II. THEORY OF STRAIN

2.1 DISPLACEMENT. DEFORMATION.

When a material 1s subjected te applied surface forces, body
forces, temperature change, moisture change or other environmental
changes, each of irts macérial particles or materials points is caused
to occupied & new position, see Fig.2.1-1. The position vector from P
to P’ is called.che displacement of the material point P. The
material body or the sclid is said to be mapped onte its new
configuration. The displacement consists of two parts: the rigid body
displacement and deformation. The deformation is the part of
displacement that contributes to changes of shape and size of a solid.
The changes are measured in terms of shear strains and nermal strains,
respectively. Consider a triangle formed by the point P and two of
its neighboring points, say Q and R. When mapped into the new
configuration, P'Q‘'R’, its size and shape may both change. The ‘

triangle PQR is said to be deformed. When there is no change in size

or shape, the body is under at most a rigid body motion.

G=3 or u -d;-=(d,d. d) (2.1-1)

where u is the displacement and (dx' qy, dz) are constants.
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Consider rigid body rotation about the z-axis, Fig.2.1-2. It is

clear chat

dx - cos @ ::’s}"c - sin § dy (2.{-2&)
dy - sin 8 dx + cos § dy : . (2.1-2b)
dz - dz (2.1-2c)

where d; and d; are displacements 0P and OP', respectively, and che

rotation tensor is given by:

_ cos # -sin @ 0
[w] = {sin # cos § 0 (2.1-3)
0 0 1 ’

In general the rotation tensor is related to the rotation vector by

w=%xw, or W, = ‘ijkwij 7 (2.1-4)

Consider the displacement of two neighboring points P and Q,
Fig.2.1-3. 1If there occured only rigid body displacement, the poincs
P and Q would have the same displacement u and would lead to vanshing
du. Deformation is therefore measured by the vector du and its
presence causes changes in lengch; and an,les in che neighborhood of
point P. The small change in displacement in the neighborhood of

point P can be written as:
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dux - (aux/ak)dx + (aux/ay)dy + (aux/az)dz (2.1-5a)

duy = (3u /dx)dx + (du /dy)dy + (auy/az)dz (2.1-5b)
duz - (auz/ax)dx + (auz/ay)dy + (auz/az)dz {2.1-5¢)
or du - (Va) . dx, du, - (aui/axj)dxj (2.1-5)

2.2 STATE OF STRAIN AT A POINT. SMALL STRAIN.

strains are measurements of changes in size or shape. Adopting
the engineering definition of strain, the change of length per unit
original length is called a normal strain and th; change of angle from
an initial right angle is called a shear strain. They are denoted by
¢ and v, respectively. The normal strain can be definea 25 an average
over a finite original length or defined as an infin%tesimdl quancity
when the original length approaches zero.

Consider the changes that occured in the neighborhood of a point

P, Fig.2.2-1. Assuming the angles a and f are small, it is clearly

seen that
€ — lim [leras| - |pqJl/lPQ] = au_sax (2.2-1a)
|er] - o x
- P'R'| - - .
- Il;gl o (] v | - |PR[}/]ER] auy/ay | (2.2-1b)
Ty = Ot f - /R'PQ - /RPQ - auy/ax + du /3y (2.2-1¢)

where o = tan a, and 8 - tan £ and the subscripts are used to indicace
the directions of measurements fsr deformation, original length, and
those of the lines that form an angle. It is noted that Txy is
symmetric in x and in y. This implies that a rectangle always deforms

into a rhombus.
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WVhen the third dimension is included, i.e. the z-dimensien, three

additional measurements can be made in the neighborhood of peint P.

These are

€, - auz/az : (2.2-1d)
Yox = Txz = auz/ax + aux/az (2.2-1e)
—7zy - Ty " auyjaz + du_/3y _ {2.2-1f)

The state of strain at a point P or the charaterization of the changes

in size and in shape is given by the strain tensor ¢ where

€ ¢ ¢
xx xy Xz
Lel = “yx vy’ Yz
“zx “‘zy 2z

where cxy - 7xy/2, etc., are the averages of angle changes.
It is noted that the components of strain are consisted of the

symmetric part of the gradient of the displacement. Consider again

' _Equation (2.1-5) and decompose it into symmetric and ékeu-symmetric

parts, it is seen that

dx, + w, dx

S b R S

where

1
¢35 72 (95 % %4

where €45 and wjy ate the strain tensor and the rotation tensor,

respectively.
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*2.3 LARGE STRAIN CONSIDERATION ' -

Consider the situation in Fig.2.1-3 again. It {s clear that

e * - - :
e ds = e ds + du (2.3-1)

-% - :
where-e and e are unit vectors aleng P‘Q"” and PQ, respectively.

Simple manipulation leads to

*2 _% -% - ce - - .- - - - 2
ds ~ds . ds = [l +e .(Vu.e) + e.(Vu).(Vu).e] ds - (2.3-2)

or

2 2
ds” - 1+ Uy g+ Uy g+ g iy ylegey) ds (2.3-3)

The &efinition of strain leads to the follows:

¢ = (ds” - ds)/ds = ds'/as - 1 (2.3-4a)
1 72
e = [1 + (Zcij + uk.iuk J)eiej] / -1 ) (2.3-4b)
Example :

Let PQ be in the x-direction, or € - (1,0,0), then
2 2 2 1/‘2
- -[1+26ux/ax+(aux/ax) +(auy/8x) +(3UZ/EX) ] -1 (2.3-5)

If the gradiants are much smaller then 1, {.e. d%u/dx << 1, then the

square terms can be droped and the following is obtained

4y
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o, = [1+ 20u /3x] -1

21+ % .2 du/ax - 1

Bux/ax

2.4 DISPLACEMENT AND STATE OF STRAIN AT A POINT.

Rectangular Co-ordinates,(x.v.z)

displacement vector u: u = u e + ue <+ u.e

strain tensor ¢:

€

€
xy
€
yx ¥y yz
€
zy zz

Cvlindrical Co-ordinates, (r.4§ z)

displacement vector U: u — u_e_ ¥ upe, +u e

strain ctensor ¢

(e} = Cor ‘09 ‘oz

€ ¢
zr z# zz

ic o-ordipates, (R.4.4)

displacement vector u: u = uRéR + “aéa +uge,

strain tensor ¢:
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(2.4-1)

(2.4-2)

(2.4-3)

(2.4-4)

(2.4-5)



Py (2.4-6)

0 %44

The gradient of a displacement vector is consisted of two parcs:

. 1 .. 1

- : o Upg T (g gvuy ) g by gewy ) (2.4-1)
where a comma denotes partial differentiation with respect to spatial
co-ordinate(s) that follow(s) it and the symmetric part is called

strain tensor and the anti-symmerric part is call the rotation tensor:

. 1 R :
€57 3 By gt Yy 0t Y 1N 5) T (2.4-2)

(2.4-3)

- -w

W, - 1 (u -u ))
137 2 Y741 1t ji

There. is a rotation vector W which is associated with the rotation

tensor wy and is defined as:

H | :

“x” % *k13“1] (2.4-4)
2.5 STRAIN-DISPLACEMENT RELATIONS
7 - % e .[(Pa +u¥) .& + (Va)(Va) .e) : (2.5-1a)
) 4 -“% [y 4+ “J,1+-“k,1“k,11 (2.5-1b)

47
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l 2 2
‘xx T Yx.x* 2 [(ux,x) * (uy,x) + (uz.x) )
l )2 2
+ .
oy T Uyt 7 [y) TGy ) 0y )
l 2 2 2
€2z T Vz,gt 2 (U )+ (uy )+ (yy )]

cyz- 2 [uy';+uzwy+ ux,yux,z+ uy.yuy.z+ uz.yuz.z]

Cvlindrical Co-ordinates, (r. 8 .z):

€. = u_ _+
) o o r,r 2

l 2 2 2
[(ap )7+ Cug )% (o, )]

1

€gom g g/F * u/Tr L9y G/r v u /e s (up g/ = up/)’

£

€

<z

ré

2
+ (v, /1) )

l 2. 2 2 .
vty [(ur'z) + (“a,z) +(u, )]

Z

- % .
{ur.ﬂfr *up pTug/T tu

2 ( ur.g/r - u,/T)

r,r

2
+_p&'r(ue‘9/r + ur/r) - uz'ruz's/r]
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l 2 2 2
‘RR- uR.R+ 2 {(uR,R) + (u¢.R) + (ug'R) ]

o5 uﬂ,ﬂ/(R sin ¢} + uR/R + (ué cot ¢)/R

2 T2
.+[<uR;9/R - ugsin é/R) + (ué.s/R - ugcos ¢/R)

+(u8,9/R +up sin /R + ugcos é/R)z]/ sin2¢

1 2
44" ué'¢{R + up/R 4+ 5 [(uR‘é/’R - ué/R)

2 2
+ (uy g/R o+ up/R) +(u, /R) ]

‘Re” % (up gt ug g/ (R sin ¢) - u,/R

+[(uR,R)(uR.9f uasin ) + (ué,R)(ué,ﬂ- ua cos ¢)

+(u8.R)(ua.9+ wp sin é,+ ug cos #)1/(R sin ¢)}
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{(2.5-3f)

(2.5-ta)

(2.5-4b)

(2.5-4¢)

(2.5-6d)
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P % { ué,G/(R sin ¢) - cot #§ ua/R + ue:¢/R

+

[(uR.é - u¢)(uR.8 - sin ¢ uﬂ) -

+

(u$.¢ + uR)(u¢'a - cot ¢ ua)

+ (ug )(ug o+ sin g up + cos ¢ u )/ (R sin $)1  (2.5-be)
€. - i {u + [-u, + + ( - u,)
¢R 2 T4.R ¢ T "R T RARVR. T e

+ ué.R(u¢'¢ +up) + uﬁ.Rue.dl/R’ | (2.5-4£)

For the case of small strains, only the linear terms are retained in

Egqs.(2.5-2) to (2.5-4)
2.6 PRINCIPAL STRAINS AND DIRECTIONS. STRAIN INVARIANTS.

The direction cosines of the principal direction n for the strain

tensor is determiped by:

(cxx- €) n + ‘yxny + €0z = 0 (2.6-1)
‘yxnx + (€yy- ()%f ‘yznz -0 (2.6-2)
€My + tzyny + (ezz- ()nz =0 (2.6-3)
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For non-trivial solution, the determinant of coefficlients vanish,

i.e.,
€’ xy €z
cyx cyy- € fyz -0 {(2.6-4)
€ 3 €~ ¢
X zy zz
or . -
3 2
¢~ I, ¢+II ¢ -1III =0 : ] (2.6-5)

where IE. IIEand IIIC are the strain invariants and are Qefined as;

Ie- ‘xx+ cyy+ €, ¢1+ c2+ €y (2.6-6)

) (2.6-7)

2 2 2
IT = ¢ € _+ € _ ¢ 46 ¢ =€ ~-€  =¢
¢ xx YY YY 2z zz XX Xy YZ zX

2 2 2 *

xxeyyczz- (xxcyz"yyczx_ezzcxy+ Zexyeyzczx (2.6-8)

III = ¢
€

where three roots of the equation are the principal strains €1: €+ €3-

The direction of each principal strain can be obtained by using Eqs.

(2.6-1) to (2.6-3)

.2.7 VOLUMETRIC STRAIN. STRAIN DEVIATOR.
Spherical and Devigtoric Compopents

(2.7-1)

€13 7 437 3 ‘wk®iy

vhere

€ - gkk/3 - (cxx+ eyy+ ezz)/3 (2.7-2)



is the spherical component and eij is the deviatoric component of the

-
strain tensor.

Volumetric Strain

Specific volume change for small strain e,

ev - Ckk - IC (2.7‘3)

*2.8 STRAIN TRANSFORMATION R

The strain tensor is of second rank and transforms according to

the rules of co-ordinate transformation as follows:

4 -

%457 34p?5q%pq (2.8-1)

and the expanded equations can be obtained by replacing ¢ by ¢ in

Eqs.(1.6-1) to (1.6-31)
2.9 COMPATIBILITY CONDITIONS

Along any closed contour the single-valuedness in displacement

field requires that

§ du;- 0 {-1,2,3 (2.9-1)
or

iyt ke 1yT fak, g2 Yyeaa” 0 (2.9-2)
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Rectangular Co-ordinatgs; (X, y.z3 ' .
2 2 2 2 2
d cxx/ay + 3 cyy/ax 23 cxy/axay (2.9-3)
2 2 2 2 2
| cyy/az + @ ezz/ay ~23 tyzfayaz (2.9-4)
2 -2 2 2 7 .
| fzz/ax + a exx/az =28 czx/azax ) (2.9-3)
2 2 2 2 2
3 ezx/axay + 3 cxyjaxaz -8 eyz/ax ~ 24 cxx/ayaz (2.9-6)
2 2 2 2 2 -
. 4 cxy/ayaz + a cyz/ayax - a czx/ay - 23 € . /3zdx (2.9-7)
2 2 2 2 2
? cyz/aza* + & czx/azay - 8 exy/az - 23 ezz/axay | (2.9-8)
d al Co-o tes
2 2 2 2 2
? crr/az + g ezz/ar - 23 crz/azar . (2.9-9)

2 2 1 2 2 1 5 2 2 - - -
d cﬂa/az + -5, 4 ezz/ae + : aczz/a: -: [ egz/azaa +de/3z) (2.9-10)

r
2 2 1 2 P 2 2 3 . 1
d eaa/ar + ;, a crr/ €+ - eea/ar "z acrr/ar

1,2 1
) — 2[ 7 38 ¢ ,/3Tdf + -z de_p/30] (2.9-11)

|
Mo

2 1 1
d czz/arae - ;2 3622/39 - a(i aezr/a; + aeaz/r

- de_,/82)/8z -3¢, /x)/3z (2.9-12)
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2 1
d crr/aﬁaz - a(i Bczrjaé - Bcez/ar

Hap

2 2 2
+ Bcer/az)/ar -8 cez/ar + - acra/az

2
a cae/araz "I

1

1
- + 180 - 3¢, /08 + 8y /3T + de ,/0z)

2.10 PROBLEMS

1. Given the displacement components

2
ux— Cx(y+z) ) _ -
2
- C +x
uy y{(z+x)

2
u_ = Cz (x+y)

1 1 1
S B¢ /82 + 7 Be,,/3z = T 3(e, /r)/38

(2.9-13)

(2.9-14)

where C is a constant, find (a) the components of linear strains, (b)

the ;oiponents of the rotation tensor and (c) the principal elongarion

at a poinc (1,1,1).

Ans: (a}
2 .
S C(y+z) , cxy- Clx(y+z) + y(z+x)],
2
cyy- C(z+x)2, cyz- Cly(z+x) + x{y+z)],
€ 0" Cix+y) , " QIz(x+y) + x(y+z)].
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(b) _ .

“ex” “yy” 9zz=0

v Clx(y+2) - y(z+x) ]
Wy g™ Cly(z+x) - z(x+y)]
w, = Clz(x+y) - x(y+z)]

{¢) at point (1,1,1):

[ = ¢ |4 l1-¢ & - 0

- -3

2. Show by direct differentiation of the strain-displacement
relations Eqs.(2.2-6) that the comparibility conditions are the
necessary conditions for finding a continuous single-valued

displacement field.

1. Find the special state of strain that is derived from a body
deformation symmetrically with respect to the origin of the co-

ordinate systenm,

Ans: up= uR(R.O.O), up= u¢- 0

ot
Ci
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2
o~ /Rt (x /R) d(up/R)/dR

-

?
€y /R * (Y /R) dlug/R)/AR
o,
e = W/R + (z /R) d(u/R)/dR
€y (ZXV/R) d(ug/R)/aR
- egym (2YZ/R) dlug/R) /AR
e~ (22x/R) d(up/R)/dR

4. Find all components of the strain, with respect to che
rectangular co-ordinate, that are derived from a displacement that is

axi-symmetry, i.e., symmetrical about the 0z axis:

u~-u {r,z}, u,= 0, U - oy
r r( ) # z z

Ans:

- x u_/r U =y u/r u=-u
u = X r/ ' b4 r/ )

y

€ x ur/r + xz[a(x ur/r)/ar]/r

ym ¥ /T * y l3(y u_sr)/ox)/x

€, auz/&z

ey 2xy {3(z u /r)/3r],/c"
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¢ e i =

L

oL

€52 (y/x).8u, /8t *y d(yu /r)/8z

-

€ (x/T) auz/ar + % B(xur/r)/az

5 Give some reasons why the formulas in Eq.(2.10-1) will be

valid for small strains only.

€ = B, /0%, e§y - v, /3y, e;z - 8u,/dz (2.10-1a)
ey - [aﬁx/ay + du /8x]/2 (2.10-1b)
‘e - [auy/aé + du_say)/2 | " (2.10-1c)
o, = [8u /02 + du /3x)/2 . (2.10-1d)

6. The displacement field of a body is:

(a) Find §he componenﬁs cij of the strain matrix, and cthe
value of the three invariants of the state of strain if
the constants cl,lcz, and cy are so small that their
squares and products are negligible,

(b) What is the value of the volumetric strain €,?

7. Solve Problem (2.10-6) for a displacement field given by
ul - clxz. u2
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Draw sketches showing a cubic element at a point, and with its edges

parallel to the references axes, before and after transformation.

8. Let the expressions of the displacement field of a certain

body be:

. 2, - 2 2
u, - C(2x + ¥}, uy = C(x" - 3y7), u, - Q.

where C = 10—2.
(a) Show the distorted shape of a two-dimensional element

of area whose sides dx and dy are inicially parallel to

the coordinate axes; the element is located ar a peint

M whose coordinates are (2, 1//3 , 0).
(b) Determine the coordinactes of M after transformation.
{c) Decompose the gradient of the displacement field at H
-into its symmetric and antisymmetric parts, i.e. find
¢ and w,, with respect to the x,y,z axes.

1] ij

{d) Find the angle of rotarion and the cylindrical

dilatation of the two elements dx and dy.

9. In Problem 2.10-B, compute the strain (x'y’ of an element

_ - O
x'y' whose direction cosines are (1//1,.1//4, ¥77%). Vhat are the

principal directions and the principal strains?
10. Given the displacement field
- cxl(x2 + x3) P Uy = cxz(x3 + xl) P U - cx3(x1 + xz)

u

1
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e

where ¢ is a small constant:
(a) Find the components of the linear strain, eij'

(b) Find the components of the rotation, Uij'

11. The components of linear strain in a bedy are given by:

- 0 o -cy
[eij] - 0 0 cx
-cy . ex 0

where c Is a constant., Find the principal strains and the principal

directions at the point (1, 2, Of-

12.. Determine the volumetric strain ¢, for the following scace

of strain:
0.5 1l 0
. [gij]l- 1 -2 0.5
0 0.5 0
Compare the resulc to the unit change of volume AV/VO and to the

first invarianc.

13. In a two-dimensional state of strain.

¢ = 800 x 10'6. ¢ =100 x 10'6, ¢« - -800 x 10'6.
XX Yy Xy

- Find che magnitude and direcction of the principal strains, B and €9

both analytically and through the use of Mohr‘s diagram. DOraw a

S SR



sketch showing the deformacion of a unit square with edges initially

along OX and OY .

14, If

e - -800 x 10°%, ¢ = -200x10°% ¢ - 600 x 10°%,
xx vy Xy

show in a suitable sketch the position of the axes with which the

maximum shearing strain is associated.

15. Are the following states of strain possible?

{a) Cex " C(x2+y2) ‘(b) Cex Cz(x2+y2)
eyy - Cy2 eyy - Cyzz
xy - 2Cxy - ‘xy - 2Cxyz
‘2z T fxz T fyz =0 ‘2z T xz T fyz T 0

where C is a constantc,

16. Show by differentiacion of the strain-displacemenc
Telations that the compatibilicy relations are necessary condicions
for the existence of continucus single-valued displacements.

17. Establish by differenciacion a set of
compatibilicy relations involving both the cij's and the wij's.

18. Derive the equations of equilibrius {n terms of

displacemencs.
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Fig.2.1-2

Rigid body rotation about z-axis
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Fig.2.1-3 Deformation



Fig.2.l-1 Displace and deformacion
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(8uvfax)dx

S,

o

(3uy/5y)dyR

dv

J_ - (5u /&v)dx
o X

P P Q l
- dx |

(du_/2x)dx
X

x

Fig.2.2-1 Change of shape and dimension of an element
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