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Abstract Due to their remarkable application in many branches of applied mathemat-
ics such as combinatorics, coding theory, and cryptography, Vandermonde matrices have
received a great amount of attention. Maximum distance separable (MDS) codes introduce
MDS matrices which not only have applications in coding theory but also are of great impor-
tance in the design of block ciphers. Lacan and Fimes introduce a method for the construction
of an MDS matrix from two Vandermonde matrices in the finite field. In this paper, we first
suggest a method that makes an involutory MDS matrix from the Vandermonde matrices.
Then we propose another method for the construction of 2" x 2" Hadamard MDS matrices
in the finite field G F'(29). In addition to introducing this method, we present a direct method
for the inversion of a special class of 2" x 2" Vandermonde matrices.
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1 Introduction

Definition 1 A Vandermonde matrix A = vang(ag, ay, ..., du—1) is an m x d matrix built
from ag, ay, ..., ay—1 as below:
2 d—1
I ay a5 - ag 1
1 o a12 ceeay
A =vany(ap,ay,...,am—1) = | . . (D
2 d—1
Lam—y Ap—1 " Ay

In this paper we focus on square Vandermonde matrices with elements in G F'(27). We
represent a square Vandermonde matrix by van(ag, ai, - . ., a,—1) whose elements are all
different (i.e. i # j implies a; # a;). These matrices have remarkable applications in BCH
and Reed Solomon codes in coding theory [10], and they can be used to generate MDS
(maximum distance separable) matrices for cryptographic applications [9]. In the following,
we emphasize the cryptographic application of Vandermonde matrices.

1.1 Previous works on the relation of Vandermonde and MDS matrices

We first will summarize the established theorems and results that are significant in the relation
between Vandermonde and MDS matrices.

Theorem 1 ([8,14]) A matrix M, x,, is an MDS matrix if and only if every sub-matrix of M
is non-singular. Also we can say My, «,, is MDS if and only if:

Yixi =Muxy - Xyx1 = gl;&l(l)(W(Y) +WX)) =n+1

where X = [x0, X1, ..., Xn—117 and Y = [yo, ¥15 .-, yn_l]T are vectors in the finite field
GFQ2%) and W (X) is the number of non-zero elements of X.

Theorem 2 ([9]) Let A = van(ag, ay, ..., an—1) and B = van(bg, by, ..., byu—1) be two
Vandermonde matrices with different elements (a; # b;), then the matrix AB~! is an MDS
matrix.

Proof Assume Y, x| = AB~!'X,,«1. A new vector P, | = [po, p1,---, pm,l]T is defined
as P = B~!X. Then from X = BP and Y = AP, we can represent x; and y; by p; as below:

m—1 m—1 m—1
X0 = > bypi, X1 =Y bipi, X1 =D bl pi
i=0 i=0 i=0
m—1

m—1 m—1
Yo= D ahpi, = dp, .. Yol = Y ah_pi 2
i=0 i=0

i=0

The 2m valuesof x; and y; (i =0, 1, ..., m—1) are all of the form Z;’:Ol pit'. The equation
Zf":_o] pit’ = 0 has at most m — 1 different roots in the finite field G F (27). Since a;’s and
b;’s are all different, at most m — 1 out of the 2m values of x;’s and y;’s might be zero.
Therefore, at least m + 1 of x;’s and y;’s are non-zero and AB~! is an MDS matrix. O
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1.2 Related work and our contribution

The main application of MDS matrices to the field of cryptography is in the design diffusion
layers of block ciphers because these matrices can provide maximum diffusion. By using
good non-linear parts and MDS matrices, one can design block ciphers and hash functions
that have a provable security against differential cryptanalysis (DC) [2] and linear cryptanal-
ysis (LC) [12]. Many block ciphers such as AES [5], Khazad [4], Clefia [15], and AES-MDS
[13] as well as some hash functions such as Maelstrom [6] and Grgstl [7] use MDS matrices
as the main part of their diffusion layers. To design MDS matrices, several methods have been
proposed thus far. For small MDS matrices, an exhaustive search may be a useful method, but
for large linear MDS matrices, most designers prefer one of the following two approaches:

e Construction of MDS matrices from Cauchy matrices [17].
e Construction of MDS matrices from Vandermonde matrices [9].

Definition 2 An involutory matrix M,,,, is a matrix satisfying the property of M2 =

mxm
L, s«m- Also a function f is an involutory function if f(f(x)) = x.

The design of involutory diffusion transformations is an interesting direction in the design
of block ciphers. These transformations can make the decryption process the same as the
encryption process. Thus the encryption and decryption can be implemented by the same
module and equal speeds.

In this paper, we propose a new approach based on Vandermonde matrices to design invol-
utory MDS matrices over the finite fields G F'(27). This approach helps us design involutory
MDS matrices of arbitrary size. When the size of the involutory matrix is 2" x 2", we add
the property of a Hadamard matrix to the resulting MDS matrix. This property improves the
implementation of a block cipher that uses such a matrix as its diffusion layer. Moreover,
we introduce a special class of 2" x 2" Vandermonde matrices (called Special Vandermonde
matrices or SV matrices), such that their inverses can be directly calculated.

The notations used in this paper are:

[x] : floor of x,
Acoi(i) : ith column of anm x m matrix A,0 <i <m — 1,
Arou(j) : jthrowof anm x m matrix A,0 < j <m — 1,
d;, j in matrix Dy, : the element located in row i and column j of anm x m
matrix D, where 0 < i, j <m — 1,
m—1
a+ b and Zal{‘ : sum in G F(27) for elements of matrix (for example
i=0 243=1),
@ in ar1gr2 : bit-wise XOR (used for subscripts),
HW(x) :  number of ones in the binary representation of x or Ham-
ming weight of x (for example the binary representation
of 13is 1101 and HW(13) = 3),
a’ttn : sum for exponents in natural number (for example
att = g%,
Ox : hexadecimal representation.

Also two important arithmetic properties of the finite field G F (27) which are applied in the
proof of some theorems are:

(a+b)2” =a2’l +b2’1
a+b=c<sa+c=b
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‘We mention that in this paper, the notation used for elements of G F'(27) is the binary repre-
sentation, and the binary vector is represented by the number whose binary representation is
equal to this binary vector. In this representation, @ and + are the same, but we use them to
distinguish subscripts and elements of G F(27), respectively.

This paper proceeds as follows. In Sect. 2, we introduce a method for constructing an
involutory MDS matrix from two Vandermonde matrices and discuss the requirements of
these two Vandermonde matrices. Section 3 discusses the conditions on the two Vandermonde
matrices, that can generate a Hadamard-type 2" x 2" involutory MDS matrix. In addition, we
show that the inverse of this class of Vandermonde matrices is directly obtained. In Sect. 4,
we compare this method with the previous method of [16, 17]. Finally, we conclude the paper
in Sect. 5.

2 Constructing involutory MDS matrices from Vandermonde matrices

In this section, we show that for two m x m Vandermonde matrices A=van(ag, di, ..., Am_1)
and B = van(bg, by, ...,bp_1) = van(ayg + A,a; + A, ..., an_1 + A), where A is an
arbitrary non-zero number in G F(29), the matrices AB~! and BA~! are involutory. Further-
more, if ¢;’s and b;’s are 2m different values, then AB~! and BA~! will be involutory MDS
matrices.

Assume b; = a; + A. The relations between powers of ¢; and b; in the finite field G F (29)
are:

b= (e + &) =crod +epa A+ e AT FeAl (0,1} 3)
where c;o =¢;y=1landc;, =0, m > [.

Theorem 3 Assume A = van(ag, ay, ..., an—1) and B = van(bg, by, ..., by,—1) are two
invertible Vandermonde matrices such that b; = a; + A. Then A~'B is an upper triangular
matrix whose non-zero elements are determined by powers of A.

Proof Assume the inverse of A is:

fo,0 lo,1 o2 - fom—1

4 o Hha1 h2 - Hm—l
A7 =

Im—1,0 tm—1,1 tm—1,2 = ** tm—1,m—1

Let us first extract some properties of #; ;s from the relation A~ 'A =1, and then exploit
-1

row(0) © columns of A, we have:

them to compute A~!B. By multiplying A

-1
Ao Acol) =to0 + 101 +t02+Flom1 = D toi=1 “
i=0
Al A — 1 ogk k k ; k
row(0) * Acol(k) = 10,000 10,147 + 1020y + -+ +lom—1ay_

—1
= > af =0 (1 <k<m—1 ®)
i=0
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Also by multiplying Amw(o) in column k of B, and using the two results (4) and (5), we can
compute the first row of A~!B:

m—1
A,_olw(o) “Beothy = lo,oblé + to,lb]f + to,zblz‘ + -+ fO,m—lb§1_1 = Zto,i(ai + Ak
i=0
by extending b = (a; + A)* from (3):
m—1 m—1
Z(t()la )‘f‘CkIZ(tOz h -+ Chk— 1Z(l‘ola)Ak "D oAk =
=0 i=0
If we multiply A_ (1 ) to columns of A, new results are obtained:
A,_olw(l) Aoy =to+nat+ta+ o1 = ztl,i =0,
m—1
Ar_ylw(l) “Acoi(y = tioao +t1ar Fhpas + - Hp—10m-1 = le,idi =1 and
i=0
Aoty - Aol = 11000 + 1a) + 11205 + -+ fimoia,
m—1
=D nal =0 Q<k<m-1).
i=0

If this procedure proceeds by multiplying A~ to column & of B, we obtain:

row(l)

Arow(l) Lol(k) = Ztl tb = le i(ai + A)k

m—1 - m—1
> (tidf) +cra Z(Il,ia,{“l)ﬂ +ootaraer Y (hia) A
i=0 i=0 i=0
m—1
+Z([l,i)Ak =14
i=0

By following this method to multiply the other rows of A~ to the columns of A and B, one
can easily obtain:

1 A AZ A3 . Am72 Amfl

-3 _
01 CZ,IA C3,2A2 e Cm—2,m—3Am Cm—l,m—ZAm 2
00 1 314 - Cm—2,m—4Am74 Cm—l,m—3>An173

AT'B= (©6)
O 0 0 0o - 1 Cm—1,14
00 O o - 0 1
Thus A~'B is an upper triangular matrix. O
Theorem 4 Let A = van(ag, ay, ..., an—1) and B = van(bg, by, ..., by,—1) be two Van-

dermonde matrices where a; = b; + A, then BA™!B = A.
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Proof By replacing A~!B from (6) into BA~'B, we have:

1A AZ A3 . Am72 Amfl
01 c21A c3pA% -+ oo m3A" 3 cpot A" 2
00 1 314 - CuoomaA" ™ i 3A™3

2 -1
(T S
U b b} bt
BA-lp= |1 b2 b3 -0y

) _ 00 O o .- 1 cm—1.14
2 1 m—1,
L b1 by - bﬁq 00 O 0o ... 0 1

By multiplying row i to row j, we have:
A i AT Cj,lAbij_l + b;/ = (b + A) = a;".
Thus BAT'B=AorBA™!BA™! =1L O

Corollary 1 If A and B are two invertible Vandermonde matrices in the finite field G F (27)
satisfying the two properties a; = b; + Aand a; # bj,i, j € {0, 1, ..,m — 1}, then BA !is
an involutory MDS matrix.

3 Finite Field Hadamard involutory 2" x 2" MDS matrices

In this section, we restrict the conditions of Sect. 2 and construct some involutory MDS
matrices which are also Hadamard in the finite field G F(27). First, we obtain the required
conditions for 4 x 4 matrices, then conditions are extended for other 2" x 2" matrices.

Definition 3 A 2" x2" matrix H is a Finite Field Hadamard (FFHadamard) matrix in G F (29)
if it can be represented as follows:
Uuv
n= (Vo)

and the two sub-matrices U and V are FFHadamard [3].

We can easily see that each two rows of this matrix are orthogonal in G F (27). For example
a4 x 4 FFHadamard matrix is:

ap ay az az
ap ap as az
az as ap aj
as az ai do

H = had(ag, a1, az, a3) =

which implies 4; ; = a;g;.
3.1 Construction of 4 x 4 FFHadamard MDS matrices

In the following, by defining some conditions, inverse of 4 x 4 Vandermonde matrices are
directly calculated. A 4 x 4 Vandermonde matrix is as below:

2 3
1 ag aj ag
1a1a%a?
1a2a§a%

2 3
1 a3 a3 a3
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Assume ag + a1 = a» + a3 and ag + a2 = a; + a3 (these two equations are equivalent to
ap+ay +ay+az = 0). Based on the finite field arithmetic in G F (29), ifag+a; +ar+a3z = 0
then a(% + a]2 + a% + a% = 0 and ag + a? + aé + a%‘ = 0. We hypothesized the matrix A1,
defined below, is very close to AL

al a13 ag ag

at ol ab o}
ap ay az as

1111

Al =

At first, we calculate A1 x A with the condition ay + a1 + a2 + a3z = 0:

3 3
Za? 0 Za? Za?

i=0 i=0 i=0
3.3 .3 3 2 3 3 3
ay ay @ az lao ag ay 0 >a 0 >a
at a* a> a? 1a a@ a; . :

Al x A=%D e i=0 i=0
ap a| az az 1 ay aj a3 3 s
1111 1 a3 a3 a3 0 0 ai 0

i=0
3
3
0o 0 0 >g
i=0

A1 x A is close to a diagonal matrix. To find the inverse of A, we must modify A1, such that
Al x A becomes a diagonal matrix. Assume A2 is a modified form of A1 as below:

ag + soagp + 51 5’13 + soay + 51 ag + spaz + 51 ag’ + soaz + 51

A2 — ag—}—so a%—i—so a%—i—so a%—l—so
ap ai a as
1 1 1 1

By computing A2 x A, we have:

ad + soao + 51 @3 + soar + 51 a3 + soaz + 51 a3 + soaz + 51 1 a aé aé

A2 x A = a(2)+50 a12+50 a%-FSo a%—i—so o 1 a; aﬁal
ag ai a az 1ap a% a%

! 1 1 1 L a3 a5 a3

3 3 3 3 3
Za? 0 Zais + 502“13 Za? + SIZ“?
i=0 3 i=0 i=0 i§0 i?O

0 Za? 0 Za? + S()Zai3
i=0 3 i=0 i=0
0 0 Za? 0
(=0

3
0 0 0 >a}
i=0
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To make A2 x A a diagonal matrix, 37_a® + 503 5_oa> and 35_oa® 4 5133 _oa’ must
be zero. Thus:

S0

3 5 3 6 3
._nar . nd:
D I .
Zi:Oai Zi:Oai i=0

by these so and s, the inverse of matrix A is:

3 -1
Al = (Za?) A2. ®)
i=0

Now assume B is another 4 x 4 Vandermonde matrix. By multiplying B and A~!, we have:

1 by b2 b}
) 1 by b7 b}
D=BxA"" = 1 by bé bé
1 b3 b2 b3
;3 1 ag + spap + s1 a13 + soap + s1 ag + spaz + s1 ag’ + soaz + s1
% (Za?) a% + 50 a% + 50 a% + 50 asz. + 50
i~ ap ai a as
1 1 1 1

We are interested in the conditions on A and B that make D = B x A~! an FFHadamard
matrix. To obtain these conditions, we investigate only two sub-cases and by considering the
conditions of these two sub-cases, other conditions are deduced.

sub-case 1: dp o = d3 3

3
(Za?)do,o = (ag + aibo + aoh} + b3) + so(ao + bo) + 51
i=0
= (ag + bo)’ + so(ag + bo) + s1 and
3
3 32 2 43
(Z“i )d3,3 = (a3 + azbs + azbs + b3) + so(a3 + b3) + 51
i=0

= (a3 + b3)3 + so(az + b3) + 51
when (a3 + b3) = (ap + by), then dp,o = d3 3.

sub-case 2: dl,() = d2,3
3
3 (.3 2 2 3
(Zai )dl,O = (ap + ayb1 + aoby + by) + so(ap + b1) + 51
i=0
= (ap + b1)3 + so(ap + b1) +s1 and
3
3 _ (3 2 2 3
(Zai )d2,3 = (a3 +a3zby + azb5 + b3) + so(az + by) + 51
i=0

= (a3 + b2)3 + so(az + b2) + 51

when (a3 +b2) = (ap+b1), thend; o = dz 3. By checking the other sub-cases, one can easily
see that the matrix BA~! is FFHadamard if ¢; + bj =a+bigig; (0, j,1€{0,1,2,3}).
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Corollary 2 The condition a; +b; = a; + bigigj for all i, j,1 € {0, 1, 2, 3} implies that
a; + b; = agp + bg = A where A is an arbitrary non-zero number in GF (21). Thus the
condition of Theorem 4 (i.e., b; = a; + A) is satisfied and consequently BA™! is involutory.
Furthermore, by considering Theorem 2, if a; and b in the two matrices A and B are all
different, then the matrix BA~" will be an FFHadamard involutory MDS matrix.

To see that a 4 x 4 matrix generated from the two 4 x 4 Vandermonde matrices A =
van(agp, ay, az, az) and B = van(bo, b1, ba, b3) is an FFHadamard involutory MDS matrix,
the elements a; and b; must all be different and chosen such that:

apg+ay+ar+a3=0 (ap+a =ay+az, a9+ a =a; +az) and
ai +bj =a+bieie; i, j,1€10,1,2,3} )

3.2 Extending the result for 2" x 2" matrices

The approach is similar to the case of 4 x 4 matrices. A 2" x 2" matrix A1 is constructed from
A, and then is multiplied to A. In A1 x A we should determine which elements Z?Lalal{‘ , ke

{0, 1, ..., 2"+t — 2} are zero and which are not zero.
21 b 2”1 1
21 on PR )
n PICEID WD X
a2l i=0 i=0 i=0
J 2"~ 2" —1 271 1
: M2 21 3
Al - ) Al x A — Z“i Zai Zai (10)
col(j) = a? ) XA=1 -0 i=0 i=0
aj : . .
1 2"—1 2"—1 2"—1
0 M1
DRI WD 3
i=0 i=0 i=0
n__ i . .. .
In (10), we must calculate Ziz:() lai/, jel{0,1,..., ontl _ 2}. If conditions are obtained

that make a number of non-diagonal elements of A1 x A zero, then we can use some extra
variables and modify A1 to find the inverse of A similar to what done in Sect. 3.1. Before
getting through this procedure, we must define some definitions and lemmas.

Definition 4 Let A = van(ag, aj, . .., ax—1). This matrix is called a Special Vandermonde
matrix (SV matrix) if a;’s satisfy the following condition:

aj + ajgok = R, forallk € {0,1,...,n—1} (11)

where Ry’s are different non-zero constants such that for u; € {0, 1}

n—1
D wiRi=0=p; =0, foralli€{0,1,....n—1} (12)
i=0

For some j, (11) causes Zizn:glaij to become zero and (12) guarantees the invertibility of
matrix A. We easily observe that all g;’s are constructed form ag, Ro, Ry, ...and R,_1.

Example 1 C1 = van(0x1, 0x2, 0x3, 0x4) is not an SV matrix because ap + a; = 0x3,
but a; + a3 = 0x7 and consequently ag + aggp0 # a2 + drgpo, so (11) is not satisfied.
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Also C2 = van(0x4, 0x5, 0x6, 0x7, 0x7, 0x6, 0x5, 0x4) is not an SV matrix. However C2
satisfies (11) (Ryp = Ox1, Ry = 0x2, Ry = 0x3) but Ry + R; + R, = 0 and (12) is not satis-
fied. C3 = van(0x4, 0x5, 0x6, 0x7, Oxd, Oxc, Ox f, Oxe) is an SV matrix. (ap = 0x4, Ry =
0Ox1, Ry = 0x2, Ry = 0x9)

Lemma 1l If A = van(ag, ay, ...,ax_1) is an SV matrix, then Zg:oa_,'@,- = 0, and the
3 3 3 5 . i .
values ijoaje;i and zj=0ajeai depend only on R; and are independent of a;.

Proof

3
zajeai = a; + dig1 + dig2 + die3 = (4 + djgn0) + (Gig2 + digng0) = Ro+ Ro =0
=0

3

3 3, 3 3 3
Zajeai =a; t g T digo + Aig3
=0

= (a; + aig1)’ + aidig1 (a;i + aig1) + (Gig2 + dig3)’
+aigaies(aie2 + aig3)
= RS + Ro(a;iaigr1) + RS + Ro(aigraie3)
= Ro(dgiaig1 + (a; + Ri)(dig1 + R1)) = RoRi1(Ro + Ry).
We can proceed with this procedure to prove Zizoa%i is a constant equal to Ry Ro(Ro +
R\)(R3 + RoRy + R}).

Moreover, one can easily see that Z;:()a;@i = 0 because

7 3 3
algi = D @gi + D algies = RoR1(Ro+ R1) + RoRi(Ro + Ry) = 0.
j=0 j=0 j=0

Corollary 3 By considering Lemma 1, we can conclude that in Eq. 7:

0@ RiRo(Ro+ R)(R3 + RoRi + R})

50 = (R} + RoR; + R?) and

I EY A RoR1(Ro + R1)
3
>3 al
s1 = 1370'3 = Za? = RoR1(Ro + R1).
2 im0 i=0
Definition 5 Let the A = van(ag, ay, ..., ay—1) be an SV matrix. Foreacha; (0 <i <
2n=1 _ 1), we define &; as below:
i = ajajgon1 = a} + Ru—ra;, i€{0,1,...,2"7 —1) (13)
Lemma?2 If A = van(ag,ay,...,ax_1) is also an SV matrix, then A = van(do,
ai, ..., amy-1_p) is an SV matrix too.
Proof

i + Gigot = @] + Ru_16i + app + Ru_1@ig0c = RY + ReRy—1 = R; (14)
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and Z”_()zu: R, = > (]Q[L:Rz + Ry_1> O/LIR It is obvious that if u! € {0, 1}, then
w? =, also SISWR? = (XIg iR and Y0 ,’ o guﬁR)(Rn |+
> p/R ). Takmg Definition 4 and Eq. 12 into account, y_!_; ,u’R =0= u;=0,but

Ry—1+ Z -0 ,ulR # 0 because ,u” | # 0, thus A is an SV matrix. m]

Corollary 4 As a result of these lemmas, for 2" x 2" SV matrices where n > 3 we can show
that Zz?zoa,? is non-zero and depends on Ry, R and R».

We know that >/_a/ = Z?:o(af + a/y,) and:

4’1‘7 + ag@4 = (a; + ai@22)7 + (ajaiga)(a; + ai@zz)s
+(a} i) (@i + a;g2)

7 5 33
= Ry t+aiaigaR5 + ajajg,Ro

Thus
7 3 3 3 3
7 7, 7 7 5 343
Zai = Z(“i + digy) = ZRZ + RzzaiaiEM + Rzzai Aiga
i=0 i=0 i=0 i=0 i=0
3 3
5 ~ ~3
=R3> ai+ R a;.
i=0 i=0

By considering Lemma 1, Definition 5 and Lemma 2,

3
Zdi =0 and
i=0

3
Ry @' = RyRGR| (R + R}) = RoR1 Ra(Ro + R1)(Ro + R2)(R1 + R2)(Ro + Ry + Ra)
i=0

and finally 21'7:0“,7 is a function of Ry, Ry and R;.

Theorem 5 Assume A is a 2" x 2" SV matrix. For elements of this matrix we have:

on_
S qp =[S R0 R Ri) £0 HWG = nand k=200 -2
,Oi_ 0 HW(k) <nand k <2t —2
=

where fi n(Ro, R, ..., Ry—1) is a non-zero value that only depends on R;’s and does not

depend on ag. Proof of this theorem appears in Appendix A.

In the following, we investigate constructing of 2" x 2" FFHadamard involutory MDS
matrices. We first introduce the procedure forn = 3, and then extend it forn > 3. By consider-
ing all lemmas and Theorem 5 fork < 14, 21'7:0‘1;{ = fr.3(Ro, R1, Ry)ifk € {7, 11, 13, 14},
an 8 x 8 matrix Al is generated and multiplied by A as below:
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7 7
Sd 0 0 0 30 YT
[ i=0 i=0
7 7
11 13
Dail 0 g,
i=0 i=0
7

=)
N
B
(=)
(=)
(=)

7
a] 0 0 >a 0 0 0 Da' 0
b i=0 =
% d 7 ! 11
a !
“ 0 0 0 Z(‘;a, 0 0 0 Z;a,
Alml(j): aé. , Al x A= - 7 -
o o 0 0 0 >4 0 0 0
a'/- i=0 ;
J
1 o 0 0 0 0 >da o0 0
i=0
7
O 0 0 0 0 0 D>a 0
i=0
7
O 0 0 0 0 0 0 >al
i=0
(16)

The procedure for the 4 x 4 Vandermonde matrix can be repeated here for the 8 x 8 Van-
dermonde matrix, i.e. we can define a matrix A2 from A1 with three additional parameters
50, 51 and 52, then we compute s, 51 and s>, such that A2 x A becomes diagonal. Column
J,j=0,1,...,70f A2 is

a/7. +s0a? +s1aj + 52
a +soa2 + 51
a +s0aj

a + 50
A2.0(j) = a3 17
J
2
4j
aj
1

In order to make A2 x A a diagonal matrix, so, 51, s2 must be:

711 713
._na: ._nd: a
S0=Zl7—7017’ S1=217_0 177 5y = Z =0 Za
2 i=04 2 i=04 Z Oa i=0
andA~! = (Zzzoal?)’l x A2.5;’s can be obtained from R;’s. For example so = R§ + R} +
Ry + RZR} + RIR3 + RIR3 + RoRi R2(Ro + Ry + Ro).
For SV matrices A = van(ag, ai, ...,a_1) and B = van(bg, b1, ..., by_;), where

a; +bj = a; + bigig; and a;’s and b;’s are different, we can prove that BA lisan 8 x 8
FFHadamard involutory MDS matrix. If we consider this procedure for all 2" x 2" SV matri-

ces A, we can calculate the inverse of A as A~/ (22” ! 211 1~1A2, where column j of
A2is
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2n71+2n72+_”+]
J

2»172+21173+.,_+1

a + soa; + -t Sp2a) + Sp—1

n—2
+ soa2 + 51

on—1 +2n—2
4j j

J

A2 iy = n—1 18
col(j) a% —I-S()aj ( )
N zn—l
aj + 50
aj
1
and parameters sg, S1, ..., S,—] are:
on—1 ontl_pn=l_j on—1 ontl_pn=2_] 2n—1 ol -]
>0 4 200 4 . i=0 4
50 = n_1 on_q , S1 = m_1 on_q 5 5 Sp—1 = om_1 on_|
i=0 4 i=0 4 i=0 Y
(19)

Similarly to what is mentioned in Corollary 2, we can calculate s; as functions of R;’s. BA™!
isa2" x 2" FFHadamard involutory MDS matrix if a; +b; = a; + bjgig; and a; # b; (for
alli, j,1 €{0,1,...,2" — 1}). Moreover, the complexity for computing the inverse of A is
O(n?). Two numerical examples are given in Appendix B.

4 Comparison with previous methods

Definition 6 Assume xq, x1, ..., x,—1 and yg, y1, ..., yu—1 are different values in G F (29).
. . .. 1

Matrix P = [p; ;]is a Cauchy matrix if p; ; = Hy; [11,17].
If x;’s and y;’s have different values, x; + y; # 0 holds for all i, j. This yields that any
square sub-matrix of a Cauchy matrix is nonsingular over any field [11,17], i.e. P is an MDS
matrix. If dimensions of P are 2" x 2" and y; = x; + A, where A has some properties, then
P is an FFHadamard MDS matrix [17] and P> = ¢*I where ¢ = 2,2;5] po.i- Thus P’ = %
is an FFHadamard involutory MDS matrix.

The method studied in this paper has some advantages over the method of using Cauchy
matrices to generate involutory MDS matrices:

e In the proposed method, we have involutory property for arbitrary dimensions.
e We can present a direct inverse for 2" x 2" SV matrices.

Inversion of Vandermonde matrices is an interesting problem in mathematics. A method
is introduced in [16] whose complexity for the calculation of the inverse of a n x n Vander-
monde matrix is O(n?), but the coefficient of n? in [16] is greater than the inversion method
introduced in this paper for the SV matrices. A direct method to calculate the inverse of
special class of Vandermonde matrices, where the elements are the roots of x” — x = 0
in GF(p?) and n is relatively prime to p, has been investigated in [1]. Compared with the
method introduced in [1], our proposed inversion method based on SV matrix covers other
classes of Vandermonde matrices.
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5 Conclusion

In this paper, we investigated Vandermonde matrix in the finite field G F'(27). First, we pre-
sented a method to construct an involutory MDS matrix from two Vandermonde matrices.
In contrast to previous work which only supports involutory MDS matrices of size 2" x 2",
our methods constructs involutory MDS matrices with arbitrary size. In Sect. 3, we defined a
class of Vandermonde matrices for 2" x 2" matrices as Special Vandermonde matrices whose
inverse matrix can be directly calculated. If A and B are two SV matrices with distinct a; and
b, we proved that AB~! is an FFHadamard involutory MDS matrix. In Table 1, we compare
MDS matrices constructed based on our proposal with some of the known MDS matrices.

Although in this paper, we emphasized on cryptographic applications of Vandermonde
matrices, this method can be used in other applications for these matrices in the finite fields
such as coding theory.

A Proof of Theorem 5

Recalling Definitions 4 and 5 for an SV matrix, we know a; + d;gon-1 = R,—1 and
aja;gom-1 = a;. To prove Theorem 5, first we try to obtain af + afe;z"—l as a function

of a; and R,,—. For this propose, we introduce a new representation which will be useful for
the proof of Theorem 5.

Definition A1 Foreacha,b € GF(27), a' + b can be represented as below:
15
a' +b' = aia+b) ¥ (ab)
i=0
= ko +b) + i1+ b)2ab + ria+b)~a’p?
SRR VIR Gt IPIEATARY

where A; ;’s are binary coefficients (A; x € {0, 1}). For convenience, let us call this represen-
tation, Special Extended Form representation or SEF representation of a’ +5' in the G F (29).
Note that in the SEF representation A; ¢ is always equal to 1. Also it is obvious that 4;; = 0
fori > L%J .

In GF(279) we easily see that:

d + b =@+b)d "+ b7 +ab@ "+ b7, (A1)

This relationship has an important role in the following proofs. First six lemmas are given
and finally Theorem 5 is proven.

Lemma Al We can define SEF representation for (ab)(a' + b') (with coefficients I;)and
(a + b)(a@ + b)) (with coefficients Ay ;) in the finite field G F (27) as below:
L5+1]
ab@ +b)y= D" Ti(a+b)""*@b) and
i=0
L5+1)
(@+b)@ +b)= D Anila+b) " (ab)
i=0
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where the relations between I; and A;; with A ; are (Note that X, ; is the coefficients of
(ab)! in the SEF representation of (@' +bh)

) A 0<ic< L%J
Avi = ‘0 otherwise
N = AMi—1 ISiSL%-l-lJ
o i=0

The proof of this lemma is easily performed from definition of SEF representation.
Lemma A2 In GF(2%), all Ay x’s are 0 and all doy41 1 ’s are 1.

Proof Induction is used for this proof. We know that a> 4+ b*> = (¢ + b)? and a® + b° =
(a + b)3 + ab(a + b) which means A2,1 = 0 and A31 = 1. Assume this lemma holds for
k—1(@.e., Ax—2k—1 = 0and Ayx—1 k-1 = 1). For Az x in SEF representation, we have:

a®* + b = (a+b) @+ 6% +ab@ T + b
and from this equation, we yield :
Ak = Aok—1k + Tor—2,k

Taking Definition A1(A; ; = 0if Léj < i)and Lemma Al into account, Aok—1 k = A2k—1.k =
0. Also based on the induction hypothesis Aok —2 x—1 = 0 thus Lemma A1 yields ;2 x = 0.
Finally by adding these two terms, we yield Ay, x = 0.

For Azx+1,x in SEF representation, we have:

a2k+l +b2k+1 — (a —I—b)(aZk +b2k) +ab(a2k71 +b2k—l)
thus from this equation, we yield:
AMk1k = Aok + Dog—1k = Aok k + A2k—14-1 =0+ 1= 1

[m}

Lemma A3 Assumel = (2] + 1) x 2. Then for the coefficients in the SEF representation,
we have:

1 i=0
AQjt1yxomi = A2j+l P=2"xt(t<j) .
0 otherwise

Proof SEF representation of a2/+! 4 p2/+1 is:

a4 b = (@ + )P @+ b)Y T ab + - agjp (@ + b)alb

and by powering two sides of the above equation in the G F'(29) we have:
(@21 4 pAT2" Z Qi 202"
(@+b)F 2 4@+ b)H PGB o aa+ b)Y el

m}

We conclude from this lemma that coefficients of a’ 4 b' where [ is even may be obtained
from the coefficients of @’ + b’ when !’ isodd and [ = 2" x I.
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Lemma A4 In SEF representation, forl =2",1 =2" 4+ 1 and [l = 2" — 1, the coefficients

Ap; are:

@ A = (1) Z;e?*wise

R
© bt = é i);ezrtw_isle’ O=r=n-t

Proof  (a) Weknow a®' +b>" = (a+b)*" = (a+b)* (ab)’in GF(29). Thusif Aon ; = 1,
theni = 0.
(b) To obtain coefficients of the form A ;, we use induction. This lemma holds fork = 1.
Assume the hypothesis is correct for Ay | ;. We prove this for Aye+1, ;. Considering Eq.
A1, we have the following equation:
a2k+1+2 + b2k+1+2 _ (a +b)(a2k+l+l + b2k+1+1) +ab(a2k+l +b2k+l)
- (a + b)(a2k+1+] + b2k+l+1) _ a2k+l+2 + b2k+1+2 + ab(a2k+l + b2k+])
= Apktiqy; = Agktiyg; + Dokl ;.
In GF29), (@®"'+2 + p¥7'+2) = (@¥+! + b +1)2 and by considering Lemma A3 and
the induction hypothesis, coefficients of (a2 *+! + 52 +1)2 are:
N |1 i=0o0ri=2",1<t<k
2420 = ) o otherwise :

By considering Lemmas Al and A4(a), I+ ; coefficients are:

1 i=1
Py = [O otherwise
and finally:
1 i=00ri=2,0<t<k
Agertp = Aokt + e = [ 0 otherwise '
Considering Lemma Al (Apkt14q; = Apktiqg;, @< 2K proof is complete for coefficient

)“2k+1+l,i'
(¢) For Apir1_y ; we use the equation below:
a2k+1 +b2"+l = (a +b)(a2k +b2k) +ab(a2k’1 +b2k’l)

:>Clb(a2k_1 +b2k“) =a2k+1 +b2’<+1 +(Cl+b)(a2k +b2k).
Based on Lemmas A4(a) and A4(b) we have:

Doy = Mg + Ay =
1 i:O()ri=2‘,0§z§k—l+ 1 i=0 1 i=2,0<t<k-—1
0 otherwise 0 otherwise 0 otherwise
by considering relation I'_;; = Ay_j;_y fori > 0 in Lemma Al, the only non-zero
coefficients of SEF representation of (azk_1 + bzk_l) are Apk_j i1, 0 <1 <k—1 O
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Lemma AS Assume HW (X) is the number of ones in the binary representation of a
number X.

(a) When X increases by I, HW (X) increases atmostby I i.e. HW(X+1) < HW(X)+1.
() HW(X)=HW(Q2'X).
(¢) HWQRX+1)=HW(X)+1.

Example A HW (7) increases by one in comparison with HW (6), but HW(16) = 1
decreases by three in comparison with H W (15) = 4. Also HW(3) = HW(6) = HW(12) =
HWQR4)=2.HW(T)=HW@B3)+1=3

‘We can deduce 2 corollaries from Lemmas A3, A4 and AS.

Corollary A1 If the non-zeroness condition on A;; is HW (i) < r, then non-zeroness con-
dition on Ay is HW (') < r.

We observe from Lemma A3, A;; = 1 < Ayyo; = 1, meanwhile HW (i) = HW(i' =
21y < r.

Corollary A2 If the non-zeroness condition on A;; is HW (i) < r, then the non-zeroness
condition on I ; is HW (i) < r 4 1 and the non-zeroness condition on A;; is HW (i) < r.

WeobserveinLemma Althatl; ;41 =1 A =land HW(i+1) < HW(@{)+1 <r+1.

Lemma A6 In the SEF representation of a' +b', the coefficient A may beoneif HW (i) <
HW (). Also we are sure that A;; = 0if HW (i) > HW(]).

Proof We only prove three sub-cases and proof of other sub-cases will be the same.

— If HW(l) = 1, then [ must be of the form 2k Thus from Lemma Ad(a), If Aok j = 1, then
i=0and HW (i) = 0.

— If HW() = 2, then I must be of the form 2% + 2%2(k; > ky). We conclude from
Lemma A3, coefficient of @' + b!,1 = 2K 4+ 2%2 can be obtained from coefficient of
a +b", 1" =207k 4 1 In Lemma A4(b), if Ay, ; = 1, theni = 0 ori = 2' which
HW (i) = 0, 1. By considering to Corollary Al, if HW(l) = 2, then A;; may be one
when HW (i) =0or 1.

— If HW(l) = 3,then/ must be of the form 2X1 4-2%2 4253 (k; > ky > k3). We conclude from
Lemma A3, coefficients of a/ +b!, I = 2¥1 422 423 can be obtained from coefficients of
a +p" 1 = 2k1—k3 g pke—ks 4 | Ipthe following we use induction for ! = 2/1 4272 4 1.
Considering Lemma A4(c), this lemma holds for /" = 7 which is the smallest number with
three ones in its binary representation (A7; =1 = i = 0, 1, 3(HW (i) < 3)). Assume
this lemma is true for all // that ' = 2/1 4272 41 (0 < j» < j1). Taking equation (A1)
into account, for I’ = 2711 4 273 + 1 (0 < jz < j1 + 1), we have:

21+t 403 42 201t 42342 201+ 40i3 41 201+t 4073 41
a +253 4 +b +2/34 =(a+b)(a +253 4 +b + +)

j1+1+ 73 jl+1+ 73 j1+1+ I3+ 1j1+1+1j3+
J1+1 J3 i1+1+ /3+ J1+1 J3 J1+1 J3
a2 +2/342 b/l 142 2 ab(az +2 b2 +2 )

= Apir+iqois g1, = An+lyoigi T Doty ;-
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Also by considering the induction hypothesis and Corollary A1, necessary conditions for
the non-zeroness of the coefficients A, +1 573 2. isthat HW (i) < 3 (because 27111 4273
2 = 2(2/' 4+ 2571 4 1)). By considering Lemma A3 and A4, in the SEF representation of
a2 2B 4 2125 broperty of non-zero coefficient Myjr+1 4943 ; is HW (i) < 2. By con-
sidering Corollary A2, the coefficient I, +1,j; ; is non-zero if HW (i) < 3. By adding two
terms, we conclude that in SEF representation, coefficients A2j1+1+2j3+1’i = Apii+lqoiyli
may be non-zero when HW (i) < 3.

For other sub-cases HW (I) > 4, we prove this theorem step by step, by using results
for coefficients Ay ; that HW(') < HW (). We aslo use induction similar to sub-case
HW() = 3; for example for HW (/) = 4, we use the below equations and the above
inductive procedure for the sub-case HW (I) = 3.

a2/1+1+2/2+2«/’3+2 + b2/1+1+2/2+2f3 +2 _

J1+1 4002 4073 114002 4273 J1+1 4002 4073 J1tl40i2 4273
(a+b)(a2 +27242 +1+b2 427242 +l)+ab(a2 +27242 +b2 427242 )

After expressing these six lemmas, now we can prove Theorem 5.

Theorem 5 Assume A = van(ag, ai, ..., ax—_1) is a 2" x 2" SV matrix in the finite field
G F(29). For elements of this matrix we have:

2" —1

Zak _ [ fuen(Ro, Ry o Ra)) #0 HW (k) = nand k < o+l o
=0 i 0 HW (k) < n and k§2n+]_2
1=l

Proof As we observed before in Sect. 4.1, this theorem is true for n = 2. We assume that
this theorem is true for n > 2 and prove it forn 4+ 1. In a on+l 5 ontl QY Matrix, each

2n+1 -1 k
dio can be represented as below:

ot -]

Z al{‘ = Z (alk + a{‘@z”)
i=0

i=0
SEF representation of (af + af®2n) is:
i I
a; + aigon =
(@ + aigon) + i 1(ai + aigon) Paiaigon + Ao (a; + aigon) " aiaigm)*
Zoxl 1
+--+ )‘Z,L%J (a; + ai$2")l 23l (a,'a,-@zn)bj

-2~ —4~ 1=2x 15~ |5]
= (R)' + 21 (R)' 721 + Mo (R) a7 0 1 (R )G

where a; belongs to the 2" x 2" SV matrix A= van(dy, dj, ..., ay_1). Therefore,

ontl_q on_ ILJ 2"—1

Z = > > Gu Ry Val) Z(xk, RN ZJZ”)

i=0 j=0

From L/,emfna 2, w? know that if /ziziglaig = fjn(Ro, Ri, ..., Ru_1), t}qen/ziz”o /l] =
fin(Ry, Ry, ..., R, ), where R; = R + R;R,. Therefore, f;,(R), R|,...,R,_})
is a function of Ro, Ry,..., R,—1, R, and we can assume f; (R, R’l,...,Rn_l)

gin(Ro, Ry, ..., Ry).
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By considering the induction hypothesis, Zf’;aldij # 0 when HW(j) = n. Thus we
search for A ; 7# O such that HW(j) = n because

g 21 > gjn(Ro.Ri..... Ry) HW(j)=n

Z a: _Z(Ak] R~ ZJZ”)— Jihja=1
0

otherwise

By considering Lemma A6, the non-zeroness condition for HW (j) = n is that HW (j) =
n < HW(k). Since k < 2"t1 — 2 is true, we are also sure that HW (k) < n + 1 is true.
Thus the only acceptable value for HW (k) is n + 1. Therefore, if HW (k) < n + 1, then

n+1 n+1
2 JE) -1 lk = 0. In the following we prove that when HW (k) = n + 1, Zz ot {‘ =
Z],\ w=18jn(Ro, R, ..., Ry) = ficnt1(Ro, R1, ..., Ry). One can easily see that the set

of a11n+2 bit values of k with n + 1 ones is:
Sp={2"t?> ol 2 _gn _q nt2 _pn=l o ont2 g ot 1)

In this set, there exists n + 1 odd values and only one even value. Let us prove the existence
of at least one A, ; for the odd values of k € S. In Lemma A2, A;11; = 1 and we observe
22 ok 1 = 2"t —2k=1 1) 41,k # Othat HW (2"+! —2k=1 — 1) = n. Thus for the
odd values 2"+ — 2% — T exist j = 2" 1 =251 — I that HW (j) = nand Agws2 ey j = 1.
The only even value in Sy is 2"1t2 — 1 — 1 = 2(2"*2 — 2"*! _ ). For this value of k, we
have:

2n+l_1 2n+1_1
n+2_q1_ n+2 _on+l_
ai2 1-1 — 2 aiZ 2 1

i=0 i=0
and therefore the theorem is proven. |

Note that based on Definition 5, we can prove by induction:

2n—1
> a? ' = RoRi..Ry_1(Ro+ R1)...(Ry—2 + Ry_1)...(Ro + Ri + ... + Ry 1)

21
. . n__ .
So based on Definition 4, E al.2 = 0is always non-zero, and consequently
i=0

1
21
( > 2’1_1) exists for each SV matrix.

B Numerical example

In this section, two numerical examples for constructing of involutory MDS matrices and
2" x 2" FFHadamard involutory MDS matrices are presented.

Example Bl For m = 3, the Vandermonde matrix A = van(0x1, 0x3, Ox7e), the parameter
A = Oxef, and the primitive polynomial p(x) = x® + x* + x3 + x2 + 1, we have the
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involutory MDS matrix BA™! as below:
0x2 0x7 Ox4
BA~! = | 0x3 0x6 Ox4
0x3 0x7 Ox5

We multiply 3 x 3 involutory MDS matrices to an array as below

y1 0x2 0x7 Ox4 X1
y2 | = | 0x3 0x6 Ox4 X2
3 0x3 0x7 Ox5 X3

If three temporary variables T'1, T2, and T3 are used to calculate y;, y, and y3, we have:

Ty =2x1, Tr="Txy, T3 =4x3
=T+ +T;
Y2 =y1+x1+x
Y3 =y1+Xx1+x3

As a result of the calculations above, we need 5 xtimes (one xtime for 77, two xtimes for
T> and two xtimes for 73) and 8 XOR operations ( two XORs for 7>, two XORs for y{, two
XORs for y; and two XORs for y3).

Example B2 For m = 4, an SV matrix of parameters ag = 0x3, Rp = Ox1 and R; = 0xb6
(i.e., A = van(0x3,0x2,0xb5, 0xb4)), a; + b; = 0x46, and the primitive polynomial
px) = x8 + x* + x3 + x2 + 1, we have the FFHadamard MDS matrix BA~! as below:

Ox1 Ox5 Ox12 0x17
0x5 Ox1 Ox17 Ox12
0x12 O0x17 Ox1 Ox5
0x17 Ox12 0x5 Ox1

BA ! =

and based on the method introduced in Sect. 3.1, the inverse of this SV matrix is computed as:

Oxc2 Oxa3 0x5 0x65
0x41 0x51 Oxef Oxff
0x30 0x20 0x9f 0x8 f
0x10 0x10 0x10 0x10

Al =

where 5o = 0xd8 (s, ' = 0x10) and s = 0xd9.
We multiply this 4 x 4 involutory MDS matrices to an array as below

V1 Ox1 Ox5 Ox12 Ox17 X1
2| | 0x5 OxI 0x17 Ox12 X2
y3 | | 0x12 0x17 Ox1 0x5 X3
V4 0x17 Ox12 0x5 Ox1 X4
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Like Anubis, if four temporary variables 71, T2, T3 and T4 are used to calculate y;, y»
and ys3, we have:

T
1
y2
Y3
Y3

= 0x5(x2 +x4), Tp =0x12(x3 +x4), T3 =0x5(x1 +x3), T4 =0x12(x1 + x2)
x+h+1Th
x+T3+T
x3+ T+ T4
x4+ T3+ Ty

By the above calculation, we need 12 xtimes (four xtimes for 77 and T3, eight xtimes
for 7> and T4) and 16 XOR operations (two XORs for each T;s, two XORs for calculation
of y;s).
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