تکلیف سری دوم درس: پایداری هیدرودینامیکی مدرس: دکتر احمد صداقت تاریخ تحویل: ۱۵ فروردین ۱۳۹۳

Problem 1

Drazin & Reid 1.4

Hint: Be careful to distinguish between a particular mode being stable and the flow (all modes) being stable.

Problem 2

Drazin & Reid 1.10

Problem 3

In our discussion of the Kelvin-Helmholtz instability, we have derived the boundary value problem for waves on an interface with both fluids of infinite horizontal and semi-infinite vertical extent. When the fluid in the lower region is bounded by a container, one need only modify our governing equations to require zero normal velocity at the boundary of the container. Let \mathcal{D} be the region of the quiescent fluid in the container, S_1 be the the quiescent free surface, and S_2 be the container boundary with outward normal \mathbf{n} . Defining $\eta(x,y,t)$ as the position of the free surface, linear free surface wave motion in the absence of surface tension is thus governed by the boundary-value problem

$$abla^2 \phi = 0 \quad \text{in } \mathcal{D}$$
 $abla_z = \eta_t \quad \text{on } S_1$
 $abla_t + g\eta = 0 \quad \text{on } S_1$
 $abla_{\overline{\theta}} = 0 \quad \text{on } S_2$

Consider planar standing waves in the rectangular channel sketched below. Thus we want to look for non-propagating waves where the potential function has the form $\phi(x, z, t) = Re\{F(x)G(z)e^{i\omega t}\}$, in which Re means "the real part of." Show first that the kinematic and dynamic free surface conditions can be written as

$$\phi_{tt} + g\phi_z = 0$$
 on S_1

and then solve the problem (by separation of variables) to show that

$$\phi_{odd} = A \sin kx \cosh k(z+h) \cos \omega t$$
 for $k = \frac{(2n-1)\pi}{2b}$
$$\phi_{even} = B \cos kx \cosh k(z+h) \cos \omega t$$
 for $k = \frac{n\pi}{b}$

where n = 1, 2, 3... and k is the wavenumber. Find the dispersion relation $\omega = \omega(g, k, h)$ and note that the sloshing frequency depends on both b and h. Compare your results for the first odd mode with the experiments performed in class in a plot of ω versus h.

