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Constructing regular graphs with
smallest defining number
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Abstract

In a given graph G, a set S of vertices with an assignment of
colors is a defining set of the vertex coloring of G, if there exists
a unique extension of the colors of S to a X(G)-coloring of the
vertices of G. A defining set with minimum cardinality is called
a smallest defining set (of vertex coloring) and its cardinality, the
defining number, is denoted by d(G, X). Let d(n,r, X = k) be the
smallest defining number of all r-regular k-chromatic graphs with n
vertices. Mahmoodian et. al [7] proved that, for a given k and for
all n >3k, if r > 2(k—1) thend(n,r, X =k) =k—1. In this paper
we show that for a given k and for all n < 3k and r > 2(k — 1),
din,7, X =k)=k—1.
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1 Introduction

A k-coloring of a graph G is an assignment of k different colors to the vertices
of & such that no two adjacent vertices receive the same color. The (vertex)
chromatic number, X(G), of a graph G is the minimum number k for which
there exists a k-coloring for G. A graph G with X(G) = k is called a k-
chromatic graph. In a given graph G, a set of vertices S with an assignment
of colors is called a defining set of vertex coloring, if there exists a unique
extension of the colors of S to a X(G)-coloring of the vertices of G. A
defining set with minimum cardinality is called a smallest defining set (of
a vertex coloring) and its cardinality is the defining number, denoted by
d(G, X).

There are some results on defining numbers in [6] (see also [3], and [4]).
Here we study the following concept. Let d(n,r, X = k) be the smallest
value of d(G, X) for all r-regular k-chromatic graphs with n vertices. Note
that for any graph G, we have d(G, X) > X(G) -1, therefore d(n,r, X =
k) > k — 1. By Brooks’ Theorem [2}, if G is a connected r-regular k-
chromatic graph which is not a complete graph or an odd cycle, then k<.
For the case of r = k, Mahmoodian and Mendelsohn [5] determined the
value of d(n,k, X = k) for all k£ < 5. Mahmoodian and Soltankhah (8]
determined this value for k = 6 and k = 7. Also in [8], for each k, the value
of d(n,k, X = k) is determined for some congruence classes of n. For the
case of k < r, it is proved in [5] that, for each n and each r > 4, we have
d(n,r, X = 3) = 2. The following question is raised in [3]:

Question. Is it true that for every k, there exist no(k) and ro(k), such
that for all n > no(k) and r > ro(k) we have din,r, X=4k)=k~-17

Mahmoodian et. al. [7] proved that the answer to this question is positive

and that, for a given k and all n > 3k, if r > 2(k - 1) then d(n,r, X =
k) =k—1.

We show the above statement for n < 3k. In fact we prove that:

Theorem. Let k be a positive integer. For each n < 3k, if r > 2(k - 1)
then d(n,r, X =k) =k - 1.

2 Preliminaries

In this section, we state some known results and definitions which will be
used in the sequel.
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Definition 1 [5]. Let G and H be two graphs, each with a given proper k-

coloring say cg and cgr, (respectively) with k colors. Then the chromatic join

of G and H, denoted by G ¥ H is a graph where V(G $ HYis V(G)UV (H),

and E(G \V H) is E(G) U E(H), together with the set {zy |z € V(G), y €
V(H) such that cg(z) # cu(y)}-

Theorem A [5]. Let n be a multiple of k, say n = ki (I > 2); then
d(kl,2(k—1), X =k)=k - 1.

To prove this theorem Mahmoodian and Mendelsohn constructed a 2(k—1)-
regular k-chromatic graph with n = kl vertices as follows. Let G1, Ga,...,Gy
be vertex disjoint graphs such that G, and G, are two copies of K and
if | > 3, Gy,---,Gi—1 are copies of K. Color each G; with k colors
1,2,---,k. Then construct a graph G with lk vertices by taking the union
of G{UG,U...UG, and by making a chromatic join between G; and Gi1;
fori=1,2,---,1 — 1. This is the desired graph. We denote such a graph
by Gk and use this construction in Section 3.

Definition 2 [8]. Let G be a k-chromatic graph and let S be a defining
set for G. Then a set F(S) of edges is called nonessential edges, if the
chromatic number of G — F(S), the graph obtained from G by removing
the edges in F(S), is still k, and S is also a defining set for G — F(S5).

Remark 1. A necessary condition for the existence of an r-regular k-
chromatic graph is &7 < %. For, if G is an r-regular k-chromatic graph
with n vertices, then each chromatic class in G has at most n — r vertices.
Therefore n < k(n —r). This implies &7 < 2. Thus, for r 2 2(k —1)
there are not any graph of order n < 2k. Hence when r 2> 2(k — 1), it is
sufficient to investigate d(n,r, X = k) only-for n 2 2k. Also it is obvious

that n and r cannot be both odd.
For the definitions and notations not defined here we refer the reader to

texts, such as [9].

3 Main results

In this section in the following four theorems we prove our main result,
which was mentioned at the end of Section 1.

Theorem 1. For each k > 3 and each r > 2(k — 1), we have
A3k —1,r, X =k) =k — 1.
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Proof. Letn = 3k —1 and r = 2(k — 1) +¢. By Remark 1 it is obvious
that t < k — 2. First for ¢t = 0, we construct a 2(k — 1)-regular k-chromatic
graph H with n vertices and d(H, X) = k — 1 as follows. By Theorem
A we have d(3k,2(k - 1), X = k) = k—-1. In graph G3() which was
constructed to prove Theorem A, let V(G1) = {u1,u, ..., ux}, V(G2) =
{v1,v2, ..., v}, and V(G3) = {wi,ws,...,w,}. Also assume that c(u;) =
c(vi) = c(w;) = i, for i = 1,2,...,k. Note that the set of vertices adjacent
to vg is Nggg, (vk) = {u1, ., up—1} U {wr, oy Wg—1}. We delete the vertex
v and join its neighbors in the following manner: we join u; to w41 for
i=1,2,..,k—2and ug-1 tow:. It can be easily seen that the new graph,
say H, is 2(k — 1)-regular k-chromatic with n = 3k — 1 vertices with a
defining set S = {u1, u2, ey Ug—1 }-

Now for 1 < t < k — 3, to construct an r-regular k-chromatic graph,
we consider the graph H, and we add the edges u;wi+j+2 (mod k), for
i=1,.,kand j =1,..,¢t to H. Also, in the case of k odd, we add the
edges of t mutually disjoint 1-factors of Kj_1, and in the case of k even, the
edges of -;— mutually disjoint 2-factors of K—1, on vertex set {v1, .oy Ug—1}-

Note that if ¢ = k — 2 then such a graph does not exist. For, if G
is a graph satisfying such conditions then we know that each chromatic
class in G has at most 3 vertices. Since n = 3k — 1, G must have k — 1
chromatic classes of size 3 and one chromatic class of size 2. And each
vertex in a chromatic class of size 3 must be adjacent to all other vertices.
This implies that the degree of each vertex in the chromatic class of size 2
is 3(k — 1) =r + 1, which contradicts the r-regularity of the graph. |

Example 1. In Figure 1 we show the graph H when k=5 andr = 8. The
vertices of the defining set are shown by the filled circles.

Figure 1: d(H,x =5) =4.
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Theorem 2. For each odd number k > 3, and each 2k < n < 3k — 2, we
have d(n,2(k—1), X = k) =k—1.

Proof. By Theorem A we have d(2k,2(k —1), X =k) =k~ 1. Let n =
9k+s,5=1,2,..,k—2. We construct a 2(k— 1)-regular k-chromatic graph
H, with n vertices and defining number equals to k—1. For this, we consider
graph Ga() and add s new vertices to it, delete some suitable edges as fol-
lows and join the new vertices to the end vertices of deleted edges. In graph

G, for convenience let V(G1) = {U1, eens Wiy ooy Ub2, ULrs ooy Ui o U=ty
cux} and V(Ga) = {V1, ey Vi ooy Vb2, V1 ...,vi:,...,v(k_g_l_)',vk}, where i’ =
C k=1l g — k—1. _ o ;-

i+ k—i—, i=1,2,..,%5; and c(uj) = c(vj) = J» for j = 1,2,..., k.

f1<s< %l then denote new vertices by 1, ..., Ts- Let My, My, ..., ML};
be mutually disjoint 1-factors of subgraph < U1, -y Wiy ooy Uk U175 o005 Ugt g oen
 U(koy > in G such that each edge in M; has one end in {u,us, ---,Ub;.;_l}
and the other end in {u1/, .., ,u(%i):}. For each i (1 < i < s) we join T;
to each of the vertices of M;, and delete all of the edges of M. Also
with respect to each uqup € M;, we delete the edge v,Up and join Z;
to the vertices v, and vy. Now it can be easily seen that deg(z;) =
2(k — 1). Note that the new graph contains a complete subgraph say,
< Uy, Uy ey U1, VT e V(is1y's T >= K, and a defining set S = {u1, s

up—1}. Also the colors of vertices of Gy force all new vertices to be
colored k.

It -’9—;—1— < s < k — 2 then we denote the new vertices by T1,%2,..., Tk=1,Y1,
2

Y2y s Yokl Forz; (1<t< E—;—l) we proceed as before. For y; (1<t<
s — E—;-l), first, we recognize some nonessential edges in H =y If for each

i, we let z; be either u; or v; and, for each j, we let w; be either u; or vy,
then the following edges form 2 nonessential set in Hr-1:
2

F= {ijllsz'<js%i}u{uau,vll’gi'<j'§(ﬂ—;—1)’}u
{z1usy omm|15ig&gl}u{miwj|2gi§k—;—1,1§jgk—1}u

{szkllélgk—l}

There are two cases to be considered.
Case 1. k=41 +1.
In this case the induced subgraphs A =< Uy, Uy, Uksly > and

2
B =< v1,Vg, .0 Vit > are complete graphs K Bt So they are 1-factorable.
Let Fy, Fy, ..., F;L;_g_ and F|,F},...,Fi_s be 1-factorizations of A and B, re-
2
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spectively, such that the edge uypu Eo1y € F; and UiVaz1 € F|/. Now for
eacht (1 <t <s— 551 < 552) we delete all of the edges of Fe\{uvwus1y}
and F{\{vtvi-1 }. Also we delete the edges uivi and upvg. Finally we

delete all the edges T1v¢, Talpt 1,y Tro1 Uy, b2 (mod £51). We join y;

to the ends of all deleted edges. It can be easily seen that deg(y:) = 2(k—1)
and the color of y; is forced to be k — 1.

Case 2. k =4l+ 3.

In this case the induced subgraphs A =< uy, Uar, oy U1y, Uk > and
2
B =< v1,V2,. Vi1, Vk > are complete graphs Kk_;_r_l. Thus they are 1-
factorable. Let Fy, Fs,..., F S5} and F, F3,..., Fi_, be 1-factorizations of A
2

and B, respectively, such that upu, € Fy and vvx € Fl for1<t< &5t
Now for each t (1 <t < s— 5—5-1 < k—;—3) we delete all of the edges of
F\{upui} and F{\{vive}. Also we delete the edge vyu. Finally we delete
the edges T10¢, TaUttlyee) ThollUp, ko3 (mod ’3;2’—1—). We join y; to the
ends of all deleted edges. It can be easily seen that deg(y;) = 2(k — 1) and
the color of y; is forced to be ¢ + &5 | |

To illustrate the construction shown in the proof of Theorem 2, we provide
the following example.

Example 2. Let k = 7. For 15 < n < 19, we construct a 12-regular

7-chromatic graph of order n with a defining set of size 6. For n =14 + s,

1< s < 5, we add s new vertices to the 12-regular 7-chromatic graph Ga(7)

of order 14 and delete some nonessential edges as explained in the proof of
Theorem 2. ’

Table 1: New vertices and deleted edges.

New vertices T1 T T3 Y1 Y2
LU | Uil | UrUg | U Uz | UrU3
Ugty | UgUgr | U2Uy U3 "1V3
Deleted ugus | uguy | uzue | T11 T1V2
edges V1V1 V1 U9/ V103’ ToU2 ToU3
VU2 UoV3r | UaUr Z3Us3 I3ui
U3 U3 Uz U1’ R U7 U1 VrU2

Table 1 gives all the deleted edges of Ga(7) with respect to addition of
new vertices. In Figure 2, we show the deleted edges and the added edges
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Figure 2: d(H,,x =7) =6.

Theorem 3. For each even number k > 4, and each 2k <n < 3k — 2, we
have d(n,2(k—-1), X =k) =k —1.

Proof. By Theorem A we have d(2k,2(k — 1), X = k) = k — 1. For
n=2%k+s, s=12..k~—2, we construct a 2(k — 1)-regular k-chromatic
graph H, with n vertices and defining number equal to k — 1.

To construct H,, we consider graph Gy and add s new vertices to it,
delete some suitable edges and join the new vertices to the end vertices of
the deleted edges as follows. In graph Goy) for convenience let V(Gy) =

{ul, eeey Ug,y ...,u%,ulz,...,ui:, ,’U,(%)/} and V(Gg) = {'Ul, vers Ugy ...,’U%,’Ulr,

oo k . k_ _ o
,vi:,...,v(%):}, where i’ =i+ 5,1 =1,2,...,5; and c(uj) = c(v;) = j, for
j=12..,k.

If1<s< g—l then we denote the new vertices by zi,...,zs. Let
M, Ms,....M k be mutually disjoint 1-factors of the induced subgraph
Gi =< Uy, .-y Uiy ey Uk, ULy ey Uity ooy U Ry >, where, for ¢ = 1,2, ..., %;

k
M, = {ului”u2u(i+l)’v sy Ut (G4¢-1)" ---7U§U(i+1e2._1)’} (mod 5)
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Also let M|, M5, ..., M, be mutually disjoint 1-factors of the induced sub-
2

: k
graph Ga =< U1, s Uiy oo, Ve, V115 ey Uity ooy U( kY >, where, fori = 1,2, ..., 33

k
M} = {0100, V20(i41) 5 -+ VeV (it t-1)'» ...,’U%’U(H_%_l)l} (mod 5)

Now for eachi (i = 1,2, ..., ) we delete all of the edges of Mi+1\{u%_iu(%)/ IS
and all of the edges of M;\{vi_; 17 %):}. Finally we delete the edge
Uk V% _it1- We join z; to the ends of all deleted edges. Now it can
be easily seen that deg(z:) = 2(k — 1). Note that the new graph contains
a complete subgraph say < Uy, Uy ooy Uk s Uy H VL oy Uk 1y’ >= K} and
a defining set S = {u1, ..., uk—1}- Also the colors of vertices of Gy force
the colors of all new vertices to be k.

If!;- < 5 < k—2 then we denote the new vertices by 1, Z2, .-, T&_1, Y1, ¥2
o Ysm Ryt Forz; (1 << %—— 1) we treat as before. For y; (1 £t <

s — % 4+ 1) first we recognize some nonessential edges in Hg_;. If for each

4, we let w; be either u; or vj, then the following edges form a nonessential
set in H k1

F= {vivﬂ'l15i<j§%’j5£'i+1}u{“i’uj"1l$i'<j'ﬁ(!2c'),,_1}u
{a:iwjl1§i_<_%—1,1§j_<_k——1}u{viv(_§_)z l1<i<(®) -1u
Ml\{ugu(;%)/}UM%_.

There are two cases to be considered.
Case 1. kK =4l.

In this case the induced subgraphs A =< uy, Uz - Uy’ > and B =<
v1,V2, . Ve > ATE complete graphs K k- So they are 1-factorable. Let
Fl,Fg,...,F% _, and F{,F3, ..., '% _, be standard 1-factorizations (see [1],
page 166) of A and B, respectively, such that the edges uptky € F; and

vve € F!. Now for each ¢ (1<t< 3—%—{—1 < %—1) we delete all of

thezedges of Fy\{utu y} and F!. Also we delete the edge v+1y Y&y

(mod (% —1)). If there exist some edges such as vivit1 € F!, then instead

of these edges we delete the edges vivit1 € M.
2

Also for an arbitrary index ¢ of such as edges v;vi41 we delete the edge
ViV Ky instead of the edge v(t4+1)' V(L)' Finally we delete the edges Ziut+1,

k
ToU ey Tl Uy k mod Z).
2Ut42yerr L E 1B+ 51 ( 2)
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We join y; to the ends of all deleted edges. It can be easily seen that
deg(ys) = 2(k — 1) and the color of y; is forced to be ¢ + K fort# g— -1
and the color of Ye_y to be % - 1.

Case 2. k=4l + 2.

In this case the induced subgraphs A =< U, Ugry oy Ul U1 > and
B =< v1,v2,...,VE, Y5y > are complete graphs K%+1' So they are 1-
factorable. Let Fy, Fy, ..., Fi and F{, F3, ..., F ’% be 1-factorizations of A and
B, respectively, such that ujuy € Fy and vy € F!. Now for each t (1 <
t<s-— % +1 < g — 1) we delete all of the edges of Ft\{UlUtl,Uj’U(%)’}
and F!. Also we delete the edge ujuy € M;. If there exist some edges
such as v;vi41 € F} then instead of the edges v;vi4, we delete the edges
VirVit1 € M’g Finally we delete the edges T1uj41, TaUjs2, Th1Ujp k1
(mod g) We join y; to the ends of all deleted edges. It can be easily seen
that deg(y:) = 2(k — 1) and the color of y; is forced to be ¢ + % |

To illustrate the construction shown in the proof of Theorem 3; we
provide the following example.

Example 3. Let kK = 8. For 17 < n < 22, we construct a 14-regular
8-chromatic graph of order n with a defining set of size 7. For n = 16 + s,
1< s < 6, we add s new vertices to the 14-regular 8-chromatic graph Go(s)
of order 16 and delete some nonessential edges as explained in the proof of
Theorem 3.

Table 2: New vertices and deleted edges.

New vertices T 9 T3 N Yo Ys
U Uar U1 ug’ UaU ! Uar UG’ U ug: Uy Uy
UgUg! U3y’ Uz U/ V14 VoUg V3 V4
Deleted UgUpr | UgUer | UgUsz | VU3 V13 V1 U2
edges MU v Uy v1Vg/ VoVy/ Vg Vg V1V4¢

Va V2! VU3 V3V T1U2 Tiusg T1U4
CRIKY v4Vy Vq Vo Tousg TaUy4 ToUq
U3Va UzvU3 U1v2 T3Usg I3Uy T3Uo

Table 2 gives all the deleted edges of Gy(s) with respect to addition of
" new vertices. In Figure 3, we show the deleted edges and the added edges
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~

to construct a 14-regular 8-chromatic graph H; of order 17 (s = 1) with
a defining set of size 7. The dotted lines are the deleted edges and the
vertices of the defining set are shown by the filled circles.

I

Figure 3: d(Hy,x =8) = 1.

Theorem 4. For each k > 4, 2k < n < 3k —2, and r > 2(k — 1), we have
dn,r, X=k)=k—-1.

Proof. Letn =2k+s5,0<s<k—2,andr =2(k—1)+t. By Remark 1,
if there exists an r-regular k-chromatic graph with n vertices then it is
obvious that t < s. We construct an r-regular k-chromatic graph H with
n vertices in the following manner.

Consider graph Gy, let V(G1) = {ug,..,ur} and V(G2) = {v1,...,u},
and c(u;) = c(v;) = 4, for i = 1,2,....,k. We add s new vertices say
Ti,..,Ts 10 Go). For each z; (1 < i < s) we join z; to each ver-
tex of V(G1) U V(G2)\{us,v:}. Also, in the case of s even, we add the
edges of t mutually disjoint 1-factors of K, and in the case of s odd, the
edges of % mutually disjoint 2-factors of K, to 1,...,Zs. The graph ob-
tained in this way, say H', is a k-chromatic graph with n vertices and a
defining set S = {Za,...,Zs, Vs41,---» Uk} Such that deg(z;) = 2(k-1)+¢
(1 < i < s), deg(u;) = deg(v;) = 2(k—1) +s—1 (1 <4< 8), and
deg(u;) = deg(v;) = 2(k—=1)+s(s+1 <1 < k). Now we show that by
deleting some suitable nonessential edges of H ' the desired r-regular graph
H can be obtained.

Tn the graph H', for conveniencelet A = {u1,...,u; 31}, C = {ulg)+1s -0 ush,
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D = {us+1,...,us+tk_;ij}, and B = {U5+L_lg_-2-_s_J+1,...,Uk}. Also let A’ =
{’Ul,...,'UL%J}, C' = {UL%J+1,...,US}, D' = {’Us+1,...,’US+L_tg%iJ}, and B' =

{US+L%-_3_J+1,...,U/C}. Letd =i+ |52 fors+1<i<s+ |E52].

First we delete a maximal matching of each complete bipartite subgraph
with parts B and D of Gy and parts B’ and D' of Gy. For k — s odd, we
assume ug_1 and vg to be vertices unsaturated by the maximal matchings.
Then we delete the edge ug—1V%.

Secondly, we delete the edges of s—¢—1 mutually disjoint maximal match-
ings of each complete bipartite subgraph with parts AU B and cuD
of G; and parts A’ U B’ and C' U D' of Go. For k odd, we assume
that the following vertices are unsaturated by the maximal matchings:
{u’h e UL ]y U(s+1)") "')u(s+1)’+s-—t—2—{_%_|} and {1)27 "')UL%J)Ulav(s+1)'+la
,v(5+1)/+s,t_1_L%J}, in the case of s even, or {u|sj+1, '"auL§J+s—t-—l} and
{UL-’Z-j+2a"-’UstL-;-J-i—lavs—an-"av2s—t—1—L%J}s in the case of s odd. Then
we delete the edges uiva,UgVs, ..., U g [—1V| 2> Y[ §] V1 U(s+1) Uls+1) +15 -+
U(s41) +s—t-2~| 3] V(s-+1)/+a—t—1—[§]> OF the edBES Ul ] +1V] g]4+2, - UsVl 5] +1
s Usp1Us 2y ooy Y| § | +5—t—1V2s—t—1—|5 |> depending on the parity of s, respec-
tively.

If s—t > | %] then in the second step we delete | £ | — 1 maximal matchings.
Finally we delete the edges of s — ¢ — L%J mutually disjoint 1-factors Fj
(1<j<s—t—|%]) of bipartite subgraph with parts CuUDand C'UD',
where

Fj = {uwygn | [F]+1<i<s+ &2 - - 1}U
{uivicigrigirt o =5+ 552] i Si<s + 1552}

In fact if we consider the order u|g|41,.Us, UsH1y o Ugy|kos and

U0 g] 415 s Uss Vs Ly ey Ugy | o | for the vertices in CU D and C' U D', re-
spectively, then each 1-factor Fj contains the edges in which the ith vertex
in C U D is matched with (i + j + 1)th vertex (mod [CU DY) in C'U D'
(See Figure 4.)

Also for decreasing the degree of vertex sets AUB and A'UB’, we delete
the edges of s —t — | ] mutually disjoint 1-factors Fi(l1<j<s—t— 1£])
of bipartite subgraph with parts AU B and A’ U B’ the same as above.
Therefore the graph H obtained in this way contains a complete subgraph

say Ky =< AUBUC'UD’' > and H is an r-regular graph.
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Figure 4: 1-factor Fi.
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