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Abstract

In a given graph G, a set S of vertices with an assignment of
colors is a defining set of the vertex coloring of &G, if there exists
a unique extension of the colors of § to a X(G)-coloring of the
vertices of . A defining set with minimum cardinality is called
a smallest defining set (of vertex coloring) and its cardinality, the
defining number, is denoted by d(G, X). Let d{n,r, X = k) be the
smallest defining number of all r-regular k-chromatic graphs with n
vertices, Mahmoodian and Mendelsohn (1999) proved that for each
n and each r > 4, d{n,r, X = 3) = 2. They raised the following
question: Is it true that for every k, there exist ngo(k) and ro(k),
such that for all n > no(k) and r > ro{k) we have d{n,r, X = k) =
% - 17 We show that the answer to this question is positive, and
we prove that for a given k and for all n > 3k, if » > 2(k — 1} then
din,r, X=k}=k-1.
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1 Introduction

We follow the concept of graphs defined in standard textbooks. For the
definitions and notations not defined here we refer the reader to texts, such
as [7]. A k-coloring of a graph G is an assignment of ¥ different colors
to the vertices of G such that no two adjacent vertices receive the same
color. The (vertex) chromatic number of a graph G, denoted by X(G), is
the smallest number &, for which there exists a k-coloring for G. A graph
G with X(G) = k is called k-chromatic. In a given graph G, a set of
vertices § with an assignment of colors is called a defining set of vertex
coloring, if there exists a unique extension of the colors of S to a X(G)
-coloring of the vertices of G. A defining set with minimum cardinality
is called a smallest defining set (of a vertex coloring) and its cardinality is
the defining number (of a vertex coloring), denoted by d(G', X). There are
some resulis on defining numbers in [4] (see also [1], and [2]). Here we study
the smallest defining number of regular graphs. Let d(n,r, X = k) be the
smallest value of d(G, X) for all r-regular graphs with n vertices and the
chromatic number equal to k. By Brooks’s Theorem, if G is a connected
r-regular k-chromatic graph which is not a complete graph or an odd cycle,
then & < r. Mahmoodian and Mendelsohn in [3] studied d(n,r, X = k) and
raised two questions. The first one was on d(n, k¥, X = k) which is answered
by Mahmoodian and Soltankhah in [5]. For the case of r > k, they proved
in [3), that for each n, and for each r > 4 we have d{n,r, X = 3) = 2, and
asked the following question:

Question. Is it true that for every k, there exist ng(k) and ro(k), such
that for all n > no(k) and r > ro(k) we have d(n,r, X =k) =k —1?

We show that the answer to this question is positive. In fact we prove that:

Theorem. Let k be a positive integer. For each n > 3k, if r N“m? -1)
then d(n,r, X=k)=k—- 1.

2 Preliminaries

In this section, we state some known results and definitions which will be
used in the sequel. Throughout, n, k, I, r, s and such denote positive
integers.

Definition 1 [3]. Let G and H be two vertez disjoint graphs each with o
given proper k-coloring say cq and cy (respectively). Then the chromatic
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join of G and H, denoted by G ¥ H is a graph where V(G V H) is V{G) U
V(H), and E(G Y H) is E(G) U E(H), together with the set {zy | = €
V(G), y € V(H) such that ca{z) # ca{y)}.

Theorem A [3]. Let n be a multiple of k, say n =kl (I > 2); then
d(kl,2(—1), X=k)=k—1.

To prove this theoremn Mahmoodian and Mendelschn constructed a 2(k—1)-
regular k-chromatic graph with n = ki vertices as follows. Let G1,G3,---,Gi
be vertex disjoint graphs such that Gy and G are two copies of K and
ifI > 3, Ga,...,G_1 are copies of K. Color each G; with k colors
1,2,...,% Then construct & graph G with &l vertices by taking the union
of GiUG2U- - -LUG, and by making a chromatic join between G; and Giy1;
fori =1,2,...,1 — 1. This is the desired graph. We dencte such a graph
by Gy(x) and use this construction in Section 3.

Theorem B [3]. For eachn and eachr > 4, we have d(n,r, X =3) =2.
The following lemma from [6] is straightforward.

Lemma A [6]. Let H be a subgraph of G such thet X(G) = X(H). If
V(H) with any coloring is o defining set for G, then ony defining set of H
is also a defining set for G.

Definition 2 [5]. Let G be a k-chromatic graph and let S be a defining set
for G. Then a set F(S) of edges is called nonessential edges, if the chromatic
number of G — F(S), the graph obtained from G by removing the edges in
F(S), is still k, and S is also a defining set for G ~ F'(S).

Definition 3. Let GG be a graph with a given proper coloring ¢ with &
colors. Then the chromatic complement of &, denoted by G or simply by &
if there is no danger of confusion, is a spanning subgraph of G (complement
of @) such that E(G.) = E(G) - {uwv | c(u) = c(v)}.

3 Main results

In the following three theorems we prove our main result, which was men-
tioned at the end of Section 1.
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Theorem 1. For each k > 3, and each n > 3k, we have
din,2(k—1), Xx=k)=k-1.

Proof. By Theorem A the statement is true when n is a multiple of k.
Forn=kl+s(1>3),s=1,...,k— 1, we construct a 2(k — 1)-regular
k-chromatic graph H with n vertices and d(H, X) = & — 1 as follows.

Consider the graph Gy as constructed in Theorem A. From now
on in Q_..COY we let .—\AQHV = ﬁﬁu»...“ﬁrw. M\AQEIHV = Aeau...ueww“ and
V(G) = {unr,...,wr}. Also assume that c{u;) = c(v;) = elw;) = i, for
i=1,2,...,k It is obvious that the set ' = {u1, us,...,up—1} is a defining
set for Gyxy. And the following set

Fi8)= {uwu;,1<i<j<k-1lU{vuw;,1<i<j<k-1}
WHzws, i=1,...,k -1}

where for each i, either z; = v; or wy, is a set of nonessential edges in
Gury-
Now to construct i we add s new vertices x3,..., %, to Gix), delete some
suitable nonessential edges, and join the new vertices to the vertices from
which the edges were deleted, as follows. There are two cases to be consid-
ered.

Case 1. k is odd.

The induced subgraph < § > of Gy(4) is a complete graph Kj_;. This
graph is 1-factorable. We denote its 1-factors by F,...,Fr—o. From now
on, any 1-factorizations of complete graphs which are used in this paper are
considered to be “standard” factorizations. L.e. for K., n even, suppose
the vertex set to be {1,2,...,n}, and we arrange the vertices 2,...,n in a
regular (n — 1)-gon, and place the vertex 1 in the center. Join every two
vertices by a straight line segment. For ¢ = 2,...,n, define the edge set of
the factor F;_; to be the edge 14 together with all those edges perpendicular
to 1i. :

If s < k—2,then for each ¢ {1 < i < s} we join the added vertices z; to
all of the vertices of 5, and delete all of the edges of F;. Also with respect
to each edge uaus € F; (@ < b), we delete v,wy and join z; to the vertices
v, and wy. Now it can be easily seen that deg(z;) = 2(k — 1). Note that
colors of vertices of Gy force the colors of all new vertices to be k.

If s = k-1, then for z; (1 <7<k~ 2) we proceed as before and for
241, first we delete the edge wiwx and join ox—; to w1 and wik- Since each
4, is joined to a v; (which was obtained by deleting the edge vjwy_1), we
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delete the edges z;v; and join zx.; to #; and v; for 4,7 =1,...,k—2. We
have deg(zz—_1) = 2(k — 1) and ¢(zk-1) = k — 1. Because the neighbors of
Ty-1 have colors 1,2,...,k—2,k.

Case 2. k is even.

In this case we consider the induced subgraph < SU {uz} > of Gy,
which is a complete graph K} of even order. This graph is 1-factorable. Let
Fi,..., Fy_1 be afactorization such that u;ux € F;. Foreachi (1 <i< s)
we join z; to all of the vertices of I}, except to u; and g, and delete all of
the edges of F}, except u;ux. Now as in the Case 1, with respect to each
uatty € Fi\{usty}, we delete the edges v,w, and join z; to the ends of these
deleted edges. Finally for each i, 1 < i < 8,1 # & — 2 we delete the edge
Wit1(mod k—1)Wk and join x; to the ends of this edge. Note that since we
assumed Fj, (1 €4 < k — 1) is a standard factorization, 2; was not joined
t0 Wiy1(mod k~1) before. Then we delete the edge vx—1wy and join zz.—3 to
the ends of this edge. It is obvious that deg{z:) = 2(k— 1) and the color
of z; is forced to be i. E

To illustrate the construction shown in the proof of Theorem 1, we provide
the following two examples.

Example 1. Let k = 5. Forn = 3k+ s, 1 < s € 4, we construct an
8-regular 5-chromatic graph of order n with a defining set of size 4. For
n=15+35, 1< 5 <4, we add s new vertices to the graph Gy5) and delete
some nonessential edges as explained in the proof of Theorem 1 (Case 1).
Table 1 shows all the deleted edges corresponding to newly added vertices.
In Figure 1, we show an B-regular 5-chromatic graph of order 16 (s = 1)
with a defining set of size 4. The vertices of the defining set are shown by

the filled circles.

New vertices | 2 o Za Ty
Upty | Ualg | Uslty | W15
Deleted Ug U3 Uriy U1l i1t
edges viwy | vewy | Vzwy | Zote
Vg Wy v wo X3z

Table 1: New vertices and corresponding deleted edges.

215



Figure 1: d{H, x = 5) = 4.

Example 2, Let ¥ = 4. Forn = 3k+3s, 1 € s £ 3, we construct a
6-regular 4-chromatic graph of order n with a defining set of size 3. For
n=124+3 1< s < 3, we add s new vertices to the graph Gzy4) and
delete some nonessential edges as explained in the proof of Theorem 1
(Case 2). Table 2 shows all the deleted edges corresponding the newly
added vertices. In Figure 2, a 6-regular 4-chromatic graph of order 13
(s = 1) with a defining set of size 3 is shown. In this figure also the vertices
of the defining set are shown by the filled circles.

New vertices n o T3

oz U Uz U U2
Deleted edges | vaws | viws | viws
Wallg | UsWa | Wiwy

Table 2: New vertices and corresponding deleted edges.
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Figure 2: d(H,x=4) =3.

Remark 1. If G is an r-regular k-chromatic graph on n vertices then each
chromatic class in G has at most n—r vertices. Thereforen < k{n~r}. This
implies & > =7. Note that for each n, r, and k such that 3 > g5, only
one of the following holds: (i) {%] > [&55] or (D) | 3] = I55] # 7=

Next we generalize the statement of Theorem 1 to r > 2(k —~ 1). This is
done in the following two thecrems.

Theorem 2. For each k >
qau

n > 3k, and r > 2(k— 1), such that
| 2] = [355), we have d{n, =

3,
X=k=k-1
Proof. We prove the statement in two cases.

Case 1. n=kl.

Consider Gjx), and let QRE be the chromatic complement of Gy (see
Definition 3). Note that Gy, is an (! —2)(k — 1)-regular graph. For each r

by adding suitable edges of Q:E to Gy we will construct an r-regular k-
chromatic graph H, such that d{H,., X) = k—1. We explain the procedure
according to the parities of & and r.
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If & is even then the complete graph K is 1-factorable. Since mxu._:a is
a k-partite graph, a 1-factor of K}, corresponds to a union of m bipartite
subgraphs of Gy(), each of which is { — 2)-regular; this union is obviously
1-factorable. Thus Gy, is 1-factorable. By adding the edges of r — 2(k —1)
disjoint 1-factors of ﬁw.: %) to Gi(z), we obtain an r-regular k-chromatic graph
H, with d(H,, X)=k-1.

H %k is odd then @:E is a regular graph of even degree, therefore by
a theorem of Petersen (see [7], page 125) is 2-factorable. For r even, H,
can be obtained by adding the edges of Z=2£=1) disjoint 2-factors of Gy
to Gyxy. For r odd, n = ki is even, thus [ is even. In this case, Q::E
contains wu disjoint bipartite subgraphs, each of which is (k — 1)-regular.
Also, since k is odd, each of these (k — 1)-regular bipartite graph is 2-
factorable. Note that cach 2-factor is a union of edge-disjoint cycles. Since
we consider bipartite graph, there is no odd cycle. Therefore, we can find
a 2-factorization in which, of 2-factors say F', can be chosen to be a union
of edge-disjoint even cycles. The alternate edges in F are two edge-disjoint
1-factors. Hence, F' is a union of two 1-factors say F3 and /5. By adding
the edges of Fy to Gy as well as the edges of %E of other disjoint
2-factors of mwhea to Gy, we obtain H,. By Lemma A, d(H,, X) =k-1.

Case 2. n=kl+s,1<s<k~1.

‘We will use the following procedure to construct an r-regular k-chromatic
graph on n vertices with defining number equal to ¥ — 1. We take the
graph H., constructed in Case 1, and recognize some nonessential edges
in it. Then we add s new vertices 1,...,2, 10 H, delete some suitable
nonessential edges, and join the new vertices to the ends of the deleted
edges. Let Py, P,,. .., Px denote the parts of k-partite graph H., and as-
sume that all of the vertices in F; are colored ¢ (i =1,2,..., k). Note that
for each i, |P;| = I. Throughout the proof we let m = |s55] (m > 2). In
the construction given in Case 1 it is obvious that H, contains m.a?lc as
a subgraph. The graph Hy,(x-1)\Gigx) Is an (m —2) (k—1)-regular k-partite
graph. Bach induced subgraph < P;UP; > of Hyn—1)\Gir) is an (m —2)-
regular bipartite graph. If m = 2 then H\Gy) is an (r —2(k — 1))-regular
graph. For convenience we let r —2{k—1) = t. All of the edges in H.\G1)
are nonessential. There are two cases to be congidered.

Case 2.1, k is even.

Let F},...,Fi_; be a standard l-factorization of K with the vertex
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set {1,...,k}, such that ik € F}. Let Fy be a l-factor in the induced
subgraph < P, U Py > of Hp—1)\Giyry when m > 2, or H,\Gyy when
m = 2. Then F; = Ugper Fap, t = 1,...,k— 1, are k —1 mutually disjoint
1-factors of Hpy(k—1)\Gixy when m > 2. If m =2 then F, i =1,...,¢, are
t mutually disjoint 1-factors of Hp\Gyxy.

Case 2.1.1. r is even.

I m > 2 then for each z;, ¢ = 1,...,s, at the first step, from each
Fyp other than Fi and Fp,, where p and ¢ are arbitrary and Fop C Fj,
we delete m edges. Then in the second step we delete || disjoint edges
from each of the 1-factors Foi, Fyx, and F,,. Since m < I, at least one
edge has remained undeleted in each F,p, and at the third step we delete

Tuimﬁulm:.w.: edges from the rest of the edges in some arbitrary Fap,

where F, C F;\F;. Finally we join z; to the ends of all deleted edges.

For m = 2, if ¢ < ¢ then for each ; (1 < i < s) at the first step we
delete 2 edges from each F,y € F;\Fj. In the second step we delete an
edge vpwy from the nonessential edges in Gy (see Theorem 1), for an

arbitrary p such that v, is not the end of deleted edges in the first step.

At the third step we delete wﬁ.wlyk._ = [£] edges from the rest of the
edges in some arbitrary Fop C Fi\Fi. If !l = 3 and ¢t = k& — 2, then there
are w — 1 edges remaining in each Fyp C Fi\Fiz. In this case we delete one
edge of 1-factor Fy; where Fp; C Fj; we are sure that such an edge exists,
since ¢ is even, forcing £ > 2.

For s > t, first we add the edges of ¢ disjoint 1-factors of K, in the case of
& even, or the edges of w disjoint 2-factors of K, in the case of 5 odd, to
Z1,Z2,-.., % Then for each z; we delete k — 1 edges of nonessential edges
of Gy) € Hy as explained in Theorem 1 and join z; to the end vertices of
them.

Case 2.1.2. r is odd.

Note that in this case s must be even. If m > 2 then for each z;,
i=1,...,8, by an argument similar as above, we join msnm —-2)+ 6( %))
vertices to ; in the first and second steps. So we delete |Z={E=1 | edges
from the rest of the edges of some arbitrary F, C F;\ Fi, and join z; to
the ends of all deleted edges. Note that the difference o = v — w?:ﬁ.m -
2)+ 33+ _.ESNE.C is equal to 1 or 3. If @ = 1 then we join z;
to Tiyq, for i = 1,3,5,...,8—1. Ha=31let Fpy C F; and Fpyp C
Fiy1 be the corresponding 1-factors to z; and z;41, respectively, which
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are chosen in step 1. Assume ypyr € Fpi, oYk € Fyx, and ypyy € Fpy
are undeleted edges. We delete the edges {yp ¥k, Vg ¥k: ot} and for each
i, i = 1,3,5,...,5 = 1, join z; to the vertices {¥p,¥q ¥x} and z;;1 to
{Yp Yy, yx}- Since z; is not joined to any vertex in part F; it can be seen
that in each case ¢{z;) =1 and deg{x;) =r,fori =1,2,...,s.

If m = 2 we deal with it as we did in Case 2.1.1. Moreover if s <€ ¢ then we
join x; to Ty, for i =1,3,5,...,8—1.

Case 2.2. k is odd.

Let Fy,...,F}_, be a standard 1-factorization for the complete graph
Kp_1, whose vertex set is {1,...,k — 1}, such that {i,(k - 1)} € F|. If
m > 2, it is clear that Fi = Uasep; Fab, @ = 1,...,k—2, are disjoint maximal
matchings of Hpnx—1)\Gi(x), and if m = 2 then F, i =1,2,...,¢— 1, are
disjoint maximal matchings of Ho\G)(k)-

Case 2.2.1. r is even.

He<k-2Horm=2,5<t—1)then for each z;, i = 1,...,5, we
delete m edges of each Fup, where Fyp C Fi. Also we delete EL%HIE edges
from the rest of the edges in some arbitrary Fpp C Fi. Now we join z; to
the ends of all deleted edges.

If s = & — 1 then we deal with z;, fori = 1,..., &k — 2, as we did before.
For 24—, we delete m edges of 1-factor Fi,. Note that if 7n > 4 then each
induced subgraph
< Py UP; > of Hpyge—1)\Giry has more than one 1-factor. We delete m
edges of another 1-factor from each of < P U Pyg >, < By U Fx2 >
veor, and < .ﬁ% UPro1 gy >, Finally we delete Ew@ edges from the
rest of the edges in some of the above 1-factors, and join #,_; to the ends
of all deleted edges. It is obvious that in this case c(zg—_1) = &L

If m = 3, then we delete the edges z;u; for ¢ = 2,...,k — 2 which
were obtained by deleting an edge of Fy;_1) C Fi, such that y; is not a
vertex in G, and joining z4_; to z; and to y;. Also we delete the edges
of a 1-factor of induced subgraph < wue,...,u5—2 > C G1 and join zx—;
to the ends of these deleted edges. If E,swmnb. > O then ! > 4, and we
can assume that v; is not a vertex in Gy, -1, or G;. We delete WE%E
disjoint edges from the nonessential edge set {viw; | 2 <i < j < k—2} (see
Theorem 1) and join 2x_; to the ends of these deleted edges. It is obvious
that deg{xr_1) = and e(xp-1) =k ~ L.

For m = 2, if 5 > # then for z; (i < ¢t — 1) we could deal as before. For
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z; (t €< 8) we delete 2(k — 1) edges from the set of nonessential edges

in Gy, just as we did in Theorem 1. We join @; to the ends of deleted
edges. Then we delete £ edges from the rest of the edges in Ui} F}, which

are suitably chosen and join z; to the ends of these deleted edges.
Case 2.2.2. r is odd.

Here n = kI + s must be even, so ! and s have the same parity. We
consider two subcases.

Case 2.2.2.1. [ and s are even.

With an argument similar to that for even r, we joineach z;,i =1,...,s
{for m = 2, 8 <t~ 1) to m({k — 1) vertices. So we delete —hﬂﬂwﬁ@ edges
from the remaining edges in some of 1-factors above. Now we join z; to
the ends of all deleted edges.

Finally for each< = 1,3,5,...,8—1, we choose an undeleted edge y.y» € F;
such that there exists an undeleted edge y;yp € Fiqa. We delete the edge
Youp and join z; to ¥, and ;41 to yp. For m = 2, if 3 > ¢ then we deal
with z; as before for i <t — 1. For z; {t <i < 8) we delete 2(k — 1) edges
from the set of nonessential edges in Gy as we did in Theorem 1. Also we

delete ?||w+:m edges from the rest of the edges in CMME, and join each z;
(t €1 < 8) to the ¢ ends of these deleted edges which are suitably chosen.

Case 2.2.2.2. [ and s are odd.

Note that in this case the graph H, with n = ki vertices does not exist.
Here first we consider an m(k — 1)-regular k-chromatic graph on n = ki + s,
1 <€ 8 < k— 1, vertices, the same as in the case of r even, and denote this
graph by H'.

Note that the construction of A’ is not dependent on I and it is the same
as construction of m(k — 1)-regular graph on n = k(I — 1) + s vertices.
Therefore the graph Gy;)\H’ contains G» = K} as a subgraph, and T%
disjoint (k — 1)-regular bipartite subgraphs, which were constructed on the
vertex sets V(G;), ¢ # 2.

Since & is odd we know that the complete graph X with the vertex set, say
{1,...,k}, has & disjoint maximal matchings. We denote these matchings
_qu .mﬂ_.: ey

Fy, so that the vertex i« ¢ V(F}).

Now we add r —m(k—1) maximal matchings Fi, ..., Fr_mk-1) of G, =K;
to H'. In QRS/M * there are (k — 1)-regular bipartite subgraphs. Adjoint
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to H', r —m(k — 1) 1-factors of £5% of these subgraphs.

If s < r — m(k — 1) then for omnw z; (1 £i < 5) we delete THE._
edges of F;. And we join z; to the (isolated) vertex ¢ and to the ends of
all deleted edges. Since 8 = r — m(k — 1) — s is even, we can partition the
vertices s + 1,8 + 2,...,5 + 4 into disjoint pairs of nonadjacent vertices.
Now by joining these pairs of vertices, we obtain a graph of the kind we
need.

If s > r —=m(k—1) then for each z;, i < r—m(k—1), we use similar method
as in the above, and then we delete (a=rebm(k- = Mr—mk=1)) odges from the

rest of the edges in C“.LS? 1} F;, and join each a: i=r-m{k—1)+1,...,3,

to the r - m{k — 1) ends of ﬁromo deleted edges which are suitably chosen.
It can be easily seen that deg(z;) =r and ¢{z;} =k, fori=1,...,5. &

3k, and r > 2(k — 1), such that
XVH.&!H.

ﬂ_rmonEw m_S. mn%wwu_:w
[2] = |£55 =, we have d(n,r,

Proof, letn=kli+s 0<s<k—1l,andr=(k-1l+t,1<tLk-2
By Remark 1, if an r-regular k-chromatic graph with n vertices exists, then
g > t. First we show that there does not exist such a graph for ¢t = & — 2.
For, if there exists one, say @, since s > i, then s = k —~ 1. Also we know
that each chromatic class consists of at most n —r = [+ 1 vertices. On the
other hand since n = kI + k& — 1, G must have k — 1 chromatic classes of
size | +1 and one chromatic class of size {. And each vertex in a chromatic
class of size I + 1 must be adjacent to all the vertices in the other parts.
This implies that the degree of each vertex in the chromatic class with !
vertices is (I + 1){k — 1) = r + 1 which contradicts the r-regularity of the
graph G. ,

Now by a recursive method we construct an r-regular k-chromatic graph
G* with n vertices so that d(G*, X) =k—1. Let ny =n—(n~r) =r and
rm=r—{n-r)=2r—n
If there exists an ri-regular, (k — 1)-chromatic graph G with n; vertices
and d(Gy, X) = k-2, then by adding n — r new vertices to 1 and joining
each of these new vertices to all of n, vertices of G, we obtain the desired
graph G*.

If not, then we continue this procedure and let n; = (k— i)l +it = {i — 1)s
and r; = (k—i— 1)l + (i + 1)t — ¢s. If for some ¢ there exists an r;-regular,
(k—1)-chromatic graph G; with n; vertices and d(G;, X) = k-—i—1, then we
can construct G* similarly, by constructing the graphs Gi—1,Gi-2, ..., G-
But note that for i = [ 5] such a graph exists. For, % = M+E+Im and

HH.I._.TmeM&ﬁ._H&cmmozl_. ._smrmskasA +Hl .

u
Therefore, t5—= <1 < 7%. And this :Eucmm that [+5] A _. AP Zoﬁ
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by Theorem 2 for this ¢ there exists an ri-regular, {k — i}-chromatic graph
G with n; vertices and d(G;, X) =k —i—1. ]

Remark 2. Concerning this work there are two questions to be investi-
gated. The first is the determination of d(n, r, X = k) for admissible n such
that n < 3k and r > 2(k — 1). The second is to determine d{n,r, X = k)
for the remaining valuesof r (k+1<r < 2(k— 1)).
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