Smallest defining number of r-regular k-chromatic graphs: $r \neq k$

E.S. Mahmoodian^e, Behnaz Omoomi^b, and Nasrin Soltankhah^{c,*}

- ^a Department of Mathematical Sciences Sharif University of Technology P.O. Box 11365-9415, Tehran, Iran
- b Department of Mathematical Sciences Isfahan University of Technology 84154, Isfahan, Iran
- ^e Department of Mathematics, Azzahra University Vanak Square 19834, Tehran, Iran

ostract

In a given graph G, a set S of vertices with an assignment of colors is a defining set of the vertex coloring of G, if there exists a unique extension of the colors of S to a $\chi(G)$ -coloring of the vertices of G. A defining set with minimum cardinality is called a smallest defining set (of vertex coloring) and its cardinality, the defining number, is denoted by $d(G, \chi)$. Let $d(n, r, \chi = k)$ be the smallest defining number of all r-regular k-chromatic graphs with n vertices. Mahmoodian and Mendelsohn (1999) proved that for each n and each n 4, $d(n, r, \chi = 3) = 2$. They raised the following question: Is it true that for every k, there exist $n_0(k)$ and $n_0(k)$, such that for all $n \geq n_0(k)$ and $n_0(k)$ we have $d(n, r, \chi = k) = k - 1$? We show that the answer to this question is positive, and we prove that for a given k and for all $n \geq 3k$, if $n \geq 2(k-1)$ then $d(n, r, \chi = k) = k - 1$.

Keywords: regular graphs, defining sets, uniquely extendible colorings.

^{*}Research of the first author is partially supported by the Institute for Studies in Theoretical Physics and Mathematics (IPM), and research of the third author is partially supported by Azzahra University.

1 Introduction

the defining number (of a vertex coloring), denoted by $d(G, \chi)$. There are some results on defining numbers in [4] (see also [1], and [2]). Here we study the smallest defining number of regular graphs. Let $d(n,r,\chi=k)$ be the color. The (vertex) chromatic number of a graph G, denoted by $\chi(G)$, is the smallest number k, for which there exists a k-coloring for G. A graph as [7]. A k-coloring of a graph G is an assignment of k different colors to the vertices of G such that no two adjacent vertices receive the same coloring, if there exists a unique extension of the colors of S to a $\chi(G)$ G with $\chi(G) = k$ is called k-chromatic. In a given graph G, a set of definitions and notations not defined here we refer the reader to texts, such raised two questions. The first one was on $d(n, k, \chi = k)$ which is answered then $k \leq r$. Mahmoodian and Mendelsohn in [3] studied $d(n,r,\ \chi=k)$ and r-regular k-chromatic graph which is not a complete graph or an odd cycle, chromatic number equal to k. By Brooks's Theorem, if G is a connected smallest value of $d(G, \chi)$ for all r-regular graphs with n vertices and the is called a smallest defining set (of a vertex coloring) and its cardinality is -coloring of the vertices of G. A defining set with minimum cardinality vertices S with an assignment of colors is called a defining set of vertex asked the following question: in [3], that for each n, and for each $r \geq 4$ we have $d(n, r, \chi = 3) = 2$, and by Mahmoodian and Soltankhah in [5]. For the case of r > k, they proved We follow the concept of graphs defined in standard textbooks. For the

Question. Is it true that for every k, there exist $n_0(k)$ and $r_0(k)$, such that for all $n \ge n_0(k)$ and $r \ge r_0(k)$ we have $d(n,r, \chi = k) = k - 1$?

We show that the answer to this question is positive. In fact we prove that:

Theorem. Let k be a positive integer. For each $n \geq 3k$, if $r \geq 2(k-1)$ then $d(n,r,\ \chi=k)=k-1$.

2 Preliminaries

In this section, we state some known results and definitions which will be used in the sequel. Throughout, n, k, l, r, s and such denote positive integers.

Definition 1 [3]. Let G and H be two vertex disjoint graphs each with a given proper k-coloring say c_G and c_H (respectively). Then the chromatic

join of G and H, denoted by $G \overset{\sim}{\vee} H$ is a graph where $V(G \overset{\sim}{\vee} H)$ is $V(G) \cup V(H)$, and $E(G \overset{\sim}{\vee} H)$ is $E(G) \cup E(H)$, together with the set $\{xy \mid x \in V(G), y \in V(H) \text{ such that } c_G(x) \neq c_H(y)\}$.

Theorem A [3]. Let n be a multiple of k, say n = kl $(l \ge 2)$; then $d(kl, 2(k-1), \chi = k) = k-1$.

To prove this theorem Mahmoodian and Mendelsohn constructed a 2(k-1)-regular k-chromatic graph with n=kl vertices as follows. Let G_1, G_2, \ldots, G_l be vertex disjoint graphs such that G_1 and G_l are two copies of K_k and if $l \geq 3$, G_2, \ldots, G_{l-1} are copies of \overline{K}_k . Color each G_i with k colors $1, 2, \ldots, k$. Then construct a graph G with kl vertices by taking the union of $G_1 \cup G_2 \cup \cdots \cup G_l$, and by making a chromatic join between G_i and G_{i+1} ; for $i = 1, 2, \ldots, l-1$. This is the desired graph. We denote such a graph by $G_{l(k)}$ and use this construction in Section 3.

Theorem B [3]. For each n and each $r \ge 4$, we have $d(n, r, \chi = 3) = 2$.

The following lemma from [6] is straightforward.

Lemma A [6]. Let H be a subgraph of G such that $\chi(G) = \chi(H)$. If V(H) with any coloring is a defining set for G, then any defining set of H is also a defining set for G.

Definition 2 [5]. Let G be a k-chromatic graph and let S be a defining set for G. Then a set F(S) of edges is called nonessential edges, if the chromatic number of G - F(S), the graph obtained from G by removing the edges in F(S), is still k, and S is also a defining set for G - F(S).

Definition 3. Let G be a graph with a given proper coloring c with k colors. Then the chromatic complement of G, denoted by \overline{G}_c or simply by \overline{G} if there is no danger of confusion, is a spanning subgraph of \overline{G} (complement of G) such that $E(\overline{G}_c) = E(\overline{G}) - \{uv \mid c(u) = c(v)\}$.

3 Main results

In the following three theorems we prove our main result, which was mentioned at the end of Section 1.

Theorem 1. For each $k \geq 3$, and each $n \geq 3k$, we have

$$d(n, 2(k-1), \chi = k) = k-1.$$

Proof. By Theorem A the statement is true when n is a multiple of k. For n = kl + s ($l \ge 3$), s = 1, ..., k - 1, we construct a 2(k - 1)-regular k-chromatic graph H with n vertices and $d(H, \chi) = k - 1$ as follows.

Consider the graph $G_{l(k)}$ as constructed in Theorem A. From now on in $G_{l(k)}$, we let $V(G_1) = \{u_1, \ldots, u_k\}$, $V(G_{l-1}) = \{v_1, \ldots, v_k\}$, and $V(G_l) = \{w_1, \ldots, w_k\}$. Also assume that $c(u_i) = c(v_i) = c(w_i) = i$, for $i = 1, 2, \ldots, k$. It is obvious that the set $S = \{u_1, u_2, \ldots, u_{k-1}\}$ is a defining set for $G_{l(k)}$. And the following set

$$\begin{split} F(S) = & \quad \{u_i u_j, 1 \leq i < j \leq k-1\} \cup \{v_i w_j, 1 \leq i < j \leq k-1\} \\ & \quad \cup \{z_i w_k, \ i = 1, \dots, k-1\}; \end{split}$$

where for each i, either $z_i = v_i$ or w_i , is a set of nonessential edges in $G_{i(k)}$.

Now to construct H we add s new vertices x_1, \ldots, x_s to $G_{\ell(k)}$, delete some suitable nonessential edges, and join the new vertices to the vertices from which the edges were deleted, as follows. There are two cases to be considered.

Case 1. k is odd.

The induced subgraph $\langle S \rangle$ of $G_{l(k)}$ is a complete graph K_{k-1} . This graph is 1-factorable. We denote its 1-factors by F_1, \ldots, F_{k-2} . From now on, any 1-factorizations of complete graphs which are used in this paper are considered to be "standard" factorizations. I.e. for K_n , n even, suppose the vertex set to be $\{1, 2, \ldots, n\}$, and we arrange the vertices $2, \ldots, n$ in a regular (n-1)-gon, and place the vertex 1 in the center. Join every two vertices by a straight line segment. For $i=2,\ldots,n$, define the edge set of the factor F_{i-1} to be the edge 1i together with all those edges perpendicular to 1i.

If $s \leq k-2$, then for each i $(1 \leq i \leq s)$ we join the added vertices x_i to all of the vertices of S, and delete all of the edges of F_i . Also with respect to each edge $u_a u_b \in F_i$ (a < b), we delete $v_a u_b$ and join x_i to the vertices v_a and w_b . Now it can be easily seen that $\deg(x_i) = 2(k-1)$. Note that colors of vertices of $G_{l(k)}$ force the colors of all new vertices to be k.

If s = k - 1, then for x_i $(1 \le i \le k - 2)$ we proceed as before and for x_{k-1} , first we delete the edge w_1w_k and join x_{k-1} to w_1 and w_k . Since each x_i , is joined to a v_j (which was obtained by deleting the edge v_jw_{k-1}), we

delete the edges $x_i v_j$ and join x_{k-1} to x_i and v_j for i, j = 1, ..., k-2. We have $\deg(x_{k-1}) = 2(k-1)$ and $c(x_{k-1}) = k-1$. Because the neighbors of x_{k-1} have colors 1, 2, ..., k-2, k.

Case 2. k is even.

In this case we consider the induced subgraph $< S \cup \{u_k\} >$ of $G_{l(k)}$ which is a complete graph K_k of even order. This graph is 1-factorable. Let F_1, \ldots, F_{k-1} be a factorization such that $u_i u_k \in F_i$. For each i $(1 \le i \le s)$ we join x_i to all of the vertices of F_i , except to u_i and u_k , and delete all of the edges of F_i , except $u_i u_k$. Now as in the Case 1, with respect to each $u_a u_b \in F_i \setminus \{u_i u_k\}$, we delete the edges $v_a w_b$ and join x_i to the ends of these deleted edges. Finally for each i, $1 \le i \le s, i \ne k-2$ we delete the edge $w_{i+1 \pmod{k-1}} w_k$ and join x_i to the ends of this edge. Note that since we assumed F_i , $(1 \le i \le k-1)$ is a standard factorization, x_i was not joined to $w_{i+1 \pmod{k-1}}$ before. Then we delete the edge $v_{k-1} w_k$ and join x_{k-2} to the ends of this edge. It is obvious that $\deg(x_i) = 2(k-1)$ and the color of x_i is forced to be i.

To illustrate the construction shown in the proof of Theorem 1, we provide the following two examples.

Example 1. Let k=5. For n=3k+s, $1 \le s \le 4$, we construct an 8-regular 5-chromatic graph of order n with a defining set of size 4. For n=15+s, $1 \le s \le 4$, we add s new vertices to the graph $G_{3(5)}$ and delete some nonessential edges as explained in the proof of Theorem 1 (Case 1). Table 1 shows all the deleted edges corresponding to newly added vertices. In Figure 1, we show an 8-regular 5-chromatic graph of order 16 (s=1) with a defining set of size 4. The vertices of the defining set are shown by the filled circles.

	edges	Deleted		New vertices
v_2w_3	v_1w_4	u_2u_3	u_1u_4	x_1
v_1w_3	v_2w_4	u_1u_3	u_2u_4	x_2
v_1w_2	v_3w_4	u_1u_2	u_3u_4	x_3
x_3v_3	x_2v_2	x_1v_1	w_1w_5	x_4

Table 1: New vertices and corresponding deleted edges.

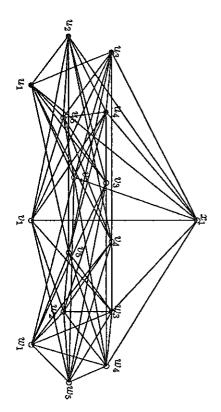


Figure 1: $d(H, \chi = 5) = 4$.

Example 2. Let k=4. For n=3k+s, $1 \le s \le 3$, we construct a 6-regular 4-chromatic graph of order n with a defining set of size 3. For n=12+s, $1 \le s \le 3$, we add s new vertices to the graph $G_{3(4)}$ and delete some nonessential edges as explained in the proof of Theorem 1 (Case 2). Table 2 shows all the deleted edges corresponding the newly added vertices. In Figure 2, a 6-regular 4-chromatic graph of order 13 (s=1) with a defining set of size 3 is shown. In this figure also the vertices of the defining set are shown by the filled circles.

x_2 x_3 x_1u_2 x_1u_3 x_1u_2 x_1u_2 x_1u_2 x_2u_4 x_1u_4
--

Table 2: New vertices and corresponding deleted edges.

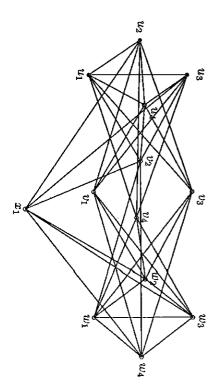


Figure 2: $d(H, \chi = 4) = 3$.

Remark 1. If G is an r-regular k-chromatic graph on n vertices then each chromatic class in G has at most n-r vertices. Therefore $n \le k(n-r)$. This implies $\frac{n}{k} \ge \frac{r}{k-1}$. Note that for each n, r, and k such that $\frac{n}{k} \ge \frac{r}{k-1}$, only one of the following holds: (i) $\left\lfloor \frac{n}{k} \right\rfloor \ge \left\lceil \frac{r}{k-1} \right\rceil$ or (ii) $\left\lfloor \frac{n}{k} \right\rfloor = \left\lfloor \frac{r}{k-1} \right\rfloor \ne \frac{r}{k-1}$.

Next we generalize the statement of Theorem 1 to r>2(k-1). This is done in the following two theorems.

Theorem 2. For each $k \geq 3$, $n \geq 3k$, and r > 2(k-1), such that $\lfloor \frac{n}{k} \rfloor \geq \lceil \frac{r}{k-1} \rceil$, we have $d(n,r,\chi=k)=k-1$.

Proof. We prove the statement in two cases.

Case 1. n = kl.

Consider $G_{I(k)}$, and let $\tilde{G}_{I(k)}$ be the chromatic complement of $G_{I(k)}$ (see Definition 3). Note that $\tilde{G}_{I(k)}$ is an (l-2)(k-1)-regular graph. For each r by adding suitable edges of $\tilde{G}_{I(k)}$ to $G_{I(k)}$ we will construct an r-regular k-chromatic graph H_r such that $d(H_r, \chi) = k-1$. We explain the procedure according to the parities of k and r.

If k is even then the complete graph K_k is 1-factorable. Since $\tilde{G}_{l(k)}$ is a k-partite graph, a 1-factor of K_k corresponds to a union of $\frac{k}{2}$ bipartite subgraphs of $\tilde{G}_{l(k)}$, each of which is (l-2)-regular; this union is obviously 1-factorable. Thus $\tilde{G}_{l(k)}$ is 1-factorable. By adding the edges of r-2(k-1) disjoint 1-factors of $\tilde{G}_{l(k)}$ to $G_{l(k)}$, we obtain an r-regular k-chromatic graph H_r with $d(H_r, \chi) = k-1$.

If k is odd then $\tilde{G}_{l(k)}$ is a regular graph of even degree, therefore by a theorem of Petersen (see [7], page 125) is 2-factorable. For r even, H_r can be obtained by adding the edges of $\frac{r-2(k-1)}{2}$ disjoint 2-factors of $\tilde{G}_{l(k)}$ to $G_{l(k)}$. For r odd, n=kl is even, thus l is even. In this case, $\tilde{G}_{l(k)}$ contains $\frac{1}{2}$, disjoint bipartite subgraphs, each of which is (k-1)-regular. Also, since k is odd, each of these (k-1)-regular bipartite graph is 2-factorable. Note that each 2-factor is a union of edge-disjoint cycles. Since we consider bipartite graph, there is no odd cycle. Therefore, we can find a 2-factorization in which, of 2-factors say F, can be chosen to be a union of edge-disjoint even cycles. The alternate edges in F are two edge-disjoint 1-factors. Hence, F is a union of two 1-factors say F_1 and F_2 . By adding the edges of F_1 to $G_{l(k)}$ as well as the edges of $\frac{r-2(k-1)-1}{2}$ of other disjoint 2-factors of $\tilde{G}_{l(k)}$ to $G_{l(k)}$, we obtain H_r . By Lemma A, $d(H_r, \chi) = k-1$.

Case 2. n = kl + s, $1 \le s \le k - 1$.

We will use the following procedure to construct an r-regular k-chromatic graph on n vertices with defining number equal to k-1. We take the graph H_r , constructed in Case 1, and recognize some nonessential edges in it. Then we add s new vertices x_1, \ldots, x_s to H_r , delete some suitable nonessential edges, and join the new vertices to the ends of the deleted edges. Let P_1, P_2, \ldots, P_k denote the parts of k-partite graph H_r , and assume that all of the vertices in P_i are colored i ($i=1,2,\ldots,k$). Note that for each i, $|P_i|=l$. Throughout the proof we let $m=\lfloor \frac{r}{k-1} \rfloor$ ($m\geq 2$). In the construction given in Case 1 it is obvious that H_r contains $H_{m(k-1)}$ as a subgraph. The graph $H_{m(k-1)}\backslash G_{l(k)}$ is an (m-2)(k-1)-regular regular bipartite graph. If m=2 then $H_r\backslash G_{l(k)}$ is an (r-2(k-1))-regular graph. For convenience we let r-2(k-1)=t. All of the edges in $H_r\backslash G_{l(k)}$ are nonessential. There are two cases to be considered.

Case 2.1. k is even

Let F'_1, \ldots, F'_{k-1} be a standard 1-factorization of K_k with the vertex

set $\{1,\ldots,k\}$, such that $ik \in F_i'$. Let F_{ab} be a 1-factor in the induced subgraph $< P_a \cup P_b >$ of $H_{m(k-1)} \backslash G_{l(k)}$ when m > 2, or $H_r \backslash G_{l(k)}$ when m = 2. Then $F_i = \bigcup_{ab \in F_i'} F_{ab}$, $i = 1,\ldots,k-1$, are k-1 mutually disjoint 1-factors of $H_{m(k-1)} \backslash G_{l(k)}$ when m > 2. If m = 2 then F_i , $i = 1,\ldots,t$, are t mutually disjoint 1-factors of $H_r \backslash G_{l(k)}$.

Case 2.1.1. r is even

If m>2 then for each x_i , $i=1,\ldots,s$, at the first step, from each F_{ab} other than F_{ik} and F_{pq} , where p and q are arbitrary and $F_{ab}\subset F_i$, we delete m edges. Then in the second step we delete $\lfloor \frac{m}{2} \rfloor$ disjoint edges from each of the 1-factors F_{pk} , F_{qk} , and F_{pq} . Since m< l, at least one edge has remained undeleted in each F_{ab} , and at the third step we delete $\frac{r-2m(\frac{r}{2}-2)-6(\lfloor \frac{m}{2} \rfloor)}{r-2}$ edges from the rest of the edges in some arbitrary F_{ab} , where $F_{ab}\subset F_i\backslash F_{ik}$. Finally we join x_i to the ends of all deleted edges.

For m=2, if $s \le t$ then for each x_i $(1 \le i \le s)$ at the first step we delete 2 edges from each $F_{ab} \subset F_i \backslash F_{ik}$. In the second step we delete an edge $v_p w_k$ from the nonessential edges in $G_{l(k)}$ (see Theorem 1), for an arbitrary p such that v_p is not the end of deleted edges in the first step. At the third step we delete $\lfloor \frac{r-4(\frac{k}{2}-1)-2}{2} \rfloor = \lfloor \frac{1}{2} \rfloor$ edges from the rest of the edges in some arbitrary $F_{ab} \subset F_i \backslash F_{ik}$. If l=3 and t=k-2, then there are $\frac{t}{2}-1$ edges remaining in each $F_{ab} \subset F_i \backslash F_{ik}$. In this case we delete one edge of 1-factor F_{ak} where $F_{pq} \subset F_i$; we are sure that such an edge exists, since t is even, forcing $t \ge 2$.

For s > t, first we add the edges of t disjoint 1-factors of K_s in the case of s even, or the edges of $\frac{t}{2}$ disjoint 2-factors of K_s in the case of s odd, to x_1, x_2, \ldots, x_s . Then for each x_i we delete k-1 edges of nonessential edges of $G_{(k)} \subset H_r$ as explained in Theorem 1 and join x_i to the end vertices of them.

Case 2.1.2. r is odd.

Note that in this case s must be even. If m>2 then for each x_i , $i=1,\ldots,s$, by an argument similar as above, we join $2m(\frac{k}{2}-2)+6(\lfloor\frac{m}{2}\rfloor)$ vertices to x_i in the first and second steps. So we delete $\lfloor \frac{r-m(k-1)}{2} \rfloor$ edges from the rest of the edges of some arbitrary $F_{ab} \subset F_i \backslash F_{ik}$, and join x_i to the ends of all deleted edges. Note that the difference $\alpha=r-2(m(\frac{k}{2}-2)+3\lfloor\frac{m}{2}\rfloor+\lfloor\frac{r-m(k-1)}{2}\rfloor)$ is equal to 1 or 3. If $\alpha=1$ then we join x_i to x_{i+1} , for $i=1,3,5,\ldots,s-1$. If $\alpha=3$ let $F_{pq} \subset F_i$ and $F_{p'q'} \subset F_{i+1}$ be the corresponding 1-factors to x_i and x_{i+1} , respectively, which

are chosen in step 1. Assume $y_{p'}y_k \in F_{p'k}$, $y_{q'}y_k \in F_{q'k}$, and $y_py_q \in F_{pq}$ are undeleted edges. We delete the edges $\{y_py_k, y_{q'}y_k, y_py_q\}$ and for each $i, i = 1, 3, 5, \ldots, s - 1$, join x_i to the vertices $\{y_p, y_q, y_k\}$ and x_{i+1} to $\{y_{p'}, y_{q'}, y_k\}$. Since x_i is not joined to any vertex in part P_i it can be seen that in each case $c(x_i) = i$ and $deg(x_i) = r$, for $i = 1, 2, \ldots, s$.

If m=2 we deal with it as we did in Case 2.1.1. Moreover if $s \le t$ then we join x_i to x_{i+1} , for $i=1,3,5,\ldots,s-1$.

Case 2.2. k is odd

Let F'_1, \ldots, F'_{k-2} be a standard 1-factorization for the complete graph K_{k-1} , whose vertex set is $\{1, \ldots, k-1\}$, such that $\{i, (k-1)\} \in F'_i$. If m > 2, it is clear that $F_i = \bigcup_{ab \in F'_i} F_{ab}$, $i = 1, \ldots, k-2$, are disjoint maximal matchings of $H_{m(k-1)} \setminus G_{l(k)}$, and if m = 2 then F_i , $i = 1, 2, \ldots, t-1$, are disjoint maximal matchings of $H_r \setminus G_{l(k)}$.

Case 2.2.1. r is even

If $s \leq k-2$ (for m=2, $s \leq t-1$) then for each x_i , $i=1,\ldots,s$, we delete m edges of each F_{ab} , where $F_{ab} \subset F_i$. Also we delete $\frac{r-m(k-1)}{2}$ edges from the rest of the edges in some arbitrary $F_{ab} \subset F_i$. Now we join x_i to the ends of all deleted edges.

If s = k - 1 then we deal with x_i , for i = 1, ..., k - 2, as we did before. For x_{k-1} we delete m edges of 1-factor F_{1k} . Note that if $m \ge 4$ then each induced subgraph

 $\langle P_i \cup P_j \rangle$ of $H_{m(k-1)} \backslash G_{l(k)}$ has more than one 1-factor. We delete m edges of another 1-factor from each of $\langle P_2 \cup P_{k-1} \rangle, \langle P_3 \cup P_{k-2} \rangle$,..., and $\langle P_{\frac{k-1}{2}} \cup P_{\frac{k-1}{2}+2} \rangle$. Finally we delete $\frac{r-m(k-1)}{2}$ edges from the rest of the edges in some of the above 1-factors, and join x_{k-1} to the ends of all deleted edges. It is obvious that in this case $c(x_{k-1}) = \frac{k+1}{2}$.

If m=3, then we delete the edges x_iy_i for $i=2,\ldots,k-2$ which were obtained by deleting an edge of $F_{i(k-1)} \subset F_i$, such that y_i is not a vertex in G_1 , and joining x_{k-1} to x_i and to y_i . Also we delete the edges of a 1-factor of induced subgraph $< u_2,\ldots,u_{k-2}> \subset G_1$ and join x_{k-1} to the ends of these deleted edges. If $\frac{r-m(k-1)}{2}>0$ then $l\geq 4$, and we can assume that y_i is not a vertex in G_1 , G_{l-1} , or G_l . We delete $\frac{r-m(k-1)}{2}$ disjoint edges from the nonessential edge set $\{v_iw_j \mid 2\leq i< j\leq k-2\}$ (see Theorem 1) and join x_{k-1} to the ends of these deleted edges. It is obvious that $\deg(x_{k-1})=r$ and $c(x_{k-1})=k-1$.

For m=2, if $s\geq t$ then for x_i $(i\leq t-1)$ we could deal as before. For

 x_i $(t \le i \le s)$ we delete 2(k-1) edges from the set of nonessential edges in $G_{l(k)}$, just as we did in Theorem 1. We join x_i to the ends of deleted edges. Then we delete $\frac{t}{2}$ edges from the rest of the edges in $\bigcup_{i=1}^{t-1} F_i$, which are suitably chosen and join x_i to the ends of these deleted edges.

Case 2.2.2. r is odd.

Here n = kl + s must be even, so l and s have the same parity. We consider two subcases.

Case 2.2.2.1. l and s are even.

With an argument similar to that for even r, we join each x_i , i = 1, ..., s (for m = 2, $s \le t - 1$) to m(k - 1) vertices. So we delete $\lfloor \frac{r - m(k - 1)}{2} \rfloor$ edges from the remaining edges in some of 1-factors above. Now we join x_i to the ends of all deleted edges.

Finally for each $i=1,3,5,\ldots,s-1$, we choose an undeleted edge $y_ay_b \in F_i$ such that there exists an undeleted edge $y_jy_b \in F_{i+1}$. We delete the edge y_ay_b and join x_i to y_a and x_{i+1} to y_b . For m=2, if $s \geq t$ then we deal with x_i as before for $i \leq t-1$. For x_i $(t \leq i \leq s)$ we delete 2(k-1) edges from the set of nonessential edges in $G_{l(k)}$ as we did in Theorem 1. Also we delete $\frac{(s-t+1)t}{2}$ edges from the rest of the edges in $\bigcup_{i=1}^{t-1} F_i$, and join each x_i $(t \leq i \leq s)$ to the t ends of these deleted edges which are suitably chosen.

Case 2.2.2.l and s are odd.

Note that in this case the graph H_r with n=kl vertices does not exist. Here first we consider an m(k-1)-regular k-chromatic graph on n=kl+s, $1 \le s \le k-1$, vertices, the same as in the case of r even, and denote this graph by H'.

Note that the construction of H' is not dependent on l and it is the same as construction of m(k-1)-regular graph on n=k(l-1)+s vertices. Therefore the graph $G_{l(k)}\backslash H'$ contains $G_2=K_k$ as a subgraph, and $\frac{l-1}{2}$ disjoint (k-1)-regular bipartite subgraphs, which were constructed on the vertex sets $V(G_i)$, $i\neq 2$.

Since k is odd we know that the complete graph K_k with the vertex set, say $\{1, \ldots, k\}$, has k disjoint maximal matchings. We denote these matchings by F_1, \ldots

 F_k , so that the vertex $i \notin V(F_i)$.

Now we add r-m(k-1) maximal matchings $F_1, \ldots, F_{r-m(k-1)}$ of $G_2 = K_k$ to H'. In $\hat{G}_{l(k)} \setminus \hat{H}'$ there are (k-1)-regular bipartite subgraphs. Adjoint

to H', r - m(k-1) 1-factors of $\frac{k-1}{2}$ of these subgraphs.

If $s \le r - m(k-1)$ then for each x_i $(1 \le i \le s)$ we delete $\lfloor \frac{r-m(k-1)}{2} \rfloor$ edges of F_i . And we join x_i to the (isolated) vertex i and to the ends of all deleted edges. Since $\beta = r - m(k-1) - s$ is even, we can partition the vertices $s+1, s+2, \ldots, s+\beta$ into disjoint pairs of nonadjacent vertices. Now by joining these pairs of vertices, we obtain a graph of the kind we need

If s > r - m(k-1) then for each x_i , $i \le r - m(k-1)$, we use similar method as in the above, and then we delete $\frac{(s-r+m(k-1))(r-m(k-1))}{2}$ edges from the rest of the edges in $\bigcup_{i=1}^{r-m(k-1)} F_i$, and join each x_i , $i = r - m(k-1) + 1, \ldots, s$, to the r - m(k-1) ends of these deleted edges which are suitably chosen. It can be easily seen that $\deg(x_i) = r$ and $c(x_i) = k$, for $i = 1, \ldots, s$.

Theorem 3. For each $k \geq 3$, $n \geq 3k$, and r > 2(k-1), such that $\lfloor \frac{n}{k} \rfloor = \lfloor \frac{r}{k-1} \rfloor \neq \frac{r}{k-1}$, we have $d(n,r,\chi=k)=k-1$.

Proof. Let n=kl+s, $0 \le s \le k-1$, and r=(k-1)l+t, $1 \le t \le k-2$. By Remark 1, if an r-regular k-chromatic graph with n vertices exists, then s > t. First we show that there does not exist such a graph for t=k-2. For, if there exists one, say G, since s > t, then s=k-1. Also we know that each chromatic class consists of at most n-r=l+1 vertices. On the other hand since n=kl+k-1, G must have k-1 chromatic classes of size l+1 and one chromatic class of size l. And each vertex in a chromatic class of size l+1 must be adjacent to all the vertices in the other parts. This implies that the degree of each vertex in the chromatic class with l vertices is (l+1)(k-1)=r+1 which contradicts the r-regularity of the graph G.

Now by a recursive method we construct an r-regular k-chromatic graph G^* with n vertices so that $d(G^*, \chi) = k - 1$. Let $n_1 = n - (n - r) = r$ and $r_1 = r - (n - r) = 2r - n$.

 $r_1=r-(n-r)=2r-n$. If there exists an r_1 -regular, (k-1)-chromatic graph G_1 with n_1 vertices and $d(G_1, \chi)=k-2$, then by adding n-r new vertices to G_1 and joining each of these new vertices to all of n_1 vertices of G_1 , we obtain the desired graph G^* .

If not, then we continue this procedure and let $n_i = (k-i)l + it - (i-1)s$ and $r_i = (k-i-1)l + (i+1)t - is$. If for some i there exists an r_i -regular, (k-i)-chromatic graph G_i with n_i vertices and $d(G_i, \chi) = k-i-1$, then we can construct G^* similarly, by constructing the graphs $G_{i-1}, G_{i-2}, \ldots, G_1$. But note that for $i = \lceil \frac{t}{s-t} \rceil$ such a graph exists. For, $\frac{n_i}{k-i} = l + \frac{i(t-s)+t}{k-i}$ and $\frac{t}{k-i-1} = l + \frac{i(t-s)+t}{k-i-1}$. Thus for $i = \lceil \frac{t}{s-t} \rceil$ we have $\frac{t}{s-t} \le i \le \frac{t}{s-t} + 1 = \frac{s}{s-t}$. Now

by Theorem 2 for this i there exists an r_i -regular, (k-i)-chromatic graph G_i with n_i vertices and $d(G_i, \chi) = k - i - 1$.

Remark 2. Concerning this work there are two questions to be investigated. The first is the determination of $d(n, r, \chi = k)$ for admissible n such that n < 3k and $r \ge 2(k-1)$. The second is to determine $d(n, r, \chi = k)$ for the remaining values of $r(k+1 \le r < 2(k-1))$.

References

- [1] A.D. Keedwell. Critical sets for latin squares, graphs and block designs: a survey. *Congr. Numer.*, **113**:231–245, 1996. Festschrift for C. St. J. A. Nash-Williams.
- [2] E.S. Mahmoodian. Some problems in graph colorings. In S.H. Javad-pour and M. Radjabalipour, editors, *Proc.* 26th Annual Iranian Math. Conference, pages 215–218, Kerman, March 1995. Iranian Math. Soc., University of Kerman.
- [3] E.S. Mahmoodian and E. Mendelsohn. On defining numbers of vertex coloring of regular graphs. *Discrete Mathematics*, 197/198:543-554, 1999.
- [4] E.S. Mahmoodian, R. Naserasr, and M. Zaker. Defining sets in vertex coloring of graphs and latin rectangles. *Discrete Mathematics*, 167/168:451-460, 1997.
- [5] E.S. Mahmoodian and N. Soltankhah. On defining numbers of k-chromatic k-regular graphs. Ars Combinatoria, to appear.
- [6] R. Naserast, E.S. Mahmoodian, M. Mahdian, and F. Harary. On defining sets of vertex coloring of the cartesian product of a cycle with a complete graph. In Y. Alavi, D.R. Lick, and A. Schwenk, editors, Combinatorics, Graph Theory and Algorithms, (Kalamazoo, MI, 1996), New Issues Press, 1999.
- [7] D.B. West. Introduction to Graph Theory. 2nd Eddition, Prentice Hall Upper Saddle River, NJ, 2001.

E-mail addresses:
emahmood@sharif.edu
bomoomi@cc.iut.ac.ir
soltan@azzahra.ac.ir