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Abstract

An oriented perfect path double cover (OPPDC) of a graph G is a collection
of directed paths in the symmetric orientation Gs of G such that each arc of
Gs lies in exactly one of the paths and each vertex of G appears just once as
a beginning and just once as an end of a path. Maxová and Nešetřil (Discrete
Math. 276 (2004) 287-294) conjectured that every graph except two complete
graphs K3 and K5 has an OPPDC and they proved that the minimum degree
of the minimal counterexample to this conjecture is at least four. In this
paper, among some other results, we prove that the minimal counterexample
to this conjecture is 2-connected and 3-edge-connected.
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1 Introduction

We denote by G = (V,E) a finite undirected graph with no loops or multiple edges.
The symmetric orientation of G, denoted by Gs, is an oriented graph obtained from
G by replacing each edge of G by a pair of opposite directed arcs.

A cycle double cover (CDC) of a graph G is a collection of its cycles such that each
edge of G lies in exactly two of the cycles. A well-known conjecture of Seymour [7]
asserts that every simple bridgeless graph has a CDC. This problem also motivated
several related conjectures. A small cycle double cover (SCDC) of a graph on n
vertices is a CDC with at most n − 1 cycles. Bondy conjectured that every simple
bridgeless graph has an SCDC [1].

An oriented cycle double cover (OCDC) of G is a collection of directed cycles in
Gs of length at least 3 such that each arc of Gs lies in exactly one of the cycles.
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Jaeger [3] conjectured that every bridgeless graph has an oriented cycle double cover.
An small oriented cycle double cover (SOCDC) of a graph G on n vertices is an OCDC
with at most n− 1 elements.

A perfect path double cover (PPDC) of a graph G is a collection P of paths in G
such that each edge of G belongs to exactly two members of P and each vertex of G
occurs exactly twice as an end of a path in P [2]. In [4] it is proved that every simple
graph has a PPDC. The existence of a PPDC for graphs in general is equivalent
to the existence of an SCDC for bridgeless graphs with a vertex joined to all other
vertices.

Definition 1. [5] An oriented perfect path double cover (OPPDC) of a graph G is a
collection of directed paths in the symmetric orientation Gs such that each arc of Gs

lies in exactly one of the paths and each vertex of G appears just once as a beginning
and just once as an end of a path.

Similar to above, it can be seen that the existence of an OPPDC for graphs
in general is equivalent to the existence of an SOCDC for bridgeless graphs with
a vertex joined to all other vertices. Maxová and Nešetřil in [5] showed that two
complete graphs K3 and K5 have no OPPDC, and in [6], they conjectured the
following statement.

Conjecture 1. [6] (OPPDC conjecture) Every connected graph except K3 and K5

has an OPPDC.

In the following theorem, a list of sufficient conditions for a graph to admit an
OPPDC is provided.

Theorem A. [5] Let G ̸= K3 be a graph. In each of the following cases, G has an
OPPDC.

(i) Each vertex of G has odd degree.

(ii) G arises from a graph G′ which has an OPPDC by dividing one edge of G′.

(iii) G = G1∪G2 and V (G1)∩V (G2) = {v} which Gi is a graph with an OPPDC,
for i = 1, 2.

(iv) G \ v has an OPPDC, for some v ∈ V (G) of degree less than 3.

In [5], Maxová and Nešetřil in the following two theorems proved that if a graph
of order n with a vertex v of degree 3 has no OPPDC then there exists a graph of
order n− 1 which has no OPPDC either.
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Theorem B. [5] Let G be a graph, v ∈ V (G) be a vertex of degree 3, and N(v) =
{x, y, z} induces K3 in G. If G \ v has an OPPDC, then G has also an OPPDC.

Theorem C. [5] Let G be a graph, v ∈ V (G) be a vertex of degree 3, N(v) =
{x, y, z}, and e = xz ̸∈ E(G). If (G \ v)

∪
{e} has an OPPDC, then G also has an

OPPDC.

The structure of this paper is as follows. In Section 2, the properties of the
minimal counterexample to the OPPDC conjecture are studied and it is proved that
such graphs are 2-connected and 3-edge-connected with minimum degree at least
four. In Section 3, some sufficient conditions for a graph to admit an OPPDC are
provided.

2 The minimal counterexample to the OPPDC conjecture

In this section, among some other results, we prove that the minimal counterexam-
ple to the OPPDC conjecture is 2-connected and 3-edge-connected with minimum
degree at least four.

Suppose that G is a minimal counterexample to the OPPDC conjecture and G′

is a graph smaller than G. Since G′ can not be a counterexample to the conjecture,
eitherG′ has an OPPDC orG′ ∈ {K3, K5}. In [5] as a corollary of Theorems A(iv), B
and C it is concluded that the minimum degree of the minimal counterexample to
the OPPDC conjecture is at least four, but the cases G′ ∈ {K3, K5} are missed
to investigate. In the following theorem along with the missing cases, we give the
complete proof for this result.

Theorem 1. If G is the minimal counterexample to the OPPDC conjecture, then
δ(G) ≥ 4.

Proof. By the contrary, let G be a minimal counterexample to the OPPDC con-
jecture contains a vertex t of degree less than three and G′ = G \ t. Hence, either
G′ has an OPPDC or G′ ∈ {K3, K5}. In the former case by Theorem A(iv), G
has an OPPDC. In the latter case, G is one of the graphs G1, G2, G3 or G4,
shown in Figure 1. In each cases Pi, 1 ≤ i ≤ 4, is an OPPDC of Gi, where
P1 = {tuyvxw, uxywvt, vuwyx,wxuvy, xvwu, yutv}, P2 = {tvwu, uv, vtuw,wvut},
P3 = {tuyxw, ut, vxuwy, wxvyu, xywvut, yvwux} and P4 = {tuw, uv, vwu,wvut}.
This contradicts our assumption, thus the minimum degree of G is at least three.

Now let t ∈ V (G) with deg(t) = 3 and G′ = G \ t. If the neighbours of t induce
K3, and G′ has an OPPDC, then by Theorem B, G admits an OPPDC. Otherwise,
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Figure 1: Special Cases.

if G′ = K3, then G = K4 which has an OPPDC and if G′ = K5, then G = G5 and
P5 = {twvxu, uwyxvt, vuxyw,wtuyv, xwuvy, yutvwx} is an OPPDC of G.

If there are u, v ∈ N(t) such that e = uv /∈ E(G), then G′ = (G\t)
∪
{e} is smaller

thanG. IfG′ has an OPPDC, then by Theorem C, G admits an OPPDC. Otherwise,
G′ ∈ {K3, K5}. In these cases G ∈ {G6, G7}, where P6 = {tw, uwvt, vwtu, wutv}
and P7 = {tuxw, utwyv, vwxyu, wuyxvt, xuwvy, ywtvx} are OPPDC of G, respec-
tively.

All above cases contradict our assumption that G has no OPPDC. Therefore,
δ(G) ≥ 4.

The complete graphs K3 and K5 are the only known examples of connected
graphs which have no OPPDC. By Theorem A(i), K2n has an OPPDC. It is known
that every symmetric orientation of K2n+2, n ≥ 3, has a decomposition into 2n+ 1
directed Hamiltonian cycles [8]. This decomposition forms an OPPDC for K2n+1,
n ≥ 3, by deleting a fix vertex from each cycle.

By Theorem A(iii), if every block of graph G has an OPPDC, then G also has an
OPPDC. Remind that a block is a maximal connected subgraph of G with no cut-
vertex. Let G be the minimal counterexample to the OPPDC conjecture. Therefore,
G, either is 2-connected or at least one of its blocks is K3 or K5. In the following
theorem, we show that the latter can not be happen.

For every OPPDC of a connected graph G, say P , and every vertex v ∈ V , let
P v and Pv denote the paths in P beginning and ending with v, respectively. Also
note that we can assume, in an OPPDC, directed paths of length zero are presented
only at isolated vertices.

Theorem 2. The minimal counterexample to the OPPDC conjecture is 2-connected.
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Proof. Let G be the minimal counterexample to the OPPDC conjecture. By the
contrary suppose that, G = B1 ∪ . . . ∪ Bk and Bi’s are blocks of G. If every block
of G has an OPPDC, then by Theorem A(iii), G also has an OPPDC, which is a
contradiction. Otherwise, at least one of the Bi’s is K3 or K5.
If k = 2 and B1 = B2 = K3, where V (B1) = {u, v, w} and V (B2) = {w, x, y}, then,
P = {uwxy, ywvu, xw,wuv, vwyx} is an OPPDC of G.
If k = 2, B1 = K5 and B2 = K3, where V (B1) = {u, v, w, x, y} and V (B2) = {v, s, t}.
Let G′ = B1 \ {e = uv}. Then the following is an OPPDC of G′,

P̂ = {uyxw, yvwux,wxvyu, xywv, vxuwy}.

Consider four new directed paths. P t = tsvuP̂ u, Pt = vt, Ps = uvs, and P s = stvP̂ v.
The following is an OPPDC of G,

P = P̂ ∪
{
P t, P s, Pt, Ps

}
\
{
P̂ u, P̂ v

}
.

If k = 2 andB1 = B2 = K5, where V (B1) = {u, v, w, x, y} and V (B2) = {u′, v, w′, x′, y′}.
Then the following is an OPPDC of G,

P = {uxwyvy′w′x′u′, ywxuvu′x′w′y′, x′vx, u′vu, xyuwvw′u′y′x′, wuyxvx′y′u′w′, w′vw,
y′v, vy}.

Now let G = G1 ∪ G2, where G1 = K3 and G2 has an OPPDC. Assume that
V (K3) = {u, v, w}, v is a cut vertex, and P̃ is an OPPDC of G2. Now we define four

new directed paths Pu = P̃vvwu, P
u = uv, P v = vuw, and Pw = wvP̃ v. Therefore,

P = P̃ ∪ {Pu, P
u, P v, Pw} \

{
P̃ v, P̃v

}
is an OPPDC of G.
Finally, let G = G1 ∪ G2, where G1 = K5 and G2 has an OPPDC. Assume that
V (K5) = {u, v, w, x, y}, v is a cut vertex, and P̃ is an OPPDC of G2. Also let P̂ be
the OPPDC of K5 \ {e = uv} as given in above. Consider two new directed paths

Pw = P̃vvuP̂
u and P u = uvP̃ v. Thus,

P = P̂ ∪ P̃ ∪ {Pw, P
u} \

{
P̃ v, P̃v, P̂

u
}

is an OPPDC of G. In all above cases, we get a contradiction.
For k ≥ 3, by the induction on k and Theorem A(iii), we find an OPPDC of G,
which is a contradiction.

Theorem 2 concludes the following corollaries. A block graph is a graph for which
each block is a clique.

Corollary 1. Every block graph G ̸= K3, K5 has an OPPDC.
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Proof. In the proof of Theorem 2, we show that, if G = B1 ∪ . . .∪Bk and Bi’s are
blocks of G and for each i, 1 ≤ i ≤ k, Bi has an OPPDC or Bi = K3 or K5, then G
has an OPPDC. Thus, the statement concludes.

Since the line graph of every tree is a block graph, we have the following corollary.

Corollary 2. For every tree T ̸= K1,3, K1,5, L(T ) has an OPPDC.

For line graphs, the following result is also obtained from Theorem A(iii).

Corollary 3. If the degree of no adjacent vertices in G have the same parity, then
the line graph L(G) has an OPPDC.

The following lemmas are necessary to prove our next theorem.

Lemma 1. If G1 = G2 = K5 and G = G1 ∪G2 ∪ {uu′, vv′}, where {u, v} ∈ V (G1)
and {u′, v′} ∈ V (G2), then G has an OPPDC.

Proof. Let G1 = G2 = K5, V (G1) = {u, v, w, x, y}, and V (G2) = {u′, v′, w′, x′, y′}.
Then the following is an OPPDC of G = G1 ∪G2 ∪ {uu′, vv′}.
P = {uxywvv′y′u′x′w′, xvwu,wxuvy, yuu′, vuwyx, v′x′y′w′u′uyvxw, x′u′w′v′, w′x′v′u′y′,

y′v′v, u′v′w′y′x′}.

Lemma 2. Let G1 = K5 and G2 be a graph with an OPPDC. If G = G1 ∪ G2 ∪
{uu′, vv′}, where {u, v} ∈ V (G1) and {u′, v′} ∈ V (G2), then G has an OPPDC.

Proof. Let V (G1) = {u, v, w, x, y}, P̂ be the OPPDC of G1 \ {e = uv} given in

the proof of Theorem 2, and P̃ be an OPPDC of G2. Now set four new directed
paths. P u = uu′, Pv = P̃u′u′uv, Pw = P̃v′v

′vuP̂ u, and Pv′ = P̂vvv
′. Thus,

P = P̂ ∪ P̃ ∪ {P u, Pv, Pw, Pv′} \
{
P̂ u, P̂v, P̃u′ , P̃v′

}
is an OPPDC of G.

By Theorem 2, the minimal counterexample to the OPPDC conjecture is bridgeless,
therefore if G has an edge cut F of size 2, then the edges of F are vertex disjoint.
In the next theorem, we show that G has no vertex disjoint edge cut of size 2.

Theorem 3. The minimal counterexample to the OPPDC conjecture is 3-edge-
connected.
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Proof. Let G be the minimal counterexample to the OPPDC conjecture. Suppose,
on the contrary, that G has an edge cut of size 2, say F . By Theorems 1 and 2, F
is vertex disjoint. Let F = {uv, wx}, and G1 and G2 be the components of G \ F
such that u,w ∈ V (G1).

If G1 and G2 have no OPPDC, then by minimality of G and by Theorem 1, G1

and G2 are isomorphic to K5. Therefore by Lemma 1, G has an OPPDC which is a
contradiction. Now without loss of generality, suppose that only G1 has an OPPDC.
By minimality of G and Theorem 1, G2 is isomorphic to K5; thus by Lemma 2, G
has an OPPDC which is a contradiction.

It remains to consider the case that, G1 and G2 have an OPPDC, P̂ and P̃ ,
respectively. Now we define four new directed paths P = P̂uuvP̃

v, P v = vu, Q =
P̂wwxP̃

x, and P x = xw. Therefore,

P = P̂ ∪ P̃ ∪ {P,Q, P v, P x} \
{
P̂u, P̂w, P̃

v, P̃ x
}

is an OPPDC of G. This contradiction implies that G is 3-edge-connected.

3 Some sufficient conditions for existence of an OPPDC

In this section, we prove some sufficient conditions for a graph to admit an OPPDC.
Since the minimal counterexample to the OPPDC conjecture is 2-connected, first
we consider the OPPDC conjecture for 2-connected graphs.

An ear-decomposition of a 2-connected graph G is a decomposition of E(G) to
subgraphs G0 = C0 ⊂ G1 ⊂ . . . ⊂ Gk = G such that C0 is a cycle and for i,
2 ≤ i ≤ k, Gi \ Gi−1 is a simple path in Gi, with only two distinct end vertices in
Gi−1.

Theorem 4. If a 2-connected graph G has an ear-decomposition G0 = C0 ⊂ G1 ⊂
. . . ⊂ Gk = G such that Gi \Gi−1 = Pi is a path of length at least 2, for i = 1, . . . , k,
and C0 ̸= K3, then G has an OPPDC.

Proof. We prove the statement by induction on k. For k = 0, G is a cycle and the
following is an OPPDC of cycle C = [v1, v2, . . . , vn].

P = {vnvn−1, vn−1vn−2 . . . v2v1vn, vn−2vn−1vnv1} ∪
(
∪n−3

i=1 {vivi+1}
)
.

Now by induction on k and by Theorem A(iv) and (ii), an OPPDC of G is obtained.

The following corollary provides a condition for every ear decomposition of the
minimal counterexample to the OPPDC conjecture.
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Corollary 4. Every ear-decomposition of the minimal counterexample to the OPPDC
conjecture has at least one ear of length 1.

Theorem 5. Let G be a connected graph. If E(G) is partitioned to a cycle C
of length at least 4 and a connected graph G′ such that G′ has an OPPDC and
|V (C) \ V (G′)| ≥ 2, then G also has an OPPDC.

Proof. If |V (C) ∩ V (G′)| = 1, then by Theorem A(iii), G has an OPPDC. Now,

suppose that |V (C)∩V (G′)| ≥ 2. Let P̂ be an OPPDC of G′ and C = [v1, v2, . . . , vk].

If there exist two vertices vi and vj , i < j, in V (C) \ V (G′) and two vertices
vr and vs in V (C) ∩ V (G′), both of which in the same segment of C divided by vi
and vj, then without loss of generality, we can assume that 1 ≤ i < j < r < s ≤ k.

Thus, we can find an OPPDC for G as follows. Let P vi = vivi−1vi−2 . . . vsP̂
vs , P vs =

vsvs−1 . . . vi, P vj = vjvj+1 . . . vrP̂
vr , and P vr = vrvr+1 . . . vj. Now, let P̃vi and P̃vs

be the collections of directed paths obtained by breaking the paths P vi and P vs on
the vertices of V (C) \ (V (G′) ∪ {vj}). Thus, the following is an OPPDC of G,

P = P̂ ∪ P̃vi ∪ P̃vs ∪ {P vj , P vr} \ {P̂ vr , P̂ vs}.

Otherwise, C = [v1, v2, v3, v4] and V (C) ∩ V (G′) = {v1, v3}. In this case, we define

four new directed paths Pv2 = v1v4v3v2, P v2 = v2v1P̂
v1 , P v4 = v4v1v2v3, and Pv4 =

P̂v3v3v4. Now, the following is an OPPDC of G.

P = P̂ ∪ {Pv2 , P
v2 , P v4 , Pv4} \ {P̂ v1 , P̂v3}.

Corollary 5. Let G be a connected graph. If E(G) is partitioned to a collection of
cycles {C1, C2, . . . , Ck} such that for each i, 2 ≤ i ≤ k, |V (Ci) \∪j<iV (Cj)| ≥ 2 and
C1 ̸= K3, then G has an OPPDC.

Example 1. The graph G in Figure 2 is a 2-connected even graph that every
ear-decomposition of G has at least one ear of length 1. In fact, in every ear-
decomposition of G, at least one of the edges of the clique ⟨{w, x, y, z}⟩ is an ear.
So the condition of Theorem 4 does not hold.
On the other hand, let C1 = [wxyz] and C2 = E(G) \ E(C1). In the cycle de-
composition {C1, C2} of G, |V (C2) \ V (C1)| ≥ 2. Thus by Corollary 5, G has an
OPPDC.

In the following theorem, we give a sufficient condition for the existence of an
OPPDC in graphs of minimum degree at most three.
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Figure 2: Every ear-decomposition of G has at least one ear of length 1.

Theorem 6. If G ̸= K3 is a graph with ∆(G) ≤ 4 and δ(G) ≤ 3, then G has an
OPPDC.

Proof. We proceed by induction on the order of graph, n. For n = 2 the statement
is trivial. For n ≥ 3, suppose deg(v) = δ(G) ≤ 3. If d(v) = 1 or 2, then G′ = G \ v
is a graph of order n − 1, ∆(G′) ≤ 4, and δ(G′) ≤ 3. Therefore, by the induction
hypothesis G′ has an OPPDC, and by Theorem A(iv), G also has an OPPDC.
Let deg(v) = 3 and N(v) = {x, y, z}. Now, if N(v) induces K3, then by the
induction hypothesis and by Theorem B, G has an OPPDC. Otherwise, let e = xz /∈
E(G). Thus by the induction hypothesis, G \ v ∪ {e} has an OPPDC. Therefore by
Theorem C, G admits an OPPDC.

Corollary 6. Every 4-regular graph with a cut-vertex has an OPPDC.

Proof. If G is a 4-regular graph with a cut-vertex, then every block, G′, of G is a
graph with ∆(G′) ≤ 4 and δ(G′) ≤ 3. Therefore, by Theorems 6 and A(iii), G has
an OPPDC.

Following theorem guarantees the existence of an OPPDC for a large family of
graphs. The Cartesian product, G□H of two graphs G and H is the graph with
vertex set V (G)× V (H) and two vertices (u, v) and (x, y) are adjacent if and only
if either u = x and vy ∈ E(H), or ux ∈ E(G) and v = y. In the following theorem
we prove that the existence of an OPPDC for two graphs G and H, provides an
OPPDC for the Cartesian product of G and H.

Theorem 7. If G and H have an OPPDC, then G□H also has an OPPDC.

Proof. Suppose that P and Q are the OPPDC of G and H, respectively. Let
R = {PuQ

v : (u, v) ∈ V (G□H)}, where Pu ∈ P is the directed path ending with
u in the copy of G in G□H corresponding to the vertex v in H, and Qv ∈ Q is
the directed path starting from v in the copy of H in G□H corresponding to the
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vertex u in G. It can be seen that every arc of the symmetric orientation of G□H is
covered by one path in R and every vertex (u, v) appears just once as a beginning
and once as an end of a path in R. Therefore, R is an OPPDC of G□H.

Theorem 7 concludes that the OPPDC conjecture holds for some well known
families of graphs, such as Cartesian products of cycles, paths, wheels, complete
graphs, and complete bipartite graphs.

In the following an OPPDC for the complete bipartite graph is given.

Theorem 8. Every Kn,m has an OPPDC.

Proof. Let V (Kn,m) = {v1, . . . , vn;w1, . . . , wm} and E(Kn,m) = {viwj : 1 ≤ i ≤
n, 1 ≤ j ≤ m}. We proceed by induction on m. Suppose first that m = 1. Define
P v1
n,1 = v1w1, Pw1

n,1 = w1vn, and P vi
n,1 = viw1vi−1, for 2 ≤ i ≤ n. Therefore,

Pn,1 = {Pw1
n,1, P

vi
n,1 : 1 ≤ i ≤ n}

is an OPPDC of Kn,1.
Now for m ≥ 2, define P v1

n,m = v1wm, Pwm
n,m = wmvnP

vn
n,m−1, P vi

n,m = viwmvi−1P
vi−1

n,m−1,
for 2 ≤ i ≤ n, and P

wj
n,m = P

wj

n,m−1, for 2 ≤ j ≤ m− 1. Thus,

Pn,m = {P vi
n,m, P

wj
n,m : 1 ≤ i ≤ n, 1 ≤ j ≤ m},

is an OPPDC of Kn,m.
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