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Abstract Due to their remarkable application in many branches of applied mathemat-
ics such as combinatorics, coding theory, and cryptography, Vandermonde matrices have
received a great amount of attention. Maximum distance separable (MDS) codes introduce
MDS matrices which not only have applications in coding theory but also are of great impor-
tance in the design of block ciphers. Lacan and Fimes introduce a method for the construction
of an MDS matrix from two Vandermonde matrices in the finite field. In this paper, we first
suggest a method that makes an involutory MDS matrix from the Vandermonde matrices.
Then we propose another method for the construction of 2n × 2n Hadamard MDS matrices
in the finite field GF(2q). In addition to introducing this method, we present a direct method
for the inversion of a special class of 2n × 2n Vandermonde matrices.
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1 Introduction

Definition 1 A Vandermonde matrix A = vand(a0, a1, . . . , am−1) is an m × d matrix built
from a0, a1, . . . , am−1 as below:

A = vand(a0, a1, . . . , am−1) =

⎛
⎜⎜⎜⎝

1 a0 a2
0 · · · ad−1

0
1 a1 a2

1 · · · ad−1
1

...
. . .

1 am−1 a2
m−1 · · · ad−1

m−1

⎞
⎟⎟⎟⎠ (1)

In this paper we focus on square Vandermonde matrices with elements in GF(2q). We
represent a square Vandermonde matrix by van(a0, a1, . . . , am−1) whose elements are all
different (i.e. i �= j implies ai �= aj ). These matrices have remarkable applications in BCH
and Reed Solomon codes in coding theory [10], and they can be used to generate MDS
(maximum distance separable) matrices for cryptographic applications [9]. In the following,
we emphasize the cryptographic application of Vandermonde matrices.

1.1 Previous works on the relation of Vandermonde and MDS matrices

We first will summarize the established theorems and results that are significant in the relation
between Vandermonde and MDS matrices.

Theorem 1 ([8,14]) A matrix Mn×n is an MDS matrix if and only if every sub-matrix of M
is non-singular. Also we can say Mn×n is MDS if and only if:

Yn×1 = Mn×n · Xn×1 �⇒ min
X �=0

(W(Y) + W(X)) = n + 1

where X = [x0, x1, . . . , xn−1]T and Y = [y0, y1, . . . , yn−1]T are vectors in the finite field
GF(2q) and W(X) is the number of non-zero elements of X.

Theorem 2 ([9]) Let A = van(a0, a1, . . . , am−1) and B = van(b0, b1, . . . , bm−1) be two
Vandermonde matrices with different elements (ai �= bj ), then the matrix AB−1 is an MDS
matrix.

Proof Assume Ym×1 = AB−1Xm×1. A new vector Pm×1 = [p0, p1, . . . , pm−1]T is defined
as P = B−1X. Then from X = BP and Y = AP, we can represent xi and yi by pi as below:

x0 =
m−1∑
i=0

bi
0pi, x1 =

m−1∑
i=0

bi
1pi, . . . , xm−1 =

m−1∑
i=0

bi
m−1pi

y0 =
m−1∑
i=0

ai
0pi, y1 =

m−1∑
i=0

ai
1pi, . . . , ym−1 =

m−1∑
i=0

ai
m−1pi (2)

The 2m values of xi and yi (i = 0, 1, . . . , m−1) are all of the form
∑m−1

i=0 pit
i . The equation∑m−1

i=0 pit
i = 0 has at most m − 1 different roots in the finite field GF(2q). Since ai’s and

bj ’s are all different, at most m − 1 out of the 2m values of xi’s and yi’s might be zero.
Therefore, at least m + 1 of xi’s and yi’s are non-zero and AB−1 is an MDS matrix. ��
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1.2 Related work and our contribution

The main application of MDS matrices to the field of cryptography is in the design diffusion
layers of block ciphers because these matrices can provide maximum diffusion. By using
good non-linear parts and MDS matrices, one can design block ciphers and hash functions
that have a provable security against differential cryptanalysis (DC) [2] and linear cryptanal-
ysis (LC) [12]. Many block ciphers such as AES [5], Khazad [4], Clefia [15], and AES-MDS
[13] as well as some hash functions such as Maelstrom [6] and Grøstl [7] use MDS matrices
as the main part of their diffusion layers. To design MDS matrices, several methods have been
proposed thus far. For small MDS matrices, an exhaustive search may be a useful method, but
for large linear MDS matrices, most designers prefer one of the following two approaches:

• Construction of MDS matrices from Cauchy matrices [17].
• Construction of MDS matrices from Vandermonde matrices [9].

Definition 2 An involutory matrix Mm×m is a matrix satisfying the property of M2
m×m =

Im×m. Also a function f is an involutory function if f (f (x)) = x.

The design of involutory diffusion transformations is an interesting direction in the design
of block ciphers. These transformations can make the decryption process the same as the
encryption process. Thus the encryption and decryption can be implemented by the same
module and equal speeds.

In this paper, we propose a new approach based on Vandermonde matrices to design invol-
utory MDS matrices over the finite fields GF(2q). This approach helps us design involutory
MDS matrices of arbitrary size. When the size of the involutory matrix is 2n × 2n, we add
the property of a Hadamard matrix to the resulting MDS matrix. This property improves the
implementation of a block cipher that uses such a matrix as its diffusion layer. Moreover,
we introduce a special class of 2n × 2n Vandermonde matrices (called Special Vandermonde
matrices or SV matrices), such that their inverses can be directly calculated.

The notations used in this paper are:

�x� : floor of x,
Acol(i) : ith column of an m × m matrix A, 0 ≤ i ≤ m − 1,
Arow(j) : j th row of an m × m matrix A, 0 ≤ j ≤ m − 1,
di,j in matrix Dm×m : the element located in row i and column j of an m × m

matrix D, where 0 ≤ i, j ≤ m − 1,

a + b and
m−1∑
i=0

ak
i : sum in GF(2q) for elements of matrix (for example

2 + 3 = 1),
⊕ in ar1⊕r2 : bit-wise XOR (used for subscripts),
HW(x) : number of ones in the binary representation of x or Ham-

ming weight of x (for example the binary representation
of 13 is 1101 and HW(13) = 3),

ar1+r2 : sum for exponents in natural number (for example
a2+3 = a5).

0x : hexadecimal representation.

Also two important arithmetic properties of the finite field GF(2q) which are applied in the
proof of some theorems are:

(a + b)2n = a2n + b2n

a + b = c ⇔ a + c = b
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We mention that in this paper, the notation used for elements of GF(2q) is the binary repre-
sentation, and the binary vector is represented by the number whose binary representation is
equal to this binary vector. In this representation, ⊕ and + are the same, but we use them to
distinguish subscripts and elements of GF(2q), respectively.

This paper proceeds as follows. In Sect. 2, we introduce a method for constructing an
involutory MDS matrix from two Vandermonde matrices and discuss the requirements of
these two Vandermonde matrices. Section 3 discusses the conditions on the two Vandermonde
matrices, that can generate a Hadamard-type 2n ×2n involutory MDS matrix. In addition, we
show that the inverse of this class of Vandermonde matrices is directly obtained. In Sect. 4,
we compare this method with the previous method of [16,17]. Finally, we conclude the paper
in Sect. 5.

2 Constructing involutory MDS matrices from Vandermonde matrices

In this section, we show that for two m×m Vandermonde matrices A=van(a0, a1, . . . , am−1)

and B = van(b0, b1, . . . , bm−1) = van(a0 + Δ, a1 + Δ, . . . , am−1 + Δ), where Δ is an
arbitrary non-zero number in GF(2q), the matrices AB−1 and BA−1 are involutory. Further-
more, if ai’s and bi’s are 2m different values, then AB−1 and BA−1 will be involutory MDS
matrices.

Assume bi = ai +Δ. The relations between powers of ai and bi in the finite field GF(2q)

are:

bl
i = (ai + Δ)l = cl,0a

l
i + cl,1a

l−1
i Δ + · · · + cl,l−1aiΔ

l−1 + cl,lΔ
l ; cl,i ∈ {0, 1} (3)

where cl,0 = cl,l = 1 and cl,m = 0, m > l.

Theorem 3 Assume A = van(a0, a1, . . . , am−1) and B = van(b0, b1, . . . , bm−1) are two
invertible Vandermonde matrices such that bi = ai + Δ. Then A−1B is an upper triangular
matrix whose non-zero elements are determined by powers of Δ.

Proof Assume the inverse of A is:

A−1 =

⎛
⎜⎜⎜⎝

t0,0 t0,1 t0,2 · · · t0,m−1

t1,0 t1,1 t1,2 · · · t1,m−1
...

tm−1,0 tm−1,1 tm−1,2 · · · tm−1,m−1

⎞
⎟⎟⎟⎠ .

Let us first extract some properties of ti,j ’s from the relation A−1A = Im×m, and then exploit
them to compute A−1B. By multiplying A−1

row(0) to columns of A, we have:

A−1
row(0) · Acol(0) = t0,0 + t0,1 + t0,2 + · · · + t0,m−1 =

m−1∑
i=0

t0,i = 1 (4)

A−1
row(0) · Acol(k) = t0,0a

k
0 + t0,1a

k
1 + t0,2a

k
2 + · · · + t0,m−1a

k
m−1

=
m−1∑
i=0

t0,ia
k
i = 0 (1 ≤ k ≤ m − 1) (5)
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Also by multiplying A−1
row(0) in column k of B, and using the two results (4) and (5), we can

compute the first row of A−1B:

A−1
row(0) · Bcol(k) = t0,0b

k
0 + t0,1b

k
1 + t0,2b

k
2 + · · · + t0,m−1b

k
m−1 =

m−1∑
i=0

t0,i (ai + Δ)k.

by extending bk
i = (ai + Δ)k from (3):

m−1∑
i=0

(t0,ia
k
i ) + ck,1

m−1∑
i=0

(t0,ia
k−1
i )Δ + · · · + ck,k−1

m−1∑
i=0

(t0,iai)Δ
k−1 +

m−1∑
i=0

(t0,i )Δ
k = Δk.

If we multiply A−1
row(1) to columns of A, new results are obtained:

A−1
row(1) · Acol(0) = t1,0 + t1,1 + t1,2 + · · · + t1,m−1 =

m−1∑
i=0

t1,i = 0,

A−1
row(1) · Acol(1) = t1,0a0 + t1,1a1 + t1,2a2 + · · · + t1,m−1am−1 =

m−1∑
i=0

t1,iai = 1 and

A−1
row(1) · Acol(k) = t1,0a

k
0 + t1,1a

k
1 + t1,2a

k
2 + · · · + t1,m−1a

k
m−1

=
m−1∑
i=0

t1,ia
k
i = 0 (2 ≤ k ≤ m − 1).

If this procedure proceeds by multiplying A−1
row(1) to column k of B, we obtain:

A−1
row(1) · Bcol(k) =

m−1∑
i=0

t1,ib
k
i =

m−1∑
i=0

t1,i (ai + Δ)k =

m−1∑
i=0

(t1,ia
k
i ) + ck,1

m−1∑
i=0

(t1,ia
k−1
i )Δ + · · · + ck,k−1

m−1∑
i=0

(t1,iai)Δ
k−1

+
m−1∑
i=0

(t1,i )Δ
k = ck,k−1Δ

k−1.

By following this method to multiply the other rows of A−1 to the columns of A and B, one
can easily obtain:

A−1B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 Δ Δ2 Δ3 · · · Δm−2 Δm−1

0 1 c2,1Δ c3,2Δ
2 · · · cm−2,m−3Δ

m−3 cm−1,m−2Δ
m−2

0 0 1 c3,1Δ · · · cm−2,m−4Δ
m−4 cm−1,m−3Δ

m−3

...
. . .

0 0 0 0 · · · 1 cm−1,1Δ

0 0 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(6)

Thus A−1B is an upper triangular matrix. ��
Theorem 4 Let A = van(a0, a1, . . . , am−1) and B = van(b0, b1, . . . , bm−1) be two Van-
dermonde matrices where ai = bi + Δ, then BA−1B = A.
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Proof By replacing A−1B from (6) into BA−1B, we have:

BA−1B =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 b0 b2
0 · · · bm−1

0
1 b1 b2

1 · · · bm−1
1

1 b2 b2
2 · · · bm−1

2
.
.
.

. . .

1 bm−1 b2
m−1 · · · bm−1

m−1

⎞
⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 Δ Δ2 Δ3 · · · Δm−2 Δm−1

0 1 c2,1Δ c3,2Δ
2 · · · cm−2,m−3Δ

m−3 cm−1,m−2Δ
m−2

0 0 1 c3,1Δ · · · cm−2,m−4Δ
m−4 cm−1,m−3Δ

m−3

.

.

.
. . .

0 0 0 0 · · · 1 cm−1,1Δ

0 0 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

By multiplying row i to row j , we have:

Δj + cj,j−1Δ
j−1bi + · · · + cj,1Δb

j−1
i + b

j
i = (bi + Δ)j = a

j
i .

Thus BA−1B = A or BA−1BA−1 = I. ��
Corollary 1 If A and B are two invertible Vandermonde matrices in the finite field GF(2q)

satisfying the two properties ai = bi + Δ and ai �= bj , i, j ∈ {0, 1, .., m − 1}, then BA−1 is
an involutory MDS matrix.

3 Finite Field Hadamard involutory 2n × 2n MDS matrices

In this section, we restrict the conditions of Sect. 2 and construct some involutory MDS
matrices which are also Hadamard in the finite field GF(2q). First, we obtain the required
conditions for 4 × 4 matrices, then conditions are extended for other 2n × 2n matrices.

Definition 3 A 2n×2n matrix H is a Finite Field Hadamard (FFHadamard) matrix in GF(2q)

if it can be represented as follows:

H =
(

U V
V U

)

and the two sub-matrices U and V are FFHadamard [3].

We can easily see that each two rows of this matrix are orthogonal in GF(2q). For example
a 4 × 4 FFHadamard matrix is:

H = had(a0, a1, a2, a3) =

⎛
⎜⎜⎝

a0 a1 a2 a3

a1 a0 a3 a2

a2 a3 a0 a1

a3 a2 a1 a0

⎞
⎟⎟⎠

which implies hi,j = ai⊕j .

3.1 Construction of 4 × 4 FFHadamard MDS matrices

In the following, by defining some conditions, inverse of 4 × 4 Vandermonde matrices are
directly calculated. A 4 × 4 Vandermonde matrix is as below:

A =

⎛
⎜⎜⎝

1 a0 a2
0 a3

0
1 a1 a2

1 a3
1

1 a2 a2
2 a3

2
1 a3 a2

3 a3
3

⎞
⎟⎟⎠

123



On construction of involutory MDS matrices

Assume a0 + a1 = a2 + a3 and a0 + a2 = a1 + a3 (these two equations are equivalent to
a0+a1+a2+a3 = 0). Based on the finite field arithmetic in GF(2q), if a0+a1+a2+a3 = 0
then a2

0 + a2
1 + a2

2 + a2
3 = 0 and a4

0 + a4
1 + a4

2 + a4
3 = 0. We hypothesized the matrix A1,

defined below, is very close to A−1.

A1 =

⎛
⎜⎜⎝

a3
0 a3

1 a3
2 a3

3
a2

0 a2
1 a2

2 a2
3

a0 a1 a2 a3

1 1 1 1

⎞
⎟⎟⎠

At first, we calculate A1 × A with the condition a0 + a1 + a2 + a3 = 0:

A1 × A =

⎛
⎜⎜⎝

a3
0 a3

1 a3
2 a3

3
a2

0 a2
1 a2

2 a2
3

a0 a1 a2 a3

1 1 1 1

⎞
⎟⎟⎠ ×

⎛
⎜⎜⎝

1 a0 a2
0 a3

0
1 a1 a2

1 a3
1

1 a2 a2
2 a3

2
1 a3 a2

3 a3
3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3∑
i=0

a3
i 0

3∑
i=0

a5
i

3∑
i=0

a6
i

0
3∑

i=0

a3
i 0

3∑
i=0

a5
i

0 0
3∑

i=0

a3
i 0

0 0 0
3∑

i=0

a3
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A1 × A is close to a diagonal matrix. To find the inverse of A, we must modify A1, such that
A1 × A becomes a diagonal matrix. Assume A2 is a modified form of A1 as below:

A2 =

⎛
⎜⎜⎝

a3
0 + s0a0 + s1 a3

1 + s0a1 + s1 a3
2 + s0a2 + s1 a3

3 + s0a3 + s1

a2
0 + s0 a2

1 + s0 a2
2 + s0 a2

3 + s0

a0 a1 a2 a3

1 1 1 1

⎞
⎟⎟⎠

By computing A2 × A, we have:

A2 × A =

⎛
⎜⎜⎝

a3
0 + s0a0 + s1 a3

1 + s0a1 + s1 a3
2 + s0a2 + s1 a3

3 + s0a3 + s1
a2

0 + s0 a2
1 + s0 a2

2 + s0 a2
3 + s0

a0 a1 a2 a3
1 1 1 1

⎞
⎟⎟⎠ ×

⎛
⎜⎜⎝

1 a0 a2
0 a3

0
1 a1 a2

1 a3
1

1 a2 a2
2 a3

2
1 a3 a2

3 a3
3

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3∑
i=0

a3
i 0

3∑
i=0

a5
i + s0

3∑
i=0

a3
i

3∑
i=0

a6
i + s1

3∑
i=0

a3
i

0
3∑

i=0

a3
i 0

3∑
i=0

a5
i + s0

3∑
i=0

a3
i

0 0
3∑

i=0

a3
i 0

0 0 0
3∑

i=0

a3
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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To make A2 × A a diagonal matrix,
∑3

i=0a
5
i + s0

∑3
i=0a

3
i and

∑3
i=0a

6
i + s1

∑3
i=0a

3
i must

be zero. Thus:

s0 =
∑3

i=0a
5
i∑3

i=0a
3
i

and s1 =
∑3

i=0a
6
i∑3

i=0a
3
i

=
3∑

i=0

a3
i (7)

by these s0 and s1, the inverse of matrix A is:

A−1 =
(

3∑
i=0

a3
i

)−1

A2. (8)

Now assume B is another 4 × 4 Vandermonde matrix. By multiplying B and A−1, we have:

D = B × A−1 =

⎛
⎜⎜⎝

1 b0 b2
0 b3

0
1 b1 b2

1 b3
1

1 b2 b2
2 b3

2
1 b3 b2

3 b3
3

⎞
⎟⎟⎠

×
(

3∑
i=0

a3
i

)−1
⎛
⎜⎜⎝

a3
0 + s0a0 + s1 a3

1 + s0a1 + s1 a3
2 + s0a2 + s1 a3

3 + s0a3 + s1

a2
0 + s0 a2

1 + s0 a2
2 + s0 a2

3 + s0

a0 a1 a2 a3

1 1 1 1

⎞
⎟⎟⎠ .

We are interested in the conditions on A and B that make D = B × A−1 an FFHadamard
matrix. To obtain these conditions, we investigate only two sub-cases and by considering the
conditions of these two sub-cases, other conditions are deduced.

sub-case 1: d0,0 = d3,3
(

3∑
i=0

a3
i

)
d0,0 = (a3

0 + a2
0b0 + a0b

2
0 + b3

0) + s0(a0 + b0) + s1

= (a0 + b0)
3 + s0(a0 + b0) + s1 and(

3∑
i=0

a3
i

)
d3,3 = (a3

3 + a2
3b3 + a3b

2
3 + b3

3) + s0(a3 + b3) + s1

= (a3 + b3)
3 + s0(a3 + b3) + s1

when (a3 + b3) = (a0 + b0), then d0,0 = d3,3.

sub-case 2: d1,0 = d2,3
(

3∑
i=0

a3
i

)
d1,0 = (a3

0 + a2
0b1 + a0b

2
1 + b3

1) + s0(a0 + b1) + s1

= (a0 + b1)
3 + s0(a0 + b1) + s1 and(

3∑
i=0

a3
i

)
d2,3 = (a3

3 + a2
3b2 + a3b

2
2 + b3

2) + s0(a3 + b2) + s1

= (a3 + b2)
3 + s0(a3 + b2) + s1

when (a3+b2) = (a0 +b1), then d1,0 = d2,3. By checking the other sub-cases, one can easily
see that the matrix BA−1 is FFHadamard if ai + bj = al + bl⊕i⊕j (i, j, l ∈ {0, 1, 2, 3}).
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Corollary 2 The condition ai + bj = al + bl⊕i⊕j for all i, j, l ∈ {0, 1, 2, 3} implies that
ai + bi = a0 + b0 = Δ where Δ is an arbitrary non-zero number in GF(2q). Thus the
condition of Theorem 4 (i.e., bi = ai + Δ) is satisfied and consequently BA−1 is involutory.
Furthermore, by considering Theorem 2, if ai and bj in the two matrices A and B are all
different, then the matrix BA−1 will be an FFHadamard involutory MDS matrix.

To see that a 4 × 4 matrix generated from the two 4 × 4 Vandermonde matrices A =
van(a0, a1, a2, a3) and B = van(b0, b1, b2, b3) is an FFHadamard involutory MDS matrix,
the elements ai and bj must all be different and chosen such that:

a0 + a1 + a2 + a3 = 0 (a0 + a1 = a2 + a3, a0 + a2 = a1 + a3) and

ai + bj = al + bl⊕i⊕j i, j, l ∈ {0, 1, 2, 3} (9)

3.2 Extending the result for 2n × 2n matrices

The approach is similar to the case of 4×4 matrices. A 2n ×2n matrix A1 is constructed from
A, and then is multiplied to A. In A1×A we should determine which elements

∑2n−1
i=0 ak

i , k ∈
{0, 1, . . . , 2n+1 − 2} are zero and which are not zero.

A1col(j) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a2n−1
j

...

a2
j

aj

1

⎞
⎟⎟⎟⎟⎟⎟⎠

, A1 × A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2n−1∑
i=0

a2n−1
i

2n−1∑
i=0

a2n

i · · ·
2n−1∑
i=0

a2n+1−2
i

2n−1∑
i=0

a2n−2
i

2n−1∑
i=0

a2n−1
i · · ·

2n−1∑
i=0

a2n+1−3
i

...
. . .

...
2n−1∑
i=0

a0
i

2n−1∑
i=0

ai · · ·
2n−1∑
i=0

a2n−1
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

In (10), we must calculate
∑2n−1

i=0 a
j
i , j ∈ {0, 1, . . ., 2n+1 − 2}. If conditions are obtained

that make a number of non-diagonal elements of A1 × A zero, then we can use some extra
variables and modify A1 to find the inverse of A similar to what done in Sect. 3.1. Before
getting through this procedure, we must define some definitions and lemmas.

Definition 4 Let A = van(a0, a1, . . . , a2n−1). This matrix is called a Special Vandermonde
matrix (SV matrix) if ai’s satisfy the following condition:

ai + ai⊕2k = Rk, for all k ∈ {0, 1, . . . , n − 1} (11)

where Rk’s are different non-zero constants such that for μi ∈ {0, 1}
n−1∑
i=0

μiRi = 0 ⇒ μi = 0, for all i ∈ {0, 1, . . . , n − 1} (12)

For some j , (11) causes
∑2n−1

i=0 a
j
i to become zero and (12) guarantees the invertibility of

matrix A. We easily observe that all ai’s are constructed form a0, R0, R1, …and Rn−1.

Example 1 C1 = van(0x1, 0x2, 0x3, 0x4) is not an SV matrix because a0 + a1 = 0x3,
but a2 + a3 = 0x7 and consequently a0 + a0⊕20 �= a2 + a2⊕20 , so (11) is not satisfied.
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Also C2 = van(0x4, 0x5, 0x6, 0x7, 0x7, 0x6, 0x5, 0x4) is not an SV matrix. However C2
satisfies (11) (R0 = 0x1, R1 = 0x2, R2 = 0x3) but R0 + R1 + R2 = 0 and (12) is not satis-
fied. C3 = van(0x4, 0x5, 0x6, 0x7, 0xd, 0xc, 0xf, 0xe) is an SV matrix. (a0 = 0x4, R0 =
0x1, R1 = 0x2, R2 = 0x9)

Lemma 1 If A = van(a0, a1, . . . , a2n−1) is an SV matrix, then
∑3

j=0aj⊕i = 0, and the

values
∑3

j=0a
3
j⊕i and

∑3
j=0a

5
j⊕i depend only on Ri and are independent of ai .

Proof

3∑
j=0

aj⊕i = ai + ai⊕1 + ai⊕2 + ai⊕3 = (ai + ai⊕20) + (ai⊕2 + a(i⊕2)⊕20) = R0 + R0 = 0

3∑
j=0

a3
j⊕i = a3

i + a3
i⊕1 + a3

i⊕2 + a3
i⊕3

= (ai + ai⊕1)
3 + aiai⊕1(ai + ai⊕1) + (ai⊕2 + ai⊕3)

3

+ai⊕2ai⊕3(ai⊕2 + ai⊕3)

= R3
0 + R0(aiai⊕1) + R3

0 + R0(ai⊕2ai⊕3)

= R0(aiai⊕1 + (ai + R1)(ai⊕1 + R1)) = R0R1(R0 + R1).

We can proceed with this procedure to prove
∑3

j=0a
5
j⊕i is a constant equal to R1R0(R0 +

R1)(R
2
0 + R0R1 + R2

1).

Moreover, one can easily see that
∑7

j=0a
3
j⊕i = 0 because

7∑
j=0

a3
j⊕i =

3∑
j=0

a3
j⊕i +

3∑
j=0

a3
j⊕(i⊕4) = R0R1(R0 + R1) + R0R1(R0 + R1) = 0.

Corollary 3 By considering Lemma 1, we can conclude that in Eq. 7:

s0 =
∑3

i=0a
5
i∑3

i=0 a3
i

= R1R0(R0 + R1)(R
2
0 + R0R1 + R2

1)

R0R1(R0 + R1)
= (R2

0 + R0R1 + R2
1) and

s1 =
∑3

i=0a
6
i∑3

i=0a
3
i

=
3∑

i=0

a3
i = R0R1(R0 + R1).

Definition 5 Let the A = van(a0, a1, . . . , a2n−1) be an SV matrix. For each ai (0 ≤ i ≤
2n−1 − 1), we define ãi as below:

ãi = aiai⊕2n−1 = a2
i + Rn−1ai, i ∈ {0, 1, . . . , 2n−1 − 1} (13)

Lemma 2 If A = van(a0, a1, . . . , a2n−1) is also an SV matrix, then Ã = van(ã0,

ã1, . . . , ã2n−1−1) is an SV matrix too.

Proof

ãi + ãi⊕2k = a2
i + Rn−1ai + a2

i⊕2k + Rn−1ai⊕2k = R2
k + RkRn−1 = R′

k (14)
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and
∑n−2

i=0 μ′
iR

′
i = ∑n−2

i=0 μ′
iR

2
i + Rn−1

∑n−2
i=0 μ′

iRi . It is obvious that if μ′
i ∈ {0, 1}, then

μ
′2
i = μ′

i , also
∑n−2

i=0 μ′
iR

2
i = (

∑n−2
i=0 μ′

iRi)
2 and

∑n−2
i=0 μ′

iR
′
i = (

∑n−2
i=0 μ′

iRi)(Rn−1 +∑n−2
i=0 μ′

iRi). Taking Definition 4 and Eq. 12 into account,
∑n−2

i=0 μ′
iRi = 0 ⇒ μ′

i = 0, but

Rn−1 + ∑n−2
i=0 μ′

iRi �= 0 because μ′
n−1 �= 0, thus Ã is an SV matrix. ��

Corollary 4 As a result of these lemmas, for 2n × 2n SV matrices where n ≥ 3 we can show
that

∑7
i=0a

7
i is non-zero and depends on R0, R1 and R2.

We know that
∑7

i=0a
7
i = ∑3

i=0(a
7
i + a7

i⊕4) and:

a7
i + a7

i⊕4 = (ai + ai⊕22)7 + (aiai⊕4)(ai + ai⊕22)5

+(a3
i a

3
i⊕4)(ai + ai⊕22)

= R7
2 + aiai⊕4R

5
2 + a3

i a
3
i⊕4R2

Thus

7∑
i=0

a7
i =

3∑
i=0

(a7
i + a7

i⊕4) =
3∑

i=0

R7
2 + R5

2

3∑
i=0

aiai⊕4 + R2

3∑
i=0

a3
i a

3
i⊕4

= R5
2

3∑
i=0

ãi + R2

3∑
i=0

ã3
i .

By considering Lemma 1, Definition 5 and Lemma 2,

3∑
i=0

ãi = 0 and

R2

3∑
i=0

ã3
i = R2R

′
0R

′
1(R

′
0 +R′

1) = R0R1R2(R0 +R1)(R0 + R2)(R1 +R2)(R0 +R1 +R2)

and finally
∑7

i=0a
7
i is a function of R0, R1 and R2.

Theorem 5 Assume A is a 2n × 2n SV matrix. For elements of this matrix we have:

2n−1∑
i=0

ak
i =

{
fk,n(R0, R1, . . . , Rn−1) �= 0 HW(k) = n and k ≤ 2n+1 − 2
0 HW(k) < n and k ≤ 2n+1 − 2

(15)

where fk,n(R0, R1, . . . , Rn−1) is a non-zero value that only depends on Ri’s and does not
depend on a0. Proof of this theorem appears in Appendix A.

In the following, we investigate constructing of 2n × 2n FFHadamard involutory MDS
matrices. We first introduce the procedure forn = 3, and then extend it forn > 3. By consider-
ing all lemmas and Theorem 5 for k ≤ 14,

∑7
i=0a

k
i = fk,3(R0, R1, R2) if k ∈ {7, 11, 13, 14},

an 8 × 8 matrix A1 is generated and multiplied by A as below:
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A1col(j)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a7
j

a6
j

a5
j

a4
j

a3
j

a2
j

aj

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A1 × A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7∑
i=0

a7
i 0 0 0

7∑
i=0

a11
i 0

7∑
i=0

a13
i

7∑
i=0

a14
i

0
7∑

i=0

a7
i 0 0 0

7∑
i=0

a11
i 0

7∑
i=0

a13
i

0 0
7∑

i=0

a7
i 0 0 0

7∑
i=0

a11
i 0

0 0 0
7∑

i=0

a7
i 0 0 0

7∑
i=0

a11
i

0 0 0 0
7∑

i=0

a7
i 0 0 0

0 0 0 0 0
7∑

i=0

a7
i 0 0

0 0 0 0 0 0
7∑

i=0

a7
i 0

0 0 0 0 0 0 0
7∑

i=0

a7
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)

The procedure for the 4 × 4 Vandermonde matrix can be repeated here for the 8 × 8 Van-
dermonde matrix, i.e. we can define a matrix A2 from A1 with three additional parameters
s0, s1 and s2, then we compute s0, s1 and s2, such that A2 × A becomes diagonal. Column
j, j = 0, 1, . . . , 7 of A2 is

A2col(j) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a7
j + s0a

3
j + s1aj + s2

a6
j + s0a

2
j + s1

a5
j + s0aj

a4
j + s0

a3
j

a2
j

aj

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)

In order to make A2 × A a diagonal matrix, s0, s1, s2 must be:

s0 =
∑7

i=0a
11
i∑7

i=0a
7
i

, s1 =
∑7

i=0a
13
i∑7

i=0a
7
i

, s2 =
∑7

i=0a
14
i∑7

i=0a
7
i

=
7∑

i=0

a7
i

and A−1 = (
∑7

i=0a
7
i )

−1 ×A2. si’s can be obtained from Ri’s. For example s0 = R4
0 +R4

1 +
R4

2 + R2
0R2

1 + R2
0R2

2 + R2
1R2

2 + R0R1R2(R0 + R1 + R2).
For SV matrices A = van(a0, a1, . . . , a23−1) and B = van(b0, b1, . . . , b23−1), where

ai + bj = al + bl⊕i⊕j and ai’s and bj ’s are different, we can prove that BA−1 is an 8 × 8
FFHadamard involutory MDS matrix. If we consider this procedure for all 2n ×2n SV matri-
ces A, we can calculate the inverse of A as A−1 = (

∑2n−1
i=0 a2n−1

i )−1A2, where column j of
A2 is

123



On construction of involutory MDS matrices

A2col(j) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a2n−1+2n−2+···+1
j + s0a

2n−2+2n−3+···+1
j + · · · + sn−2aj + sn−1

...

a2n−1+2n−2

j + s0a
2n−2

j + s1

...

a2n−1

j + s0aj

a2n−1

j + s0

...

aj

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

and parameters s0, s1, . . . , sn−1 are:

s0 =
∑2n−1

i=0 a2n+1−2n−1−1
i∑2n−1

i=0 a2n−1
i

, s1 =
∑2n−1

i=0 a2n+1−2n−2−1
i∑2n−1

i=0 a2n−1
i

, · · · ; sn−1 =
∑2n−1

i=0 a2n+1−1−1
i∑2n−1

i=0 a2n−1
i

(19)

Similarly to what is mentioned in Corollary 2, we can calculate si as functions of Rk’s. BA−1

is a 2n × 2n FFHadamard involutory MDS matrix if ai + bj = al + bl⊕i⊕j and ai �= bj (for
all i, j, l ∈ {0, 1, . . . , 2n − 1}). Moreover, the complexity for computing the inverse of A is
O(n2). Two numerical examples are given in Appendix B.

4 Comparison with previous methods

Definition 6 Assume x0, x1, . . . , xn−1 and y0, y1, . . . , yn−1 are different values in GF(2q).
Matrix P = [pi,j ] is a Cauchy matrix if pi,j = 1

xi+yj
[11,17].

If xi’s and yj ’s have different values, xi + yj �= 0 holds for all i, j . This yields that any
square sub-matrix of a Cauchy matrix is nonsingular over any field [11,17], i.e. P is an MDS
matrix. If dimensions of P are 2n × 2n and yi = xi + Δ, where Δ has some properties, then
P is an FFHadamard MDS matrix [17] and P2 = c2I where c = ∑2n−1

i=0 p0,i . Thus P′ = P
c

is an FFHadamard involutory MDS matrix.
The method studied in this paper has some advantages over the method of using Cauchy

matrices to generate involutory MDS matrices:

• In the proposed method, we have involutory property for arbitrary dimensions.
• We can present a direct inverse for 2n × 2n SV matrices.

Inversion of Vandermonde matrices is an interesting problem in mathematics. A method
is introduced in [16] whose complexity for the calculation of the inverse of a n × n Vander-
monde matrix is O(n2), but the coefficient of n2 in [16] is greater than the inversion method
introduced in this paper for the SV matrices. A direct method to calculate the inverse of
special class of Vandermonde matrices, where the elements are the roots of xn − x = 0
in GF(pq) and n is relatively prime to p, has been investigated in [1]. Compared with the
method introduced in [1], our proposed inversion method based on SV matrix covers other
classes of Vandermonde matrices.
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5 Conclusion

In this paper, we investigated Vandermonde matrix in the finite field GF(2q). First, we pre-
sented a method to construct an involutory MDS matrix from two Vandermonde matrices.
In contrast to previous work which only supports involutory MDS matrices of size 2n × 2n,
our methods constructs involutory MDS matrices with arbitrary size. In Sect. 3, we defined a
class of Vandermonde matrices for 2n ×2n matrices as Special Vandermonde matrices whose
inverse matrix can be directly calculated. If A and B are two SV matrices with distinct ai and
bj , we proved that AB−1 is an FFHadamard involutory MDS matrix. In Table 1, we compare
MDS matrices constructed based on our proposal with some of the known MDS matrices.

Although in this paper, we emphasized on cryptographic applications of Vandermonde
matrices, this method can be used in other applications for these matrices in the finite fields
such as coding theory.

A Proof of Theorem 5

Recalling Definitions 4 and 5 for an SV matrix, we know ai + ai⊕2n−1 = Rn−1 and

aiai⊕2n−1 = ãi . To prove Theorem 5, first we try to obtain ak
i + ak

i⊕2n−1 as a function
of ãi and Rn−1. For this propose, we introduce a new representation which will be useful for
the proof of Theorem 5.

Definition A1 For each a, b ∈ GF(2q), al + bl can be represented as below:

al + bl =
� l

2 �∑
i=0

λl,i (a + b)l−2i (ab)i

= λl,0(a + b)l + λl,1(a + b)l−2ab + λl,2(a + b)l−4a2b2

+ · · · + λ
l,� l

2 �(a + b)l−2� l
2 �a� l

2 �b� l
2 �

where λl,i’s are binary coefficients (λl,k ∈ {0, 1}). For convenience, let us call this represen-
tation, Special Extended Form representation or SEF representation of al +bl in the GF(2q).
Note that in the SEF representation λl,0 is always equal to 1. Also it is obvious that λl,i = 0
for i > � l

2�.
In GF(2q) we easily see that:

al + bl = (a + b)(al−1 + bl−1) + ab(al−2 + bl−2). (A1)

This relationship has an important role in the following proofs. First six lemmas are given
and finally Theorem 5 is proven.

Lemma A1 We can define SEF representation for (ab)(al + bl) (with coefficients Γl,i) and
(a + b)(al + bl) (with coefficients Λl,i) in the finite field GF(2q) as below:

ab(al + bl) =
� l

2 +1�∑
i=0

Γl,i(a + b)l−2i−2(ab)i and

(a + b)(al + bl) =
� l

2 +1�∑
i=0

Λl,i(a + b)l−2i+1(ab)i
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where the relations between Γl,i and Λl,i with λl,i are (Note that λl,i is the coefficients of
(ab)i in the SEF representation of (al + bl))

Λl,i =
{

λl,i 0 ≤ i ≤ � l
2�

0 otherwise

Γl,i =
{

λl,i−1 1 ≤ i ≤ � l
2 + 1�

0 i = 0

The proof of this lemma is easily performed from definition of SEF representation.

Lemma A2 In GF(2q), all λ2k,k’s are 0 and all λ2k+1,k’s are 1.

Proof Induction is used for this proof. We know that a2 + b2 = (a + b)2 and a3 + b3 =
(a + b)3 + ab(a + b) which means λ2,1 = 0 and λ3,1 = 1. Assume this lemma holds for
k − 1 (i.e., λ2k−2,k−1 = 0 and λ2k−1,k−1 = 1). For λ2k,k in SEF representation, we have:

a2k + b2k = (a + b)(a2k−1 + b2k−1) + ab(a2k−2 + b2k−2)

and from this equation, we yield :

λ2k,k = Λ2k−1,k + Γ2k−2,k

Taking Definition A1(λl,i = 0 if � l
2� < i) and Lemma A1 into account, Λ2k−1,k = λ2k−1,k =

0. Also based on the induction hypothesis λ2k−2,k−1 = 0 thus Lemma A1 yields Γ2k−2,k = 0.
Finally by adding these two terms, we yield λ2k,k = 0.

For λ2k+1,k in SEF representation, we have:

a2k+1 + b2k+1 = (a + b)(a2k + b2k) + ab(a2k−1 + b2k−1)

thus from this equation, we yield:

λ2k+1,k = Λ2k,k + Γ2k−1,k = λ2k,k + λ2k−1,k−1 = 0 + 1 = 1.

��
Lemma A3 Assume l = (2j + 1) × 2m. Then for the coefficients in the SEF representation,
we have:

λ(2j+1)×2m,i =
⎧⎨
⎩

1 i = 0
λ2j+1,t i = 2m × t (t ≤ j)

0 otherwise

.

Proof SEF representation of a2j+1 + b2j+1 is:

a2j+1 + b2j+1 = (a + b)2j+1 + λ2j+1,1(a + b)2j−1ab + · · · + λ2j+1,j (a + b)aj bj

and by powering two sides of the above equation in the GF(2q) we have:

(a2j+1 + b2j+1)2m = a(2j+1)2m + b(2j+1)2m =
(a + b)(2j+1)2m + λ2j+1,1(a + b)(2j−1)×2m

a2m

b2m + · · · + λ2j+1,j (a + b)2m

aj×2m

bj×2m

��
We conclude from this lemma that coefficients of al + bl where l is even may be obtained

from the coefficients of al′ + bl′ when l′ is odd and l = 2t × l′.
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Lemma A4 In SEF representation, for l = 2n, l = 2n + 1 and l = 2n − 1, the coefficients
λl,i are:

(a) λ2n,i =
{

1 i = 0
0 otherwise

(b) λ2n+1,i =
{

1 i = 0 or 2t , 0 ≤ t < n − 1
0 otherwise

(c) λ2n−1,i =
{

1 i = 2t − 1, 0 ≤ t < n − 1
0 otherwise

Proof (a) We know a2n +b2n = (a+b)2n = (a+b)2n
(ab)0 in GF(2q). Thus if λ2n,i = 1,

then i = 0.
(b) To obtain coefficients of the form λ2n+1,i , we use induction. This lemma holds for k = 1.
Assume the hypothesis is correct for λ2k+1,i . We prove this for λ2k+1+1,i . Considering Eq.
A1, we have the following equation:

a2k+1+2 + b2k+1+2 = (a + b)(a2k+1+1 + b2k+1+1) + ab(a2k+1 + b2k+1
)

⇒ (a + b)(a2k+1+1 + b2k+1+1) = a2k+1+2 + b2k+1+2 + ab(a2k+1 + b2k+1
)

⇒ Λ2k+1+1,i = λ2k+1+2,i + Γ2k+1,i .

In GF(2q), (a2k+1+2 + b2k+1+2) = (a2k+1 + b2k+1)2 and by considering Lemma A3 and
the induction hypothesis, coefficients of (a2k+1 + b2k+1)2 are:

λ2k+1+2,i =
{

1 i = 0 or i = 2t , 1 ≤ t ≤ k

0 otherwise
.

By considering Lemmas A1 and A4(a), Γ2k+1,i coefficients are:

Γ2k+1,i =
{

1 i = 1
0 otherwise

and finally:

Λ2k+1+1,i = λ2k+1+2,i + Γ2k+1,i =
{

1 i = 0 or i = 2t , 0 ≤ t ≤ k

0 otherwise
.

Considering Lemma A1 (λ2k+1+1,i = Λ2k+1+1,i , i ≤ 2k) proof is complete for coefficient
λ2k+1+1,i .

(c) For λ2k+1−1,i we use the equation below:

a2k+1 + b2k+1 = (a + b)(a2k + b2k

) + ab(a2k−1 + b2k−1)

⇒ ab(a2k−1 + b2k−1) = a2k+1 + b2k+1 + (a + b)(a2k + b2k

).

Based on Lemmas A4(a) and A4(b) we have:

Γ2k−1,i = λ2k+1,i + Λ2k ,i =
{

1 i = 0 or i = 2t , 0 ≤ t ≤ k − 1
0 otherwise

+
{

1 i = 0
0 otherwise

=
{

1 i = 2t , 0 ≤ t ≤ k − 1
0 otherwise

by considering relation Γ2k−1,i = λ2k−1,i−1 for i > 0 in Lemma A1, the only non-zero

coefficients of SEF representation of (a2k−1 + b2k−1) are λ2k−1,2t−1, 0 ≤ t ≤ k − 1. ��
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Lemma A5 Assume HW(X) is the number of ones in the binary representation of a
number X.

(a) When X increases by 1, HW(X) increases at most by 1 i.e. HW(X+1) ≤ HW(X)+1.
(b) HW(X) = HW(2tX).
(c) HW(2X + 1) = HW(X) + 1.

Example A1 HW(7) increases by one in comparison with HW(6), but HW(16) = 1
decreases by three in comparison with HW(15) = 4. Also HW(3) = HW(6) = HW(12) =
HW(24) = 2. HW(7) = HW(3) + 1 = 3

We can deduce 2 corollaries from Lemmas A3, A4 and A5.

Corollary A1 If the non-zeroness condition on λl,i is HW(i) < r , then non-zeroness con-
dition on λ2t l,i′ is HW(i′) < r .

We observe from Lemma A3, λl,i = 1 ⇔ λ2t l,2t i = 1, meanwhile HW(i) = HW(i′ =
2t i) < r .

Corollary A2 If the non-zeroness condition on λl,i is HW(i) < r , then the non-zeroness
condition on Γl,i is HW(i) < r + 1 and the non-zeroness condition on Λl,i is HW(i) < r .

We observe in Lemma A1 that Γl,i+1 = 1 ⇔ λl,i = 1 and HW(i+1) ≤ HW(i)+1 < r+1.

Lemma A6 In the SEF representation of al +bl , the coefficient λl,i may be one if HW(i) <

HW(l). Also we are sure that λl,i = 0 if HW(i) ≥ HW(l).

Proof We only prove three sub-cases and proof of other sub-cases will be the same.

– If HW(l) = 1, then l must be of the form 2k . Thus from Lemma A4(a), If λ2k,i = 1, then
i = 0 and HW(i) = 0.

– If HW(l) = 2, then l must be of the form 2k1 + 2k2 (k1 > k2). We conclude from
Lemma A3, coefficient of al + bl, l = 2k1 + 2k2 can be obtained from coefficient of
al′ + bl′ , l′ = 2k1−k2 + 1. In Lemma A4(b), if λ2k′+1,i

= 1, then i = 0 or i = 2t which
HW(i) = 0, 1. By considering to Corollary A1, if HW(l) = 2, then λl,i may be one
when HW(i) = 0 or 1.

– If HW(l) = 3, then l must be of the form 2k1 +2k2 +2k3 (k1 > k2 > k3). We conclude from
Lemma A3, coefficients of al +bl, l = 2k1 +2k2 +2k3 can be obtained from coefficients of
al′ +bl′ , l′ = 2k1−k3 +2k2−k3 +1. In the following we use induction for l′ = 2j1 +2j2 +1.
Considering Lemma A4(c), this lemma holds for l′ = 7 which is the smallest number with
three ones in its binary representation (λ7,i = 1 ⇒ i = 0, 1, 3(HW(i) < 3)). Assume
this lemma is true for all l′ that l′ = 2j1 + 2j2 + 1 (0 < j2 < j1). Taking equation (A1)
into account, for l′ = 2j1+1 + 2j3 + 1 (0 < j3 < j1 + 1), we have:

a2j1+1+2j3 +2 + b2j1+1+2j3 +2 = (a + b)(a2j1+1+2j3 +1 + b2j1+1+2j3 +1)

+ ab(a2j1+1+2j3 + b2j1+1+2j3
) ⇒ (a + b)(a2j1+1+2j3 +1 + b2j1+1+2j3 +1)

= a2j1+1+2j3 +2 + bj1+1+2j3 +2 + ab(a2j1+1+2j3 + b2j1+1+2j3
)

⇒ Λ2j1+1+2j3 +1,i = λ2j1+1+2j3 +2,i + Γ2j1+1+2j3 ,i .
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Also by considering the induction hypothesis and Corollary A1, necessary conditions for
the non-zeroness of the coefficients λ2j1+1+2j3 +2,i is that HW(i) < 3 (because 2j1+1 +2j3 +
2 = 2(2j1 + 2j3−1 + 1)). By considering Lemma A3 and A4, in the SEF representation of
a2j1+1+2j3 + b2j1+1+2j3 property of non-zero coefficient λ2j1+1+2j3 ,i is HW(i) < 2. By con-
sidering Corollary A2, the coefficient Γ2j1+1+2j3 ,i is non-zero if HW(i) < 3. By adding two
terms, we conclude that in SEF representation, coefficients Λ2j1+1+2j3 +1,i = λ2j1+1+2j3 +1,i

may be non-zero when HW(i) < 3.
For other sub-cases HW(l) ≥ 4, we prove this theorem step by step, by using results

for coefficients λl′,i that HW(l′) < HW(l). We aslo use induction similar to sub-case
HW(l) = 3; for example for HW(l) = 4, we use the below equations and the above
inductive procedure for the sub-case HW(l) = 3.

a2j1+1+2j2 +2j3 +2 + b2j1+1+2j2 +2j3 +2 =
(a + b)(a2j1+1+2j2 +2j3 +1 + b2j1+1+2j2 +2j3 +1) + ab(a2j1+1+2j2 +2j3 + b2j1+1+2j2 +2j3

)

��
After expressing these six lemmas, now we can prove Theorem 5.

Theorem 5 Assume A = van(a0, a1, . . ., a2n−1) is a 2n × 2n SV matrix in the finite field
GF(2q). For elements of this matrix we have:

2n−1∑
i=0

ak
i =

{
fk,n(R0, R1, . . . , Rn−1)) �= 0 HW(k) = n and k ≤ 2n+1 − 2
0 HW(k) < n and k ≤ 2n+1 − 2

.

Proof As we observed before in Sect. 4.1, this theorem is true for n = 2. We assume that
this theorem is true for n > 2 and prove it for n + 1. In a 2n+1 × 2n+1 SV Matrix, each∑2n+1−1

i=0 ak
i can be represented as below:

2n+1−1∑
i=0

ak
i =

2n−1∑
i=0

(ak
i + ak

i⊕2n)

SEF representation of (al
i + al

i⊕2n) is:

al
i + al

i⊕2n =
(ai + ai⊕2n)l + λl,1(ai + ai⊕2n )l−2aiai⊕2n + λl,2(ai + ai⊕2n )l−4(aiai⊕2n )2

+ · · · + λ
l,� l

2 �(ai + ai⊕2n )l−2×� l
2 �(aiai⊕2n)�

l
2 �

= (Rn)
l + λl,1(Rn)

l−2ãi + λl,2(Rn)
l−4ã2

i + · · · + λ
l,� l

2 �(R
l−2×� l

2 �
n )ã

� l
2 �

i

where ãi belongs to the 2n × 2n SV matrix Ã = van(ã0, ã1, . . . , ã2n−1). Therefore,

2n+1−1∑
i=0

ak
i =

2n−1∑
i=0

� k
2 �∑

j=0

(λk,jR
k−2j
n ã

j
i ) =

� k
2 �∑

j=0

(λk,jR
k−2j
n

2n−1∑
i=0

ã
j
i ).

From Lemma 2, we know that if
∑2n−1

i=0 a
j
i = fj,n(R0, R1, . . . , Rn−1), then

∑2n−1
i=0 ã

j
i =

fj,n(R
′
0, R

′
1, . . . , R

′
n−1), where R′

i = R2
i + RiRn. Therefore, fj,n(R

′
0, R

′
1, . . . , R

′
n−1)

is a function of R0, R1, . . . , Rn−1, Rn and we can assume fj,n(R
′
0, R

′
1, . . . , R

′
n−1) =

gj,n(R0, R1, . . . , Rn).
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By considering the induction hypothesis,
∑2n−1

i=0 ã
j
i �= 0 when HW(j) = n. Thus we

search for λk,j �= 0 such that HW(j) = n because

2n+1−1∑
i=0

ak
i =

� k
2 �∑

j=0

(λk,jR
k−2j
n

2n−1∑
i=0

ã
j
i ) =

⎧⎨
⎩

∑
j :λj,k=1

gj,n(R0, R1, . . . , Rn) HW(j) = n

0 otherwise

By considering Lemma A6, the non-zeroness condition for HW(j) = n is that HW(j) =
n < HW(k). Since k ≤ 2n+1 − 2 is true, we are also sure that HW(k) ≤ n + 1 is true.
Thus the only acceptable value for HW(k) is n + 1. Therefore, if HW(k) < n + 1, then∑2n+1−1

i=0 ak
i = 0. In the following we prove that when HW(k) = n + 1,

∑2n+1−1
i=0 ak

i =∑
j :λj,k=1gj,n(R0, R1, . . . , Rn) = fk,n+1(R0, R1, . . . , Rn). One can easily see that the set

of all n + 2-bit values of k with n + 1 ones is:

Sk = {2n+2 − 2n+1 − 1, 2n+2 − 2n − 1, 2n+2 − 2n−1 − 1, . . ., 2n+2 − 2 − 1, 2n+2 − 1 − 1}
In this set, there exists n + 1 odd values and only one even value. Let us prove the existence
of at least one λk,j for the odd values of k ∈ Sk . In Lemma A2, λ2l+1,l = 1 and we observe
2n+2 −2k −1 = 2(2n+1 −2k−1 −1)+1, k �= 0 that HW(2n+1 −2k−1 −1) = n. Thus for the
odd values 2n+2 −2k −1 exist j = 2n+1 −2k−1 −1 that HW(j) = n and λ2n+2−2k−1,j = 1.
The only even value in Sk is 2n+2 − 1 − 1 = 2(2n+2 − 2n+1 − 1). For this value of k, we
have:

2n+1−1∑
i=0

a2n+2−1−1
i =

⎛
⎝

2n+1−1∑
i=0

a2n+2−2n+1−1
i

⎞
⎠

2

and therefore the theorem is proven. �

Note that based on Definition 5, we can prove by induction:

2n−1∑
i=0

a2n−1
i = R0R1...Rn−1(R0 + R1)...(Rn−2 + Rn−1)...(R0 + R1 + ... + Rn−1)

So based on Definition 4,
2n−1∑
i=0

a2n−1
i = 0 is always non-zero, and consequently

(
2n−1∑
i=0

a2n−1
i

)−1

exists for each SV matrix.

B Numerical example

In this section, two numerical examples for constructing of involutory MDS matrices and
2n × 2n FFHadamard involutory MDS matrices are presented.

Example B1 For m = 3, the Vandermonde matrix A = van(0x1, 0x3, 0x7e), the parameter
Δ = 0xef , and the primitive polynomial p(x) = x8 + x4 + x3 + x2 + 1, we have the
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involutory MDS matrix BA−1 as below:

BA−1 =
⎛
⎝

0x2 0x7 0x4
0x3 0x6 0x4
0x3 0x7 0x5

⎞
⎠

We multiply 3 × 3 involutory MDS matrices to an array as below

⎛
⎝

y1

y2

y3

⎞
⎠ =

⎛
⎝

0x2 0x7 0x4
0x3 0x6 0x4
0x3 0x7 0x5

⎞
⎠

⎛
⎝

x1

x2

x3

⎞
⎠

If three temporary variables T 1, T 2, and T 3 are used to calculate y1, y2 and y3, we have:

T1 = 2x1, T2 = 7x2, T3 = 4x3

y1 = T1 + T2 + T3

y2 = y1 + x1 + x2

y3 = y1 + x1 + x3

As a result of the calculations above, we need 5 xtimes (one xtime for T1, two xtimes for
T2 and two xtimes for T3) and 8 XOR operations ( two XORs for T2, two XORs for y1, two
XORs for y2 and two XORs for y3).

Example B2 For m = 4, an SV matrix of parameters a0 = 0x3, R0 = 0x1 and R1 = 0xb6
(i.e., A = van(0x3, 0x2, 0xb5, 0xb4)), ai + bi = 0x46, and the primitive polynomial
p(x) = x8 + x4 + x3 + x2 + 1, we have the FFHadamard MDS matrix BA−1 as below:

BA−1 =

⎛
⎜⎜⎝

0x1 0x5 0x12 0x17
0x5 0x1 0x17 0x12

0x12 0x17 0x1 0x5
0x17 0x12 0x5 0x1

⎞
⎟⎟⎠

and based on the method introduced in Sect. 3.1, the inverse of this SV matrix is computed as:

A−1 =

⎛
⎜⎜⎝

0xc2 0xa3 0x5 0x65
0x41 0x51 0xef 0xff

0x30 0x20 0x9f 0x8f

0x10 0x10 0x10 0x10

⎞
⎟⎟⎠

where s0 = 0xd8 (s−1
0 = 0x10) and s1 = 0xd9.

We multiply this 4 × 4 involutory MDS matrices to an array as below

⎛
⎜⎜⎝

y1

y2

y3

y4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0x1 0x5 0x12 0x17
0x5 0x1 0x17 0x12

0x12 0x17 0x1 0x5
0x17 0x12 0x5 0x1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠
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Like Anubis, if four temporary variables T 1, T 2, T 3 and T 4 are used to calculate y1, y2

and y3, we have:

T1 = 0x5(x2 + x4), T2 = 0x12(x3 + x4), T3 = 0x5(x1 + x3), T4 = 0x12(x1 + x2)

y1 = x1 + T1 + T2

y2 = x2 + T3 + T2

y3 = x3 + T1 + T4

y3 = x4 + T3 + T4

By the above calculation, we need 12 xtimes (four xtimes for T1 and T3, eight xtimes
for T2 and T4) and 16 XOR operations (two XORs for each Tis, two XORs for calculation
of yis).
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