Homwork set #1

1- The stress field in a continues body is given by:

$$[\sigma_{ij}] = \begin{bmatrix} 1 & 0 & 2x \\ 0 & 1 & -2y \\ 2x & -2y & x \end{bmatrix}$$

(a) Find the stress vector at a point M: $(1, \frac{1}{\sqrt{2}}, 0)$ on a plane with unit normal $n = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$.

$$=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}\right)$$

- (b) What are the normal and tangential stresses acting on this plane?
- (c) What are the principal stresses and the principal direction that corresponds to the smallest principal value at this point?
- 2- The displacement field of a body is:
 - $u_x = c_1 x$, $u_y = c_2 y$, $u_z = c_3 z$
 - (a) Find the components ε_{ij} of the strain matrix, and the value of the three invariants of the state of strain if the constants c_1 , c_2 and c_3 are so small that their squares and products are negligible.
 - (b) What is the value of the volumetric strain ε_{v} ?
- 3- The stress field in a continuous body is given by:

$$\left[\sigma_{ij} \right] = 10^3 \begin{bmatrix} 1 & 0 & 2y \\ 0 & 1 & 4x \\ 2y & 4x & 1 \end{bmatrix}$$

Find the stress vector \overline{T} at a point M (1, 1, 1), acting on a plane x-y-z = -1

4- Given the displacement field:

$$u_1 = cx_1(x_2 + x_3),$$
 $u_2 = cx_2(x_3 + x_1),$ $u_3 = cx_3(x_1 + x_2),$

Where *c* is *a* small constant:

(a) Find the components of the liner strain ε_{ii} .

(b) Find the components of the rotation ω_{ij} .

5- Are the following states of strain possible?

(a) $\varepsilon_{xx} = c(x^2 + y^2)$, $\varepsilon_{yy} = cy^2$, $\varepsilon_{xy} = 2cxy$, $\varepsilon_{zz} = \varepsilon_{xz} = \varepsilon_{yz} = 0$ (b) $\varepsilon_{xx} = cz(x^2 + y^2)$, $\varepsilon_{yy} = cy^2 z$, $\varepsilon_{xy} = 2cxyz$, $\varepsilon_{zz} = \varepsilon_{xz} = \varepsilon_{yz} = 0$

Where c is a constant.

6- A stress field is given by: $\sigma_{xx} = 2x^3 + y^2, \qquad \sigma_{xy} = z$ $\sigma_{yy} = 3x^3 + 20, \qquad \sigma_{xz} = y$ $\sigma_{zz} = 3y^2 + 3z^3, \qquad \sigma_{yz} = x^3$

What are the components of the body force required to insure equilibrium?

7- Derive the equations of equilibrium in terms of displacements.