
based on Distributed Systems: Concepts and Design,

Edition 5

Ali Fanian

Isfahan University of Technology

www.Fanian.iut.ac.ir

2

Titles

 Introduction

 Clocks, events and process states

 Synchronizing physical clocks

 Logical time and logical clocks

 Global states

 Distributed debugging

 Summary

2/71

3

Why time?
• Time is important because:

1. time is a quantity we often want to measure accurately,
e.g. in e-commerce transactions

2. consistency of distributed data, checking the authenticity
of a request sent to a server, eliminating the processing of
duplicate updates

• But time is Problematic in DS.

• Each computer has its own physical clock, clocks typically
deviate, we cannot synchronize them perfectly.

3/71

4

What we study?

• We will examine algorithms for synchronization physical

clocks using message passing

• We will study logical clocks: vector clocks.

• We will also look at algorithms to capture global states of DS

as they execute.

4/71

5

Events

5/71

6

Clock skew and clock drift

• The instantaneous difference between the readings of any two
clocks is called their skew.

• Clock drift means that clocks count time at different rates.

Skew between computer clocks

Network

6/71

7

Coordinated Universal Time

7/71

8

Synchronizing physical clocks

8/71

9

Synchronizing physical clocks

9/71

10

Internal Synchronization

10/71

11

Synchronization in a synchronous system
• There is always a minimum transmission time, min.

• It is obtained if no other processes executed and no other network
traffic existed.

• There is also an upper bound max on the time taken to transmit any
message.

• Uncertainty in the message transmission time = u,

 u = (max–min)

• If the receiver sets its clock to be t + min, then the clock skew may be
as much as u.

• If it sets its clock to t + max, the skew may be as large as u.

• If it sets its clock to the halfway point, t + (max + min) / 2 , then the
skew is at most u / 2.

11/71

12

Cristian’s method for synchronizing clocks

12/71

13

Cristian’s method for synchronizing clocks

13/71

14

Cristian’s method for synchronizing clocks

14/71

15

Discussion of Cristian’s algorithm

• Single time server might fail and thus render synchronization

temporarily impossible.

– Cristian suggested, that time should be provided by a group of

synchronized time servers, each with a receiver for UTC time

signals.

– For example, a client could multicast its request to all servers

and use only the first reply obtained.

• Faulty time server: These problems were beyond the scope of

the work described by Cristian, which assumes that sources of

external time signals are self-checking.

15/71

16

The Berkeley algorithm
• Gusella and Zatti describe an algorithm for internal

synchronization.

• A coordinator computer is chosen to act as the master.

• This computer periodically polls the other computers whose
clocks are to be synchronized, called slaves.

• The slaves send back their clock values to it.

• The master estimates their local clock times by observing the
round-trip times and it averages the values obtained.

• Instead of sending the updated current time back to the other
computers, the master sends the amount by which each
individual slave’s clock requires adjustment.

• This can be a positive or negative value.

16/71

17

The Berkeley algorithm

• The Berkeley algorithm eliminates readings from faulty

clocks.

– A subset is chosen of clocks that do not differ from one another

by more than a specified amount, and the average is taken of

readings from only these clocks.

• If the master fail, then another can be elected.

• These are not guaranteed to elect a new master in bounded

time, so the difference between two clocks would be

unbounded.

17/71

18

The network time protocol
• Cristian’s method and the Berkeley algorithm are intended

primarily for use within intranets.

• The NTP defines an architecture for a time service and a

protocol to distribute time information over the Internet.

18/71

19

The network time protocol

• Primary servers occupy stratum 1: they are at the root.

• Stratum 2 servers are secondary servers that are synchronized directly

with the primary servers;

• stratum 3 servers are synchronized with stratum 2 servers, and so on.

The lowest-level (leaf) servers execute in users’ workstations.

• The NTP service is provided by a network of servers located

across the Internet. Primary servers are connected directly to a

time source such as a radio clock receiving UTC; secondary

servers are synchronized, ultimately, with primary servers.

• The servers are connected in a logical hierarchy called a

synchronization subnet whose levels are called strata.

19/71

20

The network time protocol
• Multicast mode is intended for use on a high-speed LAN. One or more

servers periodically multicasts the time to the other computers
connected by the LAN, which set their clocks assuming a small delay.

• Procedure-call mode is similar to the operation of Cristian’s algorithm.
In this mode, one server accepts requests from other computers, which
it processes by replying with its timestamp. This mode is suitable
where higher accuracies are required than can be achieved with
multicast, or where multicast is not supported in hardware.

• Symmetric mode is intended for use by the servers that supply time
information in LANs and by the higher levels (lower strata) of the
synchronization subnet, where the highest accuracies are to be
achieved. A pair of servers operating in symmetric mode exchange
messages bearing timing information.

20/71

21

The network time protocol

• In procedure-call mode and symmetric mode, processes exchange pairs

of messages.

• Each message bears timestamps of recent message events.

Time of sending request Time of receiving respond

Time of receiving request Time of sending respond

21/71

22

Happend-before relation

22/71

23

Happend-before relation
• happened-before relation, denoted by

23/71

24

Logical clocks

24/71

LC1: Li is incremented before each event is issued at process pi : Li := Li + 1.

LC2:

 (a) When a process pi sends a message m, it piggybacks on m the value

t = Li .
 (b) On receiving (m, t), a process pj computes Lj := max(Lj, t) and then

applies LC1 before timestamping the event receive(m).

25

Logical clocks
• Although we increment clocks by 1, we could have chosen any positive

value.

• If e e´ then L(e) < L(e´)

• The converse is not true. If L(e) < L(e´) then we can not say e e´

25/71

26

Logical clocks

26/71

27

Vector clocks

27/71

28

Vector clocks

28/71

29

Vector clocks

29/71

30

Vector clocks
• Vector timestamps have the disadvantage, compared with Lamport

timestamps, of taking up an amount of storage and message payload

that is proportional to N, the number of processes.

• However, techniques exist for storing and transmitting smaller

amounts of data.

30/71

31

Garbage collection
• Distributed garbage collection: An object is considered to be garbage if

there are no longer any references to it anywhere in the DS.

• The memory taken up by that object can be reclaimed once it is known

to be garbage.

• When we consider properties of a system, we must include the state of

communication channels as well as the state of the processes.

31/71

32

Deadlock detection
• Distributed deadlock detection: A distributed deadlock occurs when

each of a collection of processes waits for another process to send it a

message, and where there is a cycle in the graph of this ‘waits-for’

relationship.

32/71

33

Termination detection
• Distributed termination detection: The problem here is how to detect

that a distributed algorithm has terminated.

• It sounds easy to solve at first: it seems at first only necessary to test

whether each process has halted.

• But this is not so.

• A process is either active or passive.

• a passive process is not engaged in any activity of its own but is

prepared to respond with a value requested by the other.

33/71

34

Debugging

34/71

35

Global states & Consistent cuts

35/71

36

Global states & Consistent cuts

36/71

37

Consistent cuts

37/71

38

Distributed debugging
• The challenge is to monitor the system’s execution over time – to

capture ‘trace’ information rather than a single snapshot.

• Snapshot algorithm collects state in a distributed fashion, and the

processes in the system could send the state they gather to a monitor

process for collection.

• Next algorithm is centralized. The observed processes send their states

to a process called a monitor, which assembles globally consistent

states from what it receives.

38/71

39

Collecting the state

39/71

40

Observing consistent global states

40/71

41

Observing consistent global states

41/71

42

Observing consistent global states

• This structure captures the relation of reachability between consistent

global states.

• The nodes denote global states, and the edges denote possible

transitions between these states.

42/71

43

Summary
• Describing the importance of accurate timekeeping for DS.

• We then described algorithms for synchronizing clocks despite the

drift between them and the variability of message delays between

computers.

• The happened-before relation within a process, or via messages

between processes

• Lamport clocks are counters that are updated in accordance with the

happened-before relationship between events.

• Vector clocks are an improvement on Lamport clocks.

43/71

44

Summary
• The concepts of events has been introduced, local and global histories,

cuts, local and global states, runs, consistent states, linearizations

(consistent runs) and reachability.

• We went on to give algorithm that employs a monitor process to collect

states. The monitor examines vector timestamps to extract consistent

global states.

44/71

