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Abstract

A local coloring of a graph G is a function ¢ : V(G) —
N having the property that for each set § C V(G) with
2 < |S] £ 3, there exist vertices u,v € § such that
le(u) — ¢(v)] > mg, where myg is the size of the induced
subgraph (S). The maximum color assigned by a local
coloring ¢ to a vertex of G is called the value of ¢ and
is denoted by X,(c). The local chromatic number of G
is X¢(G) = min{X,(c)}, where the minimum is taken
over all local coloring ¢ of G. If X,(c) = Xo(G), then ¢
1s called a minimum local coloring of G. A graph G is
called locally rainbow if every minimum local coloring of
G uses all of the colors 1,2,...,X,(G). The concept of
local coloring of graphs introduced by Chartrand et. al.
in 2003. They suggested a conjecture on locally rainbow
graphs. In this paper it is shown that their conjecture
is true and for a given positive integer k, there exists a
locally rainbow graph Ry, with X,(Ry) = k.

*This work was partially supported by IUT (CEAMA)

Utilitas Mathematica 79(2009), pp. 267-275




number , locally

»w Graphs

) — N having
2|8} < 3, there
15, whexe mg is
m color assigned
e value of ¢ and
of G is Xy(G) =
»cal coloring ¢ of
local coloring of
rtrand et. al. in

for any subgraph
well.

loring of & graph
'coloring ¢ of ¢
. local coloring of

g result is estab-

plete multipartite
the remaining s

S e

for every positive integer n.

Remark. The proof of Theorem A not only shows X,(G) = 2k — 1
for G = Ky, ny, where k > 2 and n; > 2 for all ¢ € {1,2,...,k},
but that any minimum local coloring of G must color all the vertices
in each partite set the same, namely, each of the colors 1,3, .. ., 2k—1
is assigned to all vertices in a partite set,. :

It is well-known that if G is a graph with X(G) = k, then any
coloring of G whose value is k£ must use all of the colors 1,2,... k.
However if G is a graph with X,(G) = %, then a minjimum local
coloring of G need not use all of colors 1, 2,.. ., k, although certainly
the colors 1 and k must be used, as a simple example X,(K3) = 4.

For a graph G with X,(G) = k, a minimum local coloring ¢ of
G is called a local rainbow coloring if for each integer i, 1 < ¢ < k,
there is a vertex v of G for which ¢(v) = 4, that is, ¢ uses all of colors
1,2,...,k. A'graph G is called locally rainbow if every minimum
local coloring of G is a local rainbow coloring.

In [1], for 1 < k < 5, the locally rainbow graphs Rj, are shown
and the following conjecture is suggested.

Conjecture 1. For every positive integer k, there exists a locally
rainbow graph Ry, with X ,(Ry) = k.

In the following two theorems we prove that the conjecture above
is true.

Theorem 1. For cvery positive integer k > 2, there exists a locally
ratnbow graph Rop_y with X (Rogp_1) = 2k — 1.

Proof. To construct graph Ry 1, first we consider the complete
k-partite graph G = K5 . 2 and denote the parts of G by 13, . .. , Vi.
By Theorem A, G has local chromatic number 2k — 1 and in each
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1 Construction of Locally Rainbow Graphs

A local coloring of a graph G is a function ¢ : V(G) — N having
the property that for each set S C V(G) with 2 < |S| < 3, there
exist vertices u,v € S such that [c(u) — c(v)] > mg, where mg is
the size of the induced subgraph (S). The maximum color assigned
by a local coloring ¢ to a vertex of GG is called the value of ¢ and
is denoted by X,{(c). The local chromatic number of G is X ,(G) =
min{X,(¢c)}, where the minimum is taken over all local coloring ¢ of
G. If Xo(c) = X4(G), then c is called a minimum local coloring of
G. The local coloring of graphs introduced by Chartrand et. al. in
[1] and {2].

Just as standard coloring, where X (H) < X(G) for any subgraph
H of a graph G, it follows that X,(H) < X,(G) as well.

It is often useful to observe that if ¢ is a local coloring of a graph
G whose value is s, then the complementary local coloring € of ¢
defined by &(v) = s + 1 — ¢(v) for all v € V(G) is a local coloring of
G as well.

In [1] and [2] among other results the following result is estab-
Jished which we use to prove our main results.

Theorem A. Let G = Ky, py,..n.y, be a complete multipartite
graph, where v of the integers n; are at least 2, the remaining s
integers n; are 1, and r + s > 2. Then

33—1J
5 .

Xe(G)=2r+ l

In particular,

EES
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minimum local coloring of G all the vertices in V; have color 2§ — 1
for i = 1,2,...,k. In the first step, we add k% — k new vertices
{ui; |1 <i<k,1<j<k-—1} to V(G) and then join each vertex
u;; to all vertices in Vi, ..., V1, Viq1,..., Vi

In the second step, we add the complete graph K1 with vertex
set {v1,..., VL1 } to the graph above, and then join the vertex v; to
the vertices u;;, where 1 <¢ <k and 1 <j <k—1. We denote this
graph by Rog_;.

Since each vertex u;; has neighbors in the vertex set Vi, 1 <1 £
i < k, the color of u;; can not be 2[ — 1. Moreover, if the color
of u;; is 2, 1 <1 < k, then we find an induced subgraph P; with
colors 2/ — 1 and 2l. Therefore, it is seen that, in each minimum
local coloring of the graph Ry each vertex u;;, 1 <j <k —1,
has color 2¢ — 1, for ¢ = 1,...,k. Hence the vertex v; has color 2i,
fori=1,...,k—1. Therefore each minimum local coloring of graph
Rop_1 uses all colors 1,2,...,2k — 1, which means for every positive
integer k, graph Ry is a locally rainbow graph. ]

In the following through some lemmas we prove that, for every
positive integer k, there exists a locally rainbow graph Ro o with

Xe(Rorr2) =2k + 2.

Lemma 1. Let G = Kp 11, wheren >3 andV = {v1,...,v,}, W =
{w} and Z = {z} be partite sets of G. In any minimum local
coloring ¢ of G the vertices in V' have the same color. Moreover one
of the following two possibilities exists; for each v € V, ¢(v) = 1,
c(w) =3 and c(z) = 4 or for each v € V, c(v) =4, c¢(w) =1 and
efz) = 2.

Proof. By Theorem A, X, {G) = 4. Since ¢ has more than 4
vertices in any minimum local coloring ¢ of G there are at least two
vertices in V' with the same color, say ¢;. Without less of generality
let c(w) < ¢(z). We consider the following cases.
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ase 1. ¢ = 2 or ¢y == 3,

et ¢1 = 2. Since vertices w, z and one vertex in V induced a
subgraph K3 and X (K3} = 4, we must have c(w) = 1 and ¢(z) = 4.
Now two vertices with color 2 in V' with w induced a subgraph P
with the colors 1 and 2, which contradicts that ¢ is a local coloring.
The case ¢; = 3 is also failed by considering the complementary local
coloring €.

Case 2. ¢; = 1 or ¢y = 4.

Let ¢; = 1. Since vertices w, 2 and one vertex in V induced a
subgraph K3 and X,(K3) = 4, we must have ¢(z) = 4. Now two
vertices with color 1 in V' with w induced a subgraph P, therefore
we must have c(w) = 3. For the case ¢; = 4, the other possibility
follows by considering the complementary local coloring é.

Now we show that the color of all vertices in partite set V are
the same. To see this by contrary let ¢; = 1 and there exits a
vertex, say u in V with color 2. So vertices u, w and z induced a
subgraph K3 with colors 2, 3 and 4, which contradicts that ¢ is a
local coloring. If ¢; = 4 then we have the same result by considering
the complementary local coloring ¢. 0O

Proposition 1. Let G, = Koy ,om1,1, Wheren; > 3,1 <4<k, bea
complete (k+2)-partite graph with partite sets V; = {vi,. .. ,vfﬁli}} 1<
1<k, W =A{w} and Z = {z}. In any minimum local coloring ¢ of
Gy, the vertices in partite set V; have the same color, say ¢; and in the
ordered set c(V(Gy)) = {c{v) | v € V(Gy)}, the distance of every two
consecutive colors is two, except c(w) and c(z), which ¢(z)—c(w) = 1.
Moreover there are one of the three following possibilities. (Denote
the c(w) and c(z) by cy and c,, respectively, and let ¢, < ¢,.)

l=a << << < <ey <o, =2k+2.

Il=cy<e<a<eg< << - <o, =2k+ 2.

=g << <g<ey<c, < < - <cp=2k+2.
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Proof. We prove the statement by induction on k. For k = 1, the
statement is true by Lemma, 1. Now let the statement be true for all

-p < k and consider graph G, which has at least 3k + 2 vertices. By
Theorem A, X,(Gy) = 2k + 2, hence in each minimum local coloring
c of G}, there are at least two vertices namely u and « in partite set
V; with the same color, say a. Since uw and v’ with each vertex in
the other partite sets in Gy, induced a subgraph Ps, the color of each
vertex v € V(Gg) — Vj is less than or equal to a — 2 or greater than
or équal to a + 2. Now we consider the following cases.

Casel.a=2k+20ra=1.

Let a = 2k + 2. Graph G}, — V} is a complete (k + 1)-partite graph
with k — 1 partite sets of size at least three. In fact Gy —V; = Gy
and the minimum local coloring ¢ on V(Gj)—V; induced a minimum
local coloring of Gi.; with value X¢(Gr—1) = 2k. Therefore by the
induction hypothesis the color of all vertices in each partite sets are
the same and one of the following possibilities appears.

l=c1 << << < Cpoy < Cp <y =2k,

l=cp<e;<ag<eag< - << < gy = 2k.

l=c1 << <<y <, <yl <+ < cpy = 2k.

Therefore by the induction hypothesis the distance of every two
consecrative colors in above is two, except ¢, and c¢,. Moreover for
each vertex v € V}, c(v) = 2k + 2, because otherwise if there exits a
vertex v € Vj, such that ¢(v) = a # 2k + 2, then we find an induced
subgraph P3 with colors a — 1 and a or with colors @ and a + 1; or
we have an induced complete graph K3 with colors a — 2, a — 1 and
a or with colors @, e + 1 and a + 2. Each of these cases contradicts
that ¢ is a local coloring. Therefore the statement is also true for
graph G}.

By considering the complementary local coloring &, for the case
a = 1 the result is obtained.
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so true for.

for the case =

Case 2. 1 <a<2k+ 2.
In this case we define a local coloring ¢ of graph Gy_1 = G — V;.
For each vertex v € V(G%_1), define

/ c(v c(v) <a-2,
¢(v) = cgfug—2 cEvg > a+2.

This coloring is a minimum local coloring of Gy_1, therefore by
the induction hypothesis the statement is true for Gi_1. If b is the
greatest color less than a to be used in local coloring ¢/, then by
adding 2 to the color of vertices with color greater than b in ¢/ and
use the same color as c for the vertices in V; we get the local coloring
¢ of Gi. Therefore the local coloring ¢ has the desired properties
because, for vertices v that ¢/(v) < b, we have ¢(v) = ¢/(v) and for
vertices v that ¢'(v) > b, we have ¢(v) = /(v) + 2. Moreover the
vertices in Vj all must have the same color, otherwise we find an
induced subgraph in Gy with colors that contradicts the property
of c. £l

Consider the graph G = Kyys,... k43,11 With partite sets V; =
{vl,..., 05,3}, 1 <i <k, W = {w} and Z = {z}. Delete the edge
set {va} 14<4,j<k+3,1 <s#t<k}in Gg. We called this new
graph Hj and have the following lemma.

Lemma 2. The graph Hy satisfies in Proposition 1 and X,(Hy) =
2k 4 2.

Proof. It is obvious that G}, = K3 31,1, a complete (k+2)-partite
graph with partite sets V/ = {v{,v%,04}, 1 < i < k, W = {w}
and Z = {z}, is a subgraph of Hy. Also Hj is a subgraph of Gj.
Therefore X;(Hj) = 2k + 2 and each minimum local coloring ¢ of Gy,
is a minimum local coloring of G}.. So G} satisfies in Proposition 1

and ¢(v}) = c(v}) = c(v}) = ¢;, 1 <7 < k. If there exists a vertex v}
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in Hy, such that ¢(v}) = a # ¢;, then we find an induced subgraph
P; with colors a — 1 and a or with colors a and a + 1; or we have an
induced complete graph K3 with colors ¢ — 2, a — 1 and a or with
colors a, a + 1 and a + 2. Each of these cases contradicts that ¢ is a
local coloring. Therefore for each vertex 'oj- eV, c('v;'-) = ¢; and one

of the three possibilities in Proposition 1 appears. i

Theorem 2. For each positive integer k > 2, there exists a locally
rainbow graph Rop o with X (Ropso) = 2k + 2.

Proof. To construct graph Rop, o, first we consider graph Hy, con-
structed above and the complete graph Kj, which V(Ky) = {uq,...,
ur}. We add the edges E = {uw%_,_z[ 1<i< k1 <j< kU
{wiw] 1 <4 <k —1}U {upz}. We denote this new graph by Rgyiq
and claim that X,(Ragq2) = 2k + 2 and Rayyo is a locally rainbow
graph. We define a local coloring ¢ of graph Ray..o as follows. For
each vertex v € V(Hopy2), define '

2t —1 UEV;,IS?;SF’%

) 2 v=u; € V(K),1 <i<k,
W) =1 9k 11 v = w,
2k 42 V= 2.

It is easy to see that ¢ is a local coloring of Rgy,o with value
2k + 2.

Moreover each minimum local coloring of graph Ry, induced
a minimum local coloring of graph Hj. Hence by Lemma 2 the
colors of vertices in Hj, have the properties of Proposition 1. By the
construction above, it is obvious that the colors of vertices in V(K})
are different from the colors of partite sets V4, ..., V4. Also the colors
of vertices in V(K}%) in a local coloring ¢ can not be the same as the
colors c(w) and ¢(z), otherwise since ¢(z) — c(w) = 1, we find an
induced subgraph P; with colors that contradicts the property of ¢.
Therefore the colors of vertices in V(Kj3) are the rest of colors among
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the color set {1,2,...,2k + 2}. So Ropyo is a locally rainbow gra,ph

as claimed. |

From Theorems 1 and 2 we conclude that, for every positive
integer k, there exists a locally rainbow graph Ry with X,(Ry) = k, .
which proves the Conjecture 1 is true.
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