Advanced Operating Systems Lecture notes

Ali Fanian

Dept. of Electrical and computer Engineering Isfahan University of Technology

http://www.fanian.iut.ac.ir

Administration

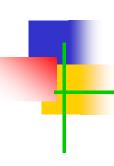
- Class Home Page fanian.iut.ac.ir
 - Announcements
 - Lecture Slides

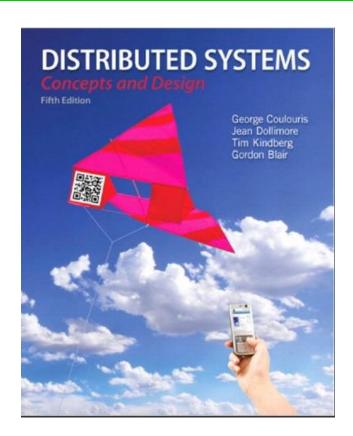
e-mail: a.fanian@cc.iut.ac.ir

Administrative Information

Text

- Distributed Systems: Concepts and Design (5th edition)
 - By Coulouris, Dollimore, and Kindberg
- Modern Operating System (5th edition)
 - By Anderws Tanenbaum and Herbert Bos

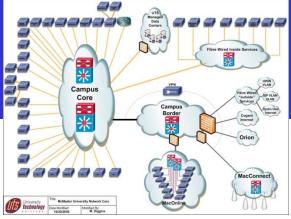

Syllabus

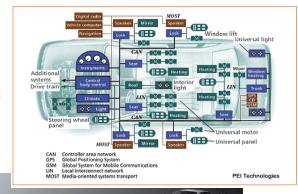

- CHARACTERIZATION OF DISTRIBUTED SYSTEMS
- SYSTEM MODELS
- Multiple Processor Systems
- INTERPROCESS COMMUNICATION
- REMOTE INVOCATION
- INDIRECT COMMUNICATION
- Security
- DISTRIBUTED FILE SYSTEMS
- TIME AND GLOBAL STATES
- COORDINATION AND AGREEMENT
- TRANSACTIONS AND CONCURRENCY CONTROL
- DISTRIBUTED TRANSACTIONS

Administrative Information

- Grading
 - 35%: Mid-Term
 - 35%: Final Exam
 - 30%: Projects, Seminar and Report

Introduction to Distributed Systems and Characterisation


Presentation Outline


- Introduction
- Defining Distributed Systems
- Characteristics of Distributed Systems
- Example Distributed Systems
- Challenges of Distributed Systems
- Summary

Introduction

- Networks of computers are everywhere!
 - Mobile phone networks
 - Corporate networks
 - Factory networks
 - Campus networks
 - Home networks
 - In-car networks
 - On board networks in planes and trains
- The aims of this course are :
 - to explain the characteristics of networked computers that impact system designers and implementers
 - to present the main concepts and techniques that have been developed to help in the tasks of designing and implementing systems and applications that are based on them (networks).

Defining Distributed Systems

- "A system in which hardware or software components located at networked computers communicate and coordinate their actions only by message passing." [Coulouris]
- "A distributed system is a collection of independent computers that appear to the users of the system as a single computer." [Tanenbaum]
- "A distributed system is one on which I cannot get any work done because some machine I have never heard of has crashed."[Leslie Lampart]

Defining Distributed Systems

- Example Distributed Systems:
 - Cluster:
 - "A type of parallel or distributed processing system, which consists of a collection of interconnected stand-alone computers cooperatively working together as a single, integrated computing resource" [Buyya].
 - Cloud:
 - "a type of parallel and distributed system consisting of a collection of interconnected and virtualised computers that are dynamically provisioned and presented as one or more unified computing resources based on service-level agreements established through negotiation between the service provider and consumers" [Buyya].
 - Grid can consist of many clusters interconnected and shared.

Networks vs. Distributed Systems

- Networks: A media for interconnecting local and wide area computers and exchange messages based on protocols. Network entities are visible and they are explicitly addressed (IP address).
- Distributed System: existence of multiple autonomous computers is transparent
- However,
 - many problems (e.g., openness, reliability) in common, but at different levels.
 - Networks focuses on packets, routing, etc., whereas distributed systems focus on applications.
 - Every distributed system relies on services provided by a computer network.

Distributed Systems

Computer Networks

Reasons for Distributed Systems

- Functional Separation:
 - Existence of computers with different capabilities and purposes:
 - Clients and Servers
 - Data collection and data processing
- Inherent distribution:
 - Information:
 - Different information is created and maintained by different people (e.g., Web pages)

Workstations

- Power imbalance and load variation:
 - Distribute computational load among different computers.
- Reliability:
 - Long term preservation and data backup (replication) at different locations.
- Economies:
 - Sharing a printer by many users and reduce the cost of ownership.

Central Computer

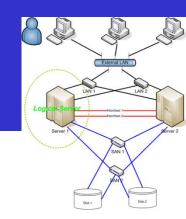
Consequences of Distributed Systems

- Computers in distributed systems may be on separate continents, in the same building, or the same room. DSs have the following consequences:
 - Concurrency each system is autonomous.
 - Carry out tasks independently
 - Tasks coordinate their actions by exchanging messages.
 - Heterogeneity
 - No global clock
 Independent Failures
 Workstations or

Characteristics of Distributed Systems

- Parallel activities
 - Autonomous components executing concurrent tasks

Central Computer


Communication via message passing

- No shared memory
- Resource sharing
 - Printer, database, other services
- No global state
 - No single process can have knowledge of the current global state of the system

Workstations

- No global clock
 - Only limited precision for processes to synchronize their clocks

Goals of Distributed Systems

Connecting Users and Resources

Ultimately we want out system made widely avail.

Transparency

 User should be unaware of complexity behind system, access it almost like local system.

Openness

 Use standards (like http/ftp, w3 standards) so anyone can interface with, understand and extend your system

Scalability

 Having near linear scaling is the ultimate goal, add capacity to deal with growth

Enhanced Availability

Differentiation with parallel systems

Multiprocessor systems

Shared memory

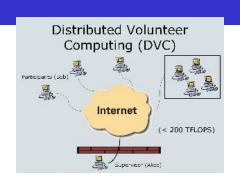
Bus-based interconnection network or even switched based

E.g. SMPs (symmetric multiprocessors) with two or more

CPUs

Multicomputer systems / Clusters

- No shared memory
- Homogeneous in hard- and software
 - Massively Parallel Processors (MPP)
 - Tightly coupled high-speed network
 - PC/Workstation clusters
 - High-speed networks/switches-based connection.



CPU₂

CPU₁

Differentiation with parallel systems is blurring

 Extensibility of clusters leads to heterogeneity

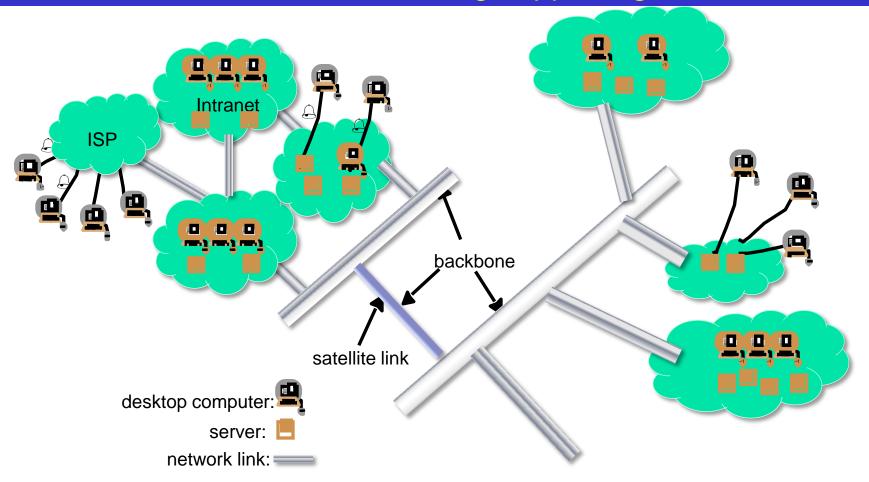
- Adding additional nodes as requirements grow
- Extending clusters to include user desktops by harnessing their idle resources
 - E.g., SETI@Home, Folding@Home
- Leading to the rapid convergence of various concepts of parallel and distributed systems

Examples of Distributed Systems

- They (DS) are based on familiar and widely used computer networks:
 - Internet
 - Intranets, and
 - Wireless networks
- Example DS:
 - Web (and many of its applications like Facebook)
 - Data Centers and Clouds
 - Wide area storage systems
 - Banking Systems

Mobile

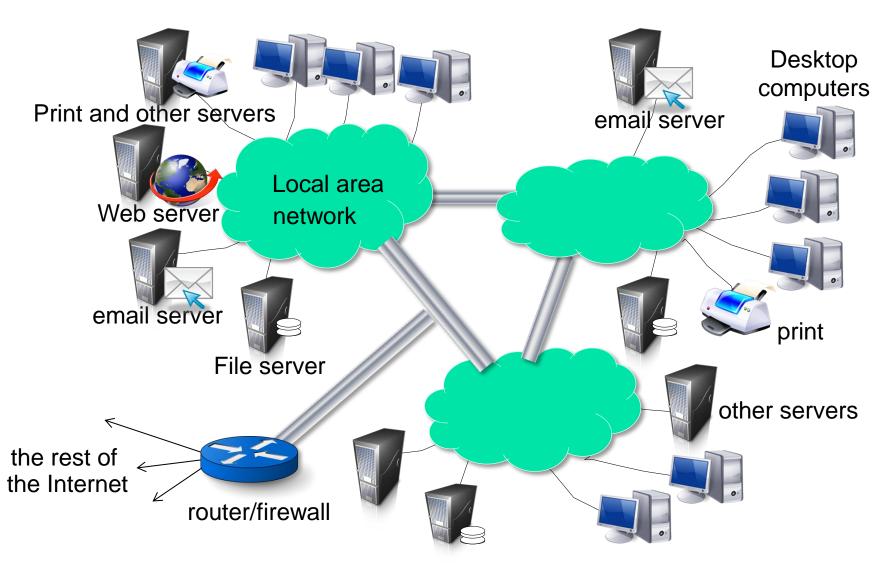
Notebook


Desktop

Internet

Remote Server

A typical portion of the Internet and its services:


Multimedia services providing access to music, radio, TV channels, and video conferencing supporting several users.

 The Internet is a vast collection of computer networks of many different types and hosts various types of services.

A typical Intranet:

A portion of Internet that is separately administered & supports internal sharing of resources (file/storage systems and printers)

Business Example and Challenges

- Online bookstore (e.g. in the World Wide Web)
 - Customers can connect their computer to your computer (web server):

Browse your inventory

Place orders

. . . .

Business Example - Challenges I

What if

- Your customer uses a completely different hardware? (PC, MAC,...)
- ... a different operating system? (Windows, Unix,...)
- ... a different way of representing data? (ASCII, EBCDIC,...)
- Heterogeneity

Or

- You want to move your business and computers to the Caribbean (because of the weather)?
- Your client moves to the Caribbean (more likely)?
- Distribution transparency

Business Example – Challenges II


What if

- Two customers want to order the same item at the same time?
- Concurrency
- Or
 - The database with your inventory information crashes?
 - Your customer's computer crashes in the middle of an order?
 - Fault tolerance

Business Example – Challenges III

What if

Someone tries to break into your system to steal data?

- ... sniffs for information?
- your customer orders something and doesn't accept the delivery saying he didn't?
- Security

Or

- You are so successful that millions of people are visiting your online store at the same time?
- Scalability

Overview Challenges I

Heterogeneity

- Heterogeneous components must be able to interoperate
- Distribution transparency
 - Distribution should be hidden from the user as much as possible

Fault tolerance

 Failure of a component (partial failure) should not result in failure of the whole system

Scalability

- System should work efficiently with an increasing number of users
- System performance should increase with inclusion of additional resources

Overview Challenges II

Concurrency

Shared access to resources must be possible

Openness

 Interfaces should be publicly available to ease inclusion of new components

Security

The system should only be used in the way intended

Heterogeneity

- Heterogeneous components must be able to interoperate across different:
 - Operating systems
 - Hardware architectures
 - Communication architectures
 - Programming languages
 - Software interfaces
 - Security measures

Mac OS

Distribution Transparency I

- ISO Reference Model for Open Distributed Processing (ODP) identifies the following forms of transparencies:
- Access transparency

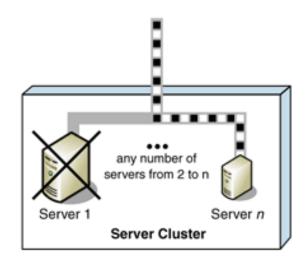
Access to local or remote resources is identical

E.g. Network File System / Dropbox

- Location transparency
 - Access without knowledge of location
 - E.g. separation of domain name from machine address.
- Failure transparency
 - Tasks can be completed despite failures
 - E.g. message retransmission, failure of a Web server node should not bring down the website.

Distribution Transparency II

Replication transparency

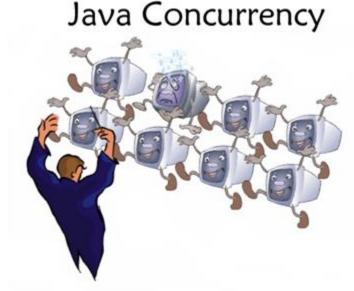

- Access to replicated resources as if there was just one.
 And provide enhanced reliability and performance without knowledge of the replicas by users or application programmers.
- Migration (mobility/relocation) transparency
 - Allow the movement of resources and clients within a system without affecting the operation of users or applications.
 - E.g. switching from one name server to another at runtime;
 migration of an agent/process from one node to another.

Distribution Transparency III

- Concurrency transparency
 - A process should not notice that there are other sharing the same resources
- Performance transparency:
 - Allows the system to be reconfigured to improve performance as loads vary
 - E.g., dynamic addition/deletion of components
- Scaling transparency:
 - Allows the system and applications to expand in scale without changes in the system structure or the application algorithms.

Fault Tolerance

- Failure: an offered service no longer complies with its specification
- Fault: cause of a failure (e.g. crash of a component)
- Fault tolerance: no failure despite faults

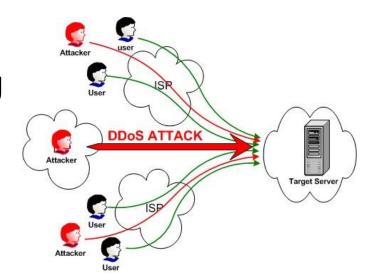


Fault Tolerance Mechanisms

- Fault detection
 - Checksums, heartbeat, ...
- Fault masking
 - Retransmission of corrupted messages, redundancy, ...
- Fault toleration
 - Exception handling, timeouts,...
- Fault recovery
 - Rollback mechanisms,...

Concurrency

- Provide and manage concurrent access to shared resources:
 - Fair scheduling
 - Preserve dependencies (e.g. distributed transactions)
 - Avoid deadlocks


Security I

- Resources are accessible to authorized users and used in the way they are intended
- Confidentiality
 - Protection against disclosure to unauthorized individual information
 - E.g. ACLs (access control lists) to provide authorized access to information
- Integrity
 - Protection against alteration or corruption
 - E.g. changing the account number or amount value in a money order

Security II

Availability

- Protection against interference targeting access to the resources.
- E.g. denial of service (DoS, DDoS) attacks
- Non-repudiation
 - Proof of sending / receiving an information
 - E.g. digital signature

Security Mechanisms

- Encryption
 - E.g. Blowfish, RSA
- Authentication

Encrypting Key The recipient decrypts the document The sender obtains the recipient's The encrypted message public key from a directory service

is sent across the network.

Sending

Receiving

using his private key.

E.g. password, public key authentication

and uses it to encyrpt the document.

- Authorization
 - E.g. access control lists

Summary

- Distributed Systems are everywhere
- The Internet enables users throughout the world to access its services wherever they are located
- Resource sharing is the main motivating factor for constructing distributed systems
- Construction of DS produces many challenges:
 - Heterogeneity, Openness, Security, Scalability, Failure handling, Concurrency, and Transparency