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Problem 1
Drazin & Reid 1.4

Hint: Be careful to distinguish between a particular mode being stable and the flow (all
modes) being stable.

Problem 2
Drazin & Reid 1.10

Problem 3

In our discussion of the Kelvin-Helmholtz instability, we have derived the boundary value
problem for waves on an interface with both fluids of infinite horizontal and semi-infinite
vertical extent. When the fluid in the lower region is bounded by a container, one need
only modify our governing equations to require zero normal velocity at the boundary of the
container. Let D be the region of the quiescent fluid in the container, S; be the the quiescent
free surface, and 53 be the container boundary with outward normal n. Defining 7(z, y, t)
as the position of the free surface, linear free surface wave motion in the absence of surface
tension is thus governed by the boundary-value problem
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Consider planar standing waves in the rectangular channel sketched below. Thus we want
to look for non-propagating waves where the potential function has the form ¢(z, z,t) =
Re{F(z)G(z)e*t}, in which Re means “the real part of.” Show first that the kinematic and
dynamic free surface conditions can be written as

¢ +9:=0 on 5
and then solve the problem (by separation of variables) to show that

" ¢oaa = Asinkz coshk(z + h)coswi  for kig—%slk
even = Beoskzcoshk(z + h)coswt  for k= %

where n = 1,2,3... and k is the wavenumber. Find the dispersion relation w = w(g, k, h)
and note that the sloshing frequency depends on both b and h. Compare your results for
the first odd mode with the experiments performed in class in a Pﬁ’i of w versus h.
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