Locally Rainbow Graphs

Behnaz Omoomi and Ali Pourmiri*

Department of Mathematical Sciences
Isfahan University of Technology
84156-83111, Isfahan, Iran

Abstract

A local coloring of a graph G is a function $c: V(G) \rightarrow$ N having the property that for each set $S \subseteq V(G)$ with $2 \le |S| \le 3$, there exist vertices $u, v \in S$ such that $|c(u)-c(v)| \geq m_S$, where m_S is the size of the induced subgraph $\langle S \rangle$. The maximum color assigned by a local coloring c to a vertex of G is called the value of c and is denoted by $\chi_{\ell}(c)$. The local chromatic number of Gis $\chi_{\ell}(G) = \min\{\chi_{\ell}(c)\}$, where the minimum is taken over all local coloring c of G. If $\chi_{\ell}(c) = \chi_{\ell}(G)$, then cis called a minimum local coloring of G. A graph G is called locally rainbow if every minimum local coloring of G uses all of the colors $1,2,\ldots,\chi_\ell(G)$. The concept of local coloring of graphs introduced by Chartrand et. al. in 2003. They suggested a conjecture on locally rainbow graphs. In this paper it is shown that their conjecture is true and for a given positive integer k, there exists a locally rainbow graph R_k with $\chi_{\ell}(R_k) = k$.

^{*}This work was partially supported by IUT (CEAMA)

number, locally

ow Graphs

?) $\longrightarrow N$ having $|S| \leq 3$, there $|S| \leq 3$, there $|S| \leq 3$, where $|S| \leq 3$ is m color assigned e value of c and of G is $|X| \leq 3$ calculating c of local coloring c of rtrand et. al. in

for any subgraph well.

doring of a graph $coloring \bar{c}$ of c, local coloring of

g result is estab-

plete multipartite
the remaining s

for every positive integer n.

Remark. The proof of Theorem A not only shows $\chi_{\ell}(G) = 2k-1$ for $G = K_{n_1,\ldots,n_k}$, where $k \geq 2$ and $n_i \geq 2$ for all $i \in \{1,2,\ldots,k\}$, but that any minimum local coloring of G must color all the vertices in each partite set the same, namely, each of the colors $1,3,\ldots,2k-1$ is assigned to all vertices in a partite set.

It is well-known that if G is a graph with $\chi(G) = k$, then any coloring of G whose value is k must use all of the colors $1, 2, \ldots, k$. However if G is a graph with $\chi_{\ell}(G) = k$, then a minimum local coloring of G need not use all of colors $1, 2, \ldots, k$, although certainly the colors 1 and k must be used, as a simple example $\chi_{\ell}(K_3) = 4$.

For a graph G with $\chi_{\ell}(G) = k$, a minimum local coloring c of G is called a *local rainbow coloring* if for each integer $i, 1 \leq i \leq k$, there is a vertex v of G for which c(v) = i, that is, c uses all of colors $1, 2, \ldots, k$. A graph G is called *locally rainbow* if every minimum local coloring of G is a local rainbow coloring.

In [1], for $1 \leq k \leq 5$, the locally rainbow graphs R_k are shown and the following conjecture is suggested.

Conjecture 1. For every positive integer k, there exists a locally rainbow graph R_k with $\chi_{\ell}(R_k) = k$.

In the following two theorems we prove that the conjecture above is true.

Theorem 1. For every positive integer $k \geq 2$, there exists a locally rainbow graph R_{2k-1} with $\chi_{\ell}(R_{2k-1}) = 2k-1$.

Proof. To construct graph R_{2k-1} , first we consider the complete k-partite graph $G = K_{2,2,\dots,2}$ and denote the parts of G by V_1, \dots, V_k . By Theorem A, G has local chromatic number 2k-1 and in each

Key Words: local coloring, local chromatic number, locally rainbow graph.

1 Construction of Locally Rainbow Graphs

A local coloring of a graph G is a function $c:V(G)\longrightarrow N$ having the property that for each set $S\subseteq V(G)$ with $2\leq |S|\leq 3$, there exist vertices $u,v\in S$ such that $|c(u)-c(v)|\geq m_S$, where m_S is the size of the induced subgraph $\langle S\rangle$. The maximum color assigned by a local coloring c to a vertex of G is called the value of c and is denoted by $\chi_{\ell}(c)$. The local chromatic number of G is $\chi_{\ell}(G)=\min\{\chi_{\ell}(c)\}$, where the minimum is taken over all local coloring c of G. If $\chi_{\ell}(c)=\chi_{\ell}(G)$, then c is called a minimum local coloring of G. The local coloring of graphs introduced by Chartrand et. al. in [1] and [2].

Just as standard coloring, where $\chi(H) \leq \chi(G)$ for any subgraph H of a graph G, it follows that $\chi_{\ell}(H) \leq \chi_{\ell}(G)$ as well.

It is often useful to observe that if c is a local coloring of a graph G whose value is s, then the *complementary local coloring* \bar{c} of c defined by $\bar{c}(v) = s + 1 - c(v)$ for all $v \in V(G)$ is a local coloring of G as well.

In [1] and [2] among other results the following result is established which we use to prove our main results.

Theorem A. Let $G = K_{n_1,n_2,...,n_{r+s}}$ be a complete multipartite graph, where r of the integers n_i are at least 2, the remaining s integers n_i are 1, and $r + s \ge 2$. Then

$$\chi_{\ell}(G) = 2r + \left\lfloor \frac{3s-1}{2} \right\rfloor.$$

In particular,

$$\chi_{\ell}(K_n) = \left\lfloor \frac{3n-1}{2} \right\rfloor$$

minimum local coloring of G all the vertices in V_i have color 2i-1 for $i=1,2,\ldots,k$. In the first step, we add k^2-k new vertices $\{u_{ij} \mid 1 \leq i \leq k, 1 \leq j \leq k-1\}$ to V(G) and then join each vertex u_{ij} to all vertices in $V_1,\ldots,V_{i-1},V_{i+1},\ldots,V_k$.

In the second step, we add the complete graph K_{k-1} with vertex set $\{v_1, \ldots, v_{k-1}\}$ to the graph above, and then join the vertex v_j to the vertices u_{ij} , where $1 \leq i \leq k$ and $1 \leq j \leq k-1$. We denote this graph by R_{2k-1} .

Since each vertex u_{ij} has neighbors in the vertex set V_l , $1 \le l \ne i \le k$, the color of u_{ij} can not be 2l-1. Moreover, if the color of u_{ij} is 2l, $1 \le l \le k$, then we find an induced subgraph P_3 with colors 2l-1 and 2l. Therefore, it is seen that, in each minimum local coloring of the graph R_{2k-1} each vertex u_{ij} , $1 \le j \le k-1$, has color 2i-1, for $i=1,\ldots,k$. Hence the vertex v_i has color 2i, for $i=1,\ldots,k-1$. Therefore each minimum local coloring of graph R_{2k-1} uses all colors $1,2,\ldots,2k-1$, which means for every positive integer k, graph R_{2k-1} is a locally rainbow graph.

In the following through some lemmas we prove that, for every positive integer k, there exists a locally rainbow graph R_{2k+2} with $\chi_{\ell}(R_{2k+2}) = 2k+2$.

Lemma 1. Let $G = K_{n,1,1}$, where $n \geq 3$ and $V = \{v_1, \ldots, v_n\}$, $W = \{w\}$ and $Z = \{z\}$ be partite sets of G. In any minimum local coloring c of G the vertices in V have the same color. Moreover one of the following two possibilities exists; for each $v \in V$, c(v) = 1, c(w) = 3 and c(z) = 4 or for each $v \in V$, c(v) = 4, c(w) = 1 and c(z) = 2.

Proof. By Theorem A, $\chi_{\ell}(G) = 4$. Since G has more than 4 vertices in any minimum local coloring c of G there are at least two vertices in V with the same color, say c_1 . Without less of generality let c(w) < c(z). We consider the following cases.

color 2/2 lew vertice each verte

with verila vertex of the denote the

 V_l , $1 \le l$ if the cokuph P_3 with minimum $j \le k - 1$ has color 2l ing of graphery positive

 R_{2k+2} with

u U

 v_n , W = nimum local foreover one (v, c(v) = 1, (w) = 1)

nore than 4 at least two of generality

Case 1. $c_1 = 2$ or $c_1 = 3$.

Let $c_1 = 2$. Since vertices w, z and one vertex in V induced a subgraph K_3 and $\chi_{\ell}(K_3) = 4$, we must have c(w) = 1 and c(z) = 4. Now two vertices with color 2 in V with w induced a subgraph P_3 with the colors 1 and 2, which contradicts that c is a local coloring. The case $c_1 = 3$ is also failed by considering the complementary local coloring \bar{c} .

Case 2. $c_1 = 1$ or $c_1 = 4$.

Let $c_1 = 1$. Since vertices w, z and one vertex in V induced a subgraph K_3 and $\chi_{\ell}(K_3) = 4$, we must have c(z) = 4. Now two vertices with color 1 in V with w induced a subgraph P_3 , therefore we must have c(w) = 3. For the case $c_1 = 4$, the other possibility follows by considering the complementary local coloring \bar{c} .

Now we show that the color of all vertices in partite set V are the same. To see this by contrary let $c_1 = 1$ and there exits a vertex, say u in V with color 2. So vertices u, w and z induced a subgraph K_3 with colors 2, 3 and 4, which contradicts that c is a local coloring. If $c_1 = 4$ then we have the same result by considering the complementary local coloring \bar{c} .

Proposition 1. Let $G_k = K_{n_1,...,n_k,1,1}$, where $n_i \geq 3$, $1 \leq i \leq k$, be a complete (k+2)-partite graph with partite sets $V_i = \{v_1^i, \ldots, v_{n_i}^i\}$, $1 \leq i \leq k$, $W = \{w\}$ and $Z = \{z\}$. In any minimum local coloring c of G_k the vertices in partite set V_i have the same color, say c_i and in the ordered set $c(V(G_k)) = \{c(v) \mid v \in V(G_k)\}$, the distance of every two consecutive colors is two, except c(w) and c(z), which c(z)-c(w)=1. Moreover there are one of the three following possibilities. (Denote the c(w) and c(z) by c_w and c_z , respectively, and let $c_w < c_z$.)

$$1 = c_1 < c_2 < \dots < c_i < \dots < c_k < c_w < c_z = 2k + 2.$$

$$1 = c_w < c_z < c_1 < c_2 < \dots < c_i < \dots < c_k = 2k + 2.$$

$$1 = c_1 < c_2 < \dots < c_i < c_w < c_z < c_{i+1} < \dots < c_k = 2k + 2.$$

Proof. We prove the statement by induction on k. For k=1, the statement is true by Lemma 1. Now let the statement be true for all p < k and consider graph G_k which has at least 3k + 2 vertices. By Theorem A, $\chi_{\ell}(G_k) = 2k + 2$, hence in each minimum local coloring c of G_k there are at least two vertices namely u and u' in partite set V_j with the same color, say a. Since u and u' with each vertex in the other partite sets in G_k induced a subgraph P_3 , the color of each vertex $v \in V(G_k) - V_j$ is less than or equal to a - 2 or greater than or equal to a + 2. Now we consider the following cases.

Case 1. a = 2k + 2 or a = 1.

Let a=2k+2. Graph G_k-V_j is a complete (k+1)-partite graph with k-1 partite sets of size at least three. In fact $G_k-V_j=G_{k-1}$ and the minimum local coloring c on $V(G_k)-V_j$ induced a minimum local coloring of G_{k-1} with value $\chi_{\ell}(G_{k-1})=2k$. Therefore by the induction hypothesis the color of all vertices in each partite sets are the same and one of the following possibilities appears.

$$\begin{split} 1 &= c_1 < c_2 < \dots < c_i < \dots < c_{k-1} < c_w < c_z = 2k. \\ 1 &= c_w < c_z < c_1 < c_2 < \dots < c_i < \dots < c_{k-1} = 2k. \\ 1 &= c_1 < c_2 < \dots < c_i < c_w < c_z < c_{i+1} < \dots < c_{k-1} = 2k. \end{split}$$

Therefore by the induction hypothesis the distance of every two consecrative colors in above is two, except c_w and c_z . Moreover for each vertex $v \in V_j$, c(v) = 2k + 2, because otherwise if there exits a vertex $v \in V_j$, such that $c(v) = a \neq 2k + 2$, then we find an induced subgraph P_3 with colors a - 1 and a or with colors a and a + 1; or we have an induced complete graph K_3 with colors a - 2, a - 1 and a or with colors a, a + 1 and a + 2. Each of these cases contradicts that c is a local coloring. Therefore the statement is also true for graph G_k .

By considering the complementary local coloring \bar{c} , for the case a=1 the result is obtained.

k = 1, the true for all rertices. By cal coloring partite set h vertex in olor of each reater than

write graph $V_j = G_{k-1}$ a minimum afore by the tite sets are

2k.

2k.

 $_{1}=2k.$

of every two foreover for here exits a an induced ad a+1; or 2, a-1 and contradicts also true for

for the case

Case 2. 1 < a < 2k + 2.

In this case we define a local coloring c' of graph $G_{k-1} = G_k - V_j$. For each vertex $v \in V(G_{k-1})$, define

$$c'(v) = \begin{cases} c(v) & c(v) \le a - 2, \\ c(v) - 2 & c(v) \ge a + 2. \end{cases}$$

This coloring is a minimum local coloring of G_{k-1} , therefore by the induction hypothesis the statement is true for G_{k-1} . If b is the greatest color less than a to be used in local coloring c', then by adding 2 to the color of vertices with color greater than b in c' and use the same color as c for the vertices in V_j we get the local coloring c of G_k . Therefore the local coloring c has the desired properties because, for vertices v that $c'(v) \leq b$, we have c(v) = c'(v) and for vertices v that c'(v) > b, we have c(v) = c'(v) + 2. Moreover the vertices in V_j all must have the same color, otherwise we find an induced subgraph in G_k with colors that contradicts the property of c.

Consider the graph $G_k = K_{k+3,\cdots,k+3,1,1}$ with partite sets $V_i = \{v_1^i, \ldots, v_{k+3}^i\}$, $1 \leq i \leq k$, $W = \{w\}$ and $Z = \{z\}$. Delete the edge set $\{v_i^s v_j^t \mid 4 \leq i, j \leq k+3, 1 \leq s \neq t \leq k\}$ in G_k . We called this new graph H_k and have the following lemma.

Lemma 2. The graph H_k satisfies in Proposition 1 and $\chi_{\ell}(H_k) = 2k + 2$.

Proof. It is obvious that $G'_k = K_{3,...,3,1,1}$, a complete (k+2)-partite graph with partite sets $V'_i = \{v^i_1, v^i_2, v^i_3\}$, $1 \le i \le k$, $W = \{w\}$ and $Z = \{z\}$, is a subgraph of H_k . Also H_k is a subgraph of G_k . Therefore $\chi_{\ell}(H_k) = 2k+2$ and each minimum local coloring c of G_k is a minimum local coloring of G'_k . So G'_k satisfies in Proposition 1 and $c(v^i_1) = c(v^i_2) = c(v^i_3) = c_i$, $1 \le i \le k$. If there exists a vertex v^i_j

in H_k such that $c(v_j^i) = a \neq c_i$, then we find an induced subgraph P_3 with colors a-1 and a or with colors a and a+1; or we have an induced complete graph K_3 with colors a-2, a-1 and a or with colors a, a+1 and a+2. Each of these cases contradicts that c is a local coloring. Therefore for each vertex $v_j^i \in V_i$, $c(v_j^i) = c_i$ and one of the three possibilities in Proposition 1 appears.

Theorem 2. For each positive integer $k \geq 2$, there exists a locally rainbow graph R_{2k+2} with $\chi_{\ell}(R_{2k+2}) = 2k + 2$.

Proof. To construct graph R_{2k+2} , first we consider graph H_k constructed above and the complete graph K_k which $V(K_k) = \{u_1, \ldots, u_k\}$. We add the edges $E = \{u_i v_{3+i}^j | 1 \le i \le k, 1 \le j \le k\} \cup \{u_i w | 1 \le i \le k-1\} \cup \{u_k z\}$. We denote this new graph by R_{2k+2} and claim that $\chi_{\ell}(R_{2k+2}) = 2k+2$ and R_{2k+2} is a locally rainbow graph. We define a local coloring c of graph R_{2k+2} as follows. For each vertex $v \in V(R_{2k+2})$, define

$$c(v) = \left\{ egin{array}{ll} 2i-1 & v \in V_i, 1 \leq i \leq k, \ 2i & v = u_i \in V(K_k), 1 \leq i \leq k, \ 2k+1 & v = w, \ 2k+2 & v = z. \end{array}
ight.$$

It is easy to see that c is a local coloring of R_{2k+2} with value 2k+2.

Moreover each minimum local coloring of graph R_{2k+2} induced a minimum local coloring of graph H_k . Hence by Lemma 2 the colors of vertices in H_k have the properties of Proposition 1. By the construction above, it is obvious that the colors of vertices in $V(K_k)$ are different from the colors of partite sets V_1, \ldots, V_k . Also the colors of vertices in $V(K_k)$ in a local coloring c can not be the same as the colors c(w) and c(z), otherwise since c(z) - c(w) = 1, we find an induced subgraph P_3 with colors that contradicts the property of c. Therefore the colors of vertices in $V(K_k)$ are the rest of colors among

ed subgraph: we have an id a or with sthat c is a $= c_i$ and one

ists a locally

 $\operatorname{aph} H_k \operatorname{con-} = \{u_1, \ldots, \leq j \leq k\} \cup$ $\operatorname{ph} \operatorname{by} R_{2k+2}$ $\operatorname{ally rainbow}$ $\operatorname{follows.}$ For

2 with value

k,

2k+2 induced emma 2 the on 1. By the ces in $V(K_k)$ lso the colors same as the , we find an property of c. colors among the color set $\{1, 2, ..., 2k + 2\}$. So R_{2k+2} is a locally rainbow graph as claimed.

From Theorems 1 and 2 we conclude that, for every positive integer k, there exists a locally rainbow graph R_k with $\chi_{\ell}(R_k) = k$, which proves the Conjecture 1 is true.

References

- [1] G. Chartrand, E. Salehi, and P. Zhang, On local colorings of graphs. Congressus Numerantium, 163 (2003) 207-221.
- [2] G. Chartrand, F. Saba, E. Salehi, and P. Zhang, Local colorings of graphs. Utilitas Mathmatica, 67 (2005) 107-120.