

Internal Synchronization

One process sends the time t on its local clock to the other in a
message m.

* Receiving process could set its clock to the time t + Ty gns
* Tirans 1S the time taken to transmit m between them.
o Tirans 1S unknown. Because:

1. other processes are competing for resources with the
processes to be synchronized

2. other messages compete with m for the network resources

10

Synchronization in a synchronous system

« There is always a minimum transmission time, min.
It 1is obtained if no other processes executed and no other network
traffic existed.
There 1s also an upper bound max on the time taken to transmit any
message.

* Uncertainty in the message transmission time = u,
u = (max—min)
If'the receiver sets its clock to be t + min, then the clock skew may be
as much as u.
If 1t sets its clock to t + max, the skew may be as large as u.

If 1t sets its clock to the halfway point, t + (max + min)/ 2, then the
skew 1s at most u/ 2.

11

Cristian’s method for synchronizing clocks

Cristian suggested the use of a time server.

Time server connected to a device that receives signals from a

source of UTC.

Upon request, the server process S supplies the time according

to its clock.

M
(e——)
m
P Time server, S

Process p records the total round-trip time Ty, nq taken to send

the request m,. and recetve the reply m; .

12

Cristian’s method for synchronizing clocks

The method achieves synchronization only if the observed

round-trip times between client and server are sufficiently

short compared with the required accuracy.

* A simple estimate of the time to which p should set its clock is
t+ Trouna / 2.

This is accurate assumption, unless the two messages are

transmitted over different networks.

13

Cristian’s method for synchronizing clocks

If min s known, then the accuracy is as follows:

* The earliest point at which S could have placed the time in m,

was min after p dispatched m,..

The latest point at which it could have done this was min

before m; arrived at p.
The time when reply message arrives is in the range
[t + min, t + Tyoyng — min/

The width of this range is Tyoyyng — 2min , so the accuracy is

:t(lround /2 - min)

14

Discussion of Cristian’s algorithm

« Single time server might fail and thus render synchronization

temporarily impossible.
— Cristian suggested, that time should be provided by a group of

synchronized time servers, each with a receiver for UTC time

signals.

— For example, a client could multicast its request to all servers

and use only the first reply obtained.

« Faulty time server: These problems were beyond the scope of

the work described by Cristian, which assumes that sources of

external time signals are self-checking.

15

The Berkeley algorithm

* QGusella and Zatti describe an algorithm for internal
synchronization.

« A coordinator computer 1s chosen to act as the master.

« This computer periodically polls the other computers whose
clocks are to be synchronized, called slaves.

- The slaves send back their clock values to it.

« The master estimates their local clock times by observing the
round-trip times and it averages the values obtained.

« Instead of sending the updated current time back to the other
computers, the master sends the amount by which each
individual slave’s clock requires adjustment.

This can be a positive or negative value.

16

The Berkeley algorithm

* The Berkeley algorithm eliminates readings from faulty
clocks.

— A subset 1s chosen of clocks that do not differ from one another
by more than a specified amount, and the average is taken of

readings from only these clocks.
- [fthe master fail, then another can be elected.

« These are not guaranteed to elect a new master in bounded
time, so the difference between two clocks would be

unbounded.

17

The network time protocol

Cristian’s method and the Berkeley algorithm are intended

primarily for use within intranets.

The NTP defines an architecture for a time service and a

protocol to distribute time information over the Internet.

18

The network time protocol
PN
VRN AN

« Phen¥NihPseemerce asqunow atedtbym Inéhevrkrofadetivenoddcated

SeFae8 b © Baterela b YISV §EP Vi@ PR etke bR 5@ @ directly
WaRR $RBLSE FHGh a8 pEaglio clock receiving UTC; secondary
SRR B S VS QA2 o U VURAIEH o P B REVIAFD SEEVERS: and so on.
The sewrecusiavelcaBROGERArAd08scab licraeywatest #tions.

synchronization subnet whose levels are called strata.

19

The network time protocol

Multicast mode 1s intended for use on a high-speed LAN. One or more
servers periodically multicasts the time to the other computers
connected by the LAN, which set their clocks assuming a small delay.

Procedure-call mode 1s similar to the operation of Cristian’s algorithm.
In this mode, one server accepts requests from other computers, which
It processes by replying with its timestamp. This mode 1s suitable
where higher accuracies are required than can be achieved with
multicast, or where multicast is not supported in hardware.

Symmetric mode 1s intended for use by the servers that supply time
information in LANs and by the higher levels (lower strata) of the
synchronization subnet, where the highest accuracies are to be
achieved. A pair of servers operating in symmetric mode exchange
messages bearing timing information.

20

The network time protocol
Server B @ Q ~ Time

Time of receiving request Time of sending respond

= Time

ServerA @
Time of sending request Time of receiving respond

« In procedure-call mode and symmetric mode, processes exchange pairs

of messages.

- Fach message bears timestamps of recent message events.

21

Happend-before relation

From the point of view of any single process, events are ordered

uniquely by times shown on the local clock.

since we cannot synchronize clocks perfectly across a distributed
system, we cannot in general use physical time to find out the order of

any arbitrary pair of events occurring within it.
For ordering in DS, there is two points:

1. If two events occurred at the same processp; (1 =1, 2, ... N), then

they occurred in the order in which p; observes them (—1).

2. Whenever a message is sent between processes, the event of sending

the message occurred before the event of receiving the message.

These two relationships are called the happened-before relation (or

causal ordering or potential causal ordering).

22

Happend-before relation

* happened-before relation, denoted by—>

HBI:
HB2:

HB3:

a— b,

b— c

c—d
a->f

a-he
e-Pha

If dprocess p;: e —>je',thene— e'.

For any message m, send(m) — receive(im)
— where send(m) 1s the event of sending the message, and receive(m)
1s the event of recelving it.

If e, ¢ and e” are eventssuch that ¢ = ¢’ and ¢" = e" ,then e > ¢”.
3 *

M @ -
d Ji] /T
» _ Physical
C a b time
a " e e f

23

Logical clocks

* Lamport invented a simple mechanism by which the happened-before
ordering can be captured numerically, called a logical clock. A Lamport
logical clock is a monotonically increasing software counter.

* FEach process p; keeps its own logical clock, L;, which it uses to apply so-
called Lamport timestamps to events.

* We denote the timestamp of event e at pi by L;(e), and by L(e) we denote
the timestamp of event e at whatever process it occurred at.

* Processes update their logical clocks and transmit the values of their
logical clocks in messages as follows:

LC1: L/is incremented before each event is issued at process p/: Li:= Li+ 1.
LC2:

(a) When a process p/sends a message /m, it piggybacks on m the value
t=1LJ.

(b) On receiving (/m, f), a process pjcomputes L/ .= max(L/,) and then
applies LC1 before timestamping the event receive(m).

24

Logical clocks

Although we increment clocks by 1, we could have chosen any positive
value.

Ife—>e " then L(e) < L(e’)
The converse is not true. If L(e) < L(e’) then we can not say e—>e’

1 2
4 -
M a b m
3 4 . Physical
m
1 5
73 &
e f

L(b)>L(e) but bl e

25

Logical clocks

Some pairs of distinct events, generated by different processes, have

numerically identical Lamport timestamps.
However, we can create a total order on the set of events.

If e is an event occurring at p; with local timestamp T;, and e’ is an
event occurring at p; with local timestamp T; , we define the global
logical timestamps for these events to be (T;, i) and (T}, j), respectively.
And we define (T;, 1) < (T}, j) if and only if either T; <Tj , or T; =T; and

i <j.

26

Vector clocks

* the fact that from L(e) < L(e’) we cannot conclude that e—e”

A vector clock for a system of N processes is an array of N integers.

Each process keeps its own vector clock, V;, which it uses to timestamp

local events.

Like Lamport timestamps, processes piggyback vector timestamps on the
messages they send to one another, and there are simple rules for

updating the clocks.

27

Vector clocks

VCI: Initally, Vi[j]1 = 0,fori,j = 1,2...,N.
VC2: Just before p; timestamps an cvent, it sets V.[i] =V [i] + 1.
VC3: p; includes the value £ = V; in every message it sends.

VC4: When p; reccives a timestamp £ in a messagg, it scts
V.Ul := max(V,[j],t[j]) ,forj = 1,2..., N.

(1,0,0) (2,0,0)
-

a b m
(2-1 -U) (212*0) - PhtyFSIcal
ime
c d m
(0,0,1) (2,2,2)
° -
pe f

28

Vector clocks

For a vector clock V;, V;[i] is the number of events that p; has

timestamped, and V;[j] (j # i) is the number of events that have occurred

at p; that have potentially affected p;.

Comparing vector timestamps:
V=V if V[j]=V[j] forj=12....N
VSV iff V1S V] forj=1,2..,N
V<V iff VEVIAV2V

In previous example:

V(a) < V(f) which reflects the fact that a—f.
Neither V(c)< V(e) nor V(e)< V(c)thenc| | e

29

Vector clocks

Vector timestamps have the disadvantage, compared with Lamport

timestamps, of taking up an amount of storage and message payload
that 1s proportional to N, the number of processes.

However, techniques exist for storing and transmitting smaller

amounts of data.

30

Garbage collection

« Distributed garbage collection: An object is considered to be garbage if

there are no longer any references to it anywhere in the DS.

The memory taken up by that object can be reclaimed once it 1s known

to be garbage.

P P2
object ‘
reference message
garbage object

* When we consider properties of a system, we must include the state of

communication channels as well as the state of the processes.

31

Deadlock detection

Distributed deadlock detection: A distributed deadlock occurs when
each of a collection of processes waits for another process to send it a

message, and where there 1s a cycle in the graph of this ‘waits-for’

relationship.

P wait-for P2

wait-for

32

Termination detection

« Distributed termination detection: The problem here is how to detect

that a distributed algorithm has terminated.

It sounds easy to solve at first: it seems at first only necessary to test
whether each process has halted.

But this 1s not so.

A process 1s either active or passive.

a passive process 1s not engaged 1n any activity of its own but is
prepared to respond with a value requested by the other.
D P2
activate

passive |e¢{_____ 1 | passive

33

Debugging

* Distributed debugging: Distributed systems are complex to debug.

« For example, suppose Smith has written an application in which each
process p; contains a variablex; (1 =1, 2..., N). The variables change as
the program executes, but they are required always to be within a value
0 of one another.

« Unfortunately, there is a bug in the program, and Smith suspects that

under certain circumstances | x; —xj | > 0 for somei and .

* Her problem is that this relationship must be evaluated for values of

the variables that occur at the same time.

34

Global states & Consistent cuts

A series of events occurs at each process

hi.rmr)fpi) = hi = -r.:e?, r:,e,-z, -

« Any finite prefix of the process’s history: hf E -n:e?, r:ff:n-
« FEach event either is an internal action of the process (for example, the
updating of one of its variables), or is the sending or receipt of a

message over the communication channels.

« FEach process can record the events that take place there, and the

succession of states it passes through.

o Sf‘ the state of process p; immediately before the kth event occurs, so

that s! is the initial state of p;.

* Processes should record the sending or receipt of all messages as part of

their state

35

Global states & Consistent cuts

Global history of P is defined as the union of the individual process

histories:
H=hovhuv..vh,_,

Any set of states of the individual processesis a global state
S = (51,55, -..5y)

A cut of the system’s execution is a subset of its global history that is a

union of prefixes of process histories:

C=h'uhiu..uhy

The set of events {eici c1=1,2, ..., N}iscalled the frontier of the cut.

36

Consistent cuts

pr—*® ¢ >
M m
Physical
P2 @ - /
Inconsistent cut

/ Consistent cut
frontier: <e?, ed> \

frontier: <e?, e3>
A cut Cis consistent if, for each event it contains, it also contains all
the events that happened-before that event:
For all events e €C, f—e then f €C

The leftmost cut is inconsistent. This is because at p, it includes the

receipt of the message mq, but at p, it does not include the sending of
that message. This is showing an ‘effect’ without a ‘cause’.

37

Distributed debugging

The challenge 1s to monitor the system’s execution over time — to

capture ‘trace’ information rather than a single snapshot.

Snapshot algorithm collects state in a distributed fashion, and the
processes in the system could send the state they gather to a monitor
process for collection.

Next algorithm is centralized. The observed processes send their states
to a process called a monitor, which assembles globally consistent

states from what it receives.

38

Collecting the state

The observed processesp; (1 =1, 2, ...N) send their initial state to the

monitor initially, and thereafter from time to time, in state messages.

The monitor records the state messages from each process p; in a

separate queue Q;, for each i1=1, 2, ...N.

There is no need to send the state except initially and when it changes.

39

Observing consistent global states

100 (20 (3.0) (4.3)
X=1 \X1=- 100 x=105 (X=90
p—* d >
my m
Physical
P2 ® " time

=100 | =95 »m=90
(21) 1(22) (2,3) cut &
Cut &4

The requirementis |x; —x,| <50
In order that the monitor can distinguish consistent global states from
inconsistent global states, the observed processes enclose their vector

clock values with their state messages.

40

Observing consistent global states

S =(sq4, Sy, ..., Sy) 1s a global state drawn from the state messages that

the monitor has received.

V(s;i) is the vector timestamp of the state s; received from p;. Then it can

be shown that S is a consistent global state if and only if:

V(splilz V(sj)[:'] fori,j=12,...,N

This says that the number of p;’s events known at pj when it sent sj is
no more than the number of events that had occurred at p; when it sent

Si.

41

Observing consistent global states

Level 0 S00
1 Sm/
9 Sza/ S;= global state after /events at process 1
3 530/ N S and fevents at process 2
4 \5:51/ \Szz
5 Ns s
6 N 533/
7 &3/

TS B R ed G ap s B RGeS S e B Bt oSt ot
st’l})z? igslg'nitial state and p4 in the next state in its local history.

global states.

The 1ol Sl RS LB S 5.0 s Ta B hrom pa fo
R 51003805, SRR AL dhgattice

The lattice is arranged in levels with, for example, Sy in level 0 and Sy

42

Summary

Describing the importance of accurate timekeeping for DS.

We then described algorithms for synchronizing clocks despite the
drift between them and the variability of message delays between

computers.

The happened-before relation within a process, or via messages

between processes

Lamport clocks are counters that are updated in accordance with the

happened-before relationship between events.

Vector clocks are an improvement on Lamport clocks.

43

Summary

The concepts of events has been introduced, local and global histories,

cuts, local and global states, runs, consistent states, linearizations
(consistent runs) and reachability.

We went on to give algorithm that employs a monitor process to collect

states. The monitor examines vector timestamps to extract consistent

global states.

44

