Cdlao dexl 1551wy Soalizdg e (6laaky 1w o Py Sy SlSS
VAT (239,8 ¥+ 1y

Problem 1

Consider an infinitely long column of liquid of density p, radius a, and interfacial surface
tension -y rotating at uniform angular velocity Q2. The inviscid incompressible (p = const.)
motion of the Euler equations in a system rotating at angular velocity  in dimensional
(asterisk) coordinates are given by

Du* . 1 _ |2 x r*|?
2 xu* = —--V*p* —_
e T u pr +V( 5 )

V*ut=0
where we take £2 = §2k for rotation about the z* axis and r* is the position vector. Show for
cylindrical coordinates (r*,#, z*) with associated velocities (u*, v*, w*) that the base flow is
w=v=w=0 .
p*=p5+§-p92r*2 } (OST SG)

where pg is the pressure at r* = 0. Assuming p* = P4, in the gas surrounding the liquid
column (r* > a), show that the kincmatic and dynamic free surface boundary conditions are

* __ "* '_"‘_"_: ® Py

% —f},.+r*1}3+w T } (r‘=a+ﬂ’).
P=p,+7V''n

where 77* is the disturbed position of the free surface about r* = ¢ and n is the outward

- normal to the interface. Normalizing disturbances by a, time by 27!, velocities by Qa, and
pressure by pQ%a?, show that the dimensionless equations are

Du_o* _,, __E( _’"_“)
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Part A

Now investigate the temporal stability of the flow by positing disturbances of the form

U

| 4
W es‘(kx+n8}+st

P
L

S Eeee
li

wherein s = ¢ + iw and U(r), V(r), W(r) andP(r) are radial eigenfunctions. Note that
n = 0 for k # 0 describes axisymmetric disturbances; k = 0 for n # 0 describes planar
disturbances; and n # 0 with k # 0 descirbes nonaxisymmetric (spiral) disturbances ask
sketched in Figure 1. Show that
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and 1 n? | K2(s? + 4)
P+ =P, - [—-2—+,6‘2]P=U where §?= "1~/
T T &

with solution finite at r = 0 given by
P(r) = AL, (fr).
Finally, use the kinematic and dynamic boundary conditions to obtain the eigenvalue equa-

tion
ﬂf.i{ﬁ) _ $2+4 _ 2in )
LB 1+(1-k-n?)L s
where primes denote differentiation with respect to r. Hence show that for axisymmetric
disturbances one finds

LB _ £+4 -
‘Bm = —T where ll’)[ =-1+ L(k? == ].) (2)

Verify that in the limit {2 — 0 one recovers the eigenvalue equatioﬁ found by Rayleigh (1879)
for axisymmetric disturbances of a nonrotating fluid column. (note that in the nondimen-
sionalization s* is normalized by (2.
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with boundary conditions

v
U ="+ —7jp + w0

rre=ifG (B @ -z@) T

1
D=‘\f1+;§’?g+ﬂ§

and the base flowisu=0,p=py +r?/2for 0 <r <1.

where

Investigate stability to small disturbances

u=eu: n=en
v=ev
2
T
w = ew' p=po+—2-+6p'

to obtain the linearized system (dropping primes)

Ou dp
%" T o
ov 1dp
mTH =TT
L
ot 0z
18(ru) 18v  Ow
ror TreT e ="
with boundary conditions
p finite Q@r=20
U =1 @r=1

p=—[n+Ln+mne+n:)] @r=1

where L = /pQ%a® is the parameter introduced by Hocking (Mathematica, 7, 1-9, 1960).
Actually L is a rotating Weber number.
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Part B

Show, without explicitly solving (2) for axisymmetric disturbances, that information
about stability may be obtained by writing the n = 0 problem in the form

d (1dG “
i (7%)-Fo=0 (3a)
where G(r) = rU(r) and the associated boundary condtions are
G(0) =0 (3d)
k2
G(1) + 5 G(1) =0. (3¢)

Derive the functional for s? by first multiplying (3a) by G, integrating over the domain [0, 1]
using integration by parts, and applying bounary conditions (3b,c). Hence show that

2 4f Cdr+9GP1)

K[ {LG? + k2G2)} dr

and show that this infers that axisymmetrically disturbed flow is stable only if 1); > 0. Show
also that instability is possible only for wavenumbers below a cutoff wavenumber k; given
by

1

=4/14 =,
ko +L

Growth rate curves for n = (0 computed (2) for s = o plotted in Figure 2 exhibit a common
intersection at £k = 1. Show using (2) that the crossover occurs at ¢ = 0.43323 and verify,
using the numerical values in Figure 2 for at least one curve, that all unstable growth rates
lie in the region 0 < k < ky.

A cross plot of the maximum growth rate o,, and the associated critical wavenumbers
k. obtained from many numerical calculations at different values of L is given in Figure 3.
Note that all k. satisfy k. < ko as must be the case. Comparison with the asymptotic re-
sults of Rayleigh (1879) for L — oo and Pedley (1967) for L — 0 are also shown in the figure.

Part C

Spiral and planar disturbances can compete for instability if their maximum growth rates
exceed (for any w) the values oy, obtained in Figure 3. Numerical calculations show that
n > 1 spiral disturbances have values of g,, less than those for axisymmetric disturbances
at each L. Planar disturbances, however, do compete for instability at sufficiently low L.
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Demonstrate this result by showing first that planar disturbances (k = g = 0). are
governed by the boundary value problem

2Py + 1P, —n?P =10
P:%ﬂ(ﬂ+%”ff’) @ r=1
P finite @ r=0
and show that the solution finite at r = 0 is
P(ry=Cr" (n21).
Also show that solution of the eigenvalue relation gives
s=t+/nyy—1

where now 9, = 1+ L(1 — n?). Thus show that the flow is neutrally stable for n = 1 and
unstable for ' 1

n(n+ 1)
Hence fluid disturbances rotating at w* = {2 with respect to the rotating frame have growth
rates ¢ = ++/nyp — 1. Also show that n = 2 instability gives way to higher planar modes
(n = 3,4,5 etc.) as L — 0. Show that these transition points L, between the unstable
planar modes are given by

L< (n>2).

1
L= ————.
"7 3n(n+1)

Finally, use the preceeding results to show that the planar mode growth rates first exceed
the maximum axisymmetric growth rates at n = 2. This is most easily done by calculating
the crossover point between mode 2 grow rates with the (L — 0) asymptotic results plotted
in Figure 3; the equations describing the asymptotic curves o, and k, are given by (Pedley,
1967), viz.

2 = 21+ 1L)
™~ 97L + [(1 + 30L + 3L? + L3)]'/2
1+L
2 _
=30

Find the approximate crossover value L. and compare it with the numerically computed
crossover value L, = 0.1053 and hence show that the stability diagram at low values of L

looks as shown in Figure 4.
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(c) Spiral modes
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4. }
3. P\ Asymptote: L, » 0
(Pedley, 1967)

2. }
1* -

4 Asymptote: L, = oo

— (Rayleigh. 1879).
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