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Abstract

For an ordered set W = {w1, wa, ..., wk} of vertices and a vertex
v in a connected graph G, the ordered k-vector r(v|W) := (d(v, w1),
d(v,w2),...,d(v,wy)) is called the (metric) representation of v with
respect to W, where d(z,y) is the distance between the vertices x
and y. The set W is called a resolving set for G if distinct vertices
of G have distinct representations with respect to W. A minimum
resolving set for G is a basis of G and its cardinality is the metric
dimension of G. The resolving number of a connected graph G is the
minimum k, such that every k-set of vertices of G is a resolving set.
A connected graph G is called randomly k-dimensional if each k-set
of vertices of GG is a basis. In this paper, along with some properties
of randomly k-dimensional graphs, we prove that a connected graph
G with at least two vertices is randomly k-dimensional if and only if
G is complete graph K41 or an odd cycle.
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number; Randomly k-dimensional graph.

1 Preliminaries

In this section, we present some definitions and known results which are necessary
to prove our main theorems. Throughout this paper, G = (V, E) is a finite,
simple, and connected graph with e(G) edges. The distance between two vertices

u and v, denoted by d(u,v), is the length of a shortest path between u and v



in G. The eccentricity of a vertex v € V(G) is e(v) = maxyecv(g) d(u,v) and
the diameter of G is max,cv(c)e(v). We use I';(v) for the set of all vertices
u € V(G) with d(u,v) = i. Also, Ng(v) is the set of all neighbors of vertex
v in G and deg, (v) = [Ng(v)| is the degree of vertex v. For a set S C V(G),
Ng(8) = U,es Na(v). If G is clear from the context, it is customary to write
N(v) and deg(v) rather than N (v) and deg, (v), respectively. The mazimum
degree and minimum degree of G, are denoted by A(G) and (@), respectively.
For a subset S of V(G), G\ S is the induced subgraph (V(G) \ S) of G. A set
S C V(G) is a separating set in G if G\ S has at least two components. Also,
aset T C E(G) is an edge cut in G if G\ T has at least two components. A
graph G is k-(edge-)connected if the minimum size of a separating set (edge cut)
in G is at least k. We mean by w(G), the number of vertices in a maximum
clique in G. The notations u ~ v and u » v denote the adjacency and non-
adjacency relations between u and v, respectively. The symbols (v1, v, ..., vs)
and (v1,v2,...,vn,v1) represent a path of order n, P,, and a cycle of order n,

C.,, respectively.

For an ordered set W = {w1,wz,...,wx} C V(G) and a vertex v of G, the
k-vector

r(|W) := (d(v,w1), d(v,w2), ..., d(v,w))

is called the (metric) representation of v with respect to W. The set W is called
a resolving set for G if distinct vertices have different representations. In this
case, we say set W resolves GG. To see whether a given set W is a resolving set for
G, it is sufficient to look at the representations of vertices in V(G)\W, because
w € W is the unique vertex of G for which d(w,w) = 0. A resolving set W for G
with minimum cardinality is called a basis of G, and its cardinality is the metric
dimension of G, denoted by B(G). The concepts of resolving sets and metric
dimension of a graph are introduced independently by Slater [15] and Harary and

Melter [10]. For more results related to these concepts see [1, 2, 3, 5, 9, 13, 14].

We say an ordered set W resolves a set T' of vertices in G, if the representations
of vertices in T are distinct with respect to W. When W = {z}, we say that

vertex x resolves T'. The following simple result is very useful.

Observation 1. [11] Suppose that u,v are vertices in G such that N(v)\{u} =



N(u)\{v} and W resolves G. Then u or v is in W. Moreover, if u € W and
v ¢ W, then (W \ {u})U{v} also resolves G.

Let G be a graph of order n. It is obvious that 1 < 8(G) < n — 1. The following
theorem characterize all graphs G with 8(G) =1 and S(G) =n — 1.

Theorem A. [4] Let G be a graph of order n. Then,

(i) B(G) =1 if and only if G = P,,
(ii) B(G) =n —1if and only if G = K,,.

The basis number of G, bas(G), is the largest integer r such that every r-set
of vertices of GG is a subset of some basis of G. Also, the resolving number of G,
res(G), is the minimum k such that every k-set of vertices of G is a resolving set
for G. These parameters are introduced in [6] and [7], respectively. Clearly, if
G is a graph of order n, then 0 < bas(G) < B(G) and B(G) < res(G) < n — 1.
Chartrand et al. [6] considered graphs G with bas(G) = B(G). They called these
graphs randomly k-dimensional, where k = 8(G). Obviously, bas(G) = B(G) if
and only if res(G) = B(G). In other words, a graph G is randomly k-dimensional

if each k-set of vertices of GG is a basis of G.

The following properties of randomly k-dimensional graphs are proved in [12].

Proposition A. [12] If G # K, is a randomly k-dimensional graph, then for
each pair of vertices u,v € V(G), N(v)\{u} # N(u)\{v}.

Theorem B. [12] If & > 2, then every randomly k-dimensional graph is 2-

connected.

Theorem C. [12] If G is a randomly k-dimensional graph and T is a separating
set of G with |T| = k — 1, then G \ T has exactly two components. Moreover,
for each pair of vertices u,v € V(G)\ T with r(u|T) = r(v|T), v and v belong to

different components.

Theorem D. [12] If res(G) = k, then each two vertices of G have at most k — 1

common neighbors.



Chartrand et al. in [6] characterized the randomly 2-dimensional graphs and
proved that a graph G is randomly 2-dimensional if and only if G is an odd cycle.

Furthermore, they provided the following question.

Question A. [6] Are there randomly k-dimensional graphs other than complete

graph and odd cycles?

In this paper we answer Question A in the negative and prove that G is randomly

k-dimensional, k > 3 if and only if G = Kj41.

2 Some Properties of Randomly k-Dimensional
Graphs

Let V}, denote the collection of all (g) pairs of vertices of G. Currie and Oeller-
mann [8] defined the resolving graph R(G) of G as a bipartite graph with bipar-
tition (V(G), V), where a vertex v € V(G) is adjacent to a pair {z,y} € V, if
and only if v resolves {z,y} in G. Thus, the minimum cardinality of a subset S

of V(G), where N

r(e) (8) = Vp is the metric dimension of G.

In the following through some propositions and lemmas, we prove that if G

is a randomly k-dimensional graph of order n and diameter d, then k& > "T’l.

Proposition 1. If G is a randomly k-dimensional graph of order n, then

(Z) (n—k+1) < e(R(G)) < n((g) —k+1).

Proof. Let z € V, and S = {v € V(G)|v = z}. Thus, Ng)(S) # V, and
hence, S is not a resolving set for G. If degR(G) (2) < n —k, then |S| > k, which
contradicts res(G) = k. Therefore, degR(G)(z) > n — k 4+ 1 and consequently,
e(R(G)) > (Z) (n—k+1).

Now, let v € V(G). If degR(G) (v) > (;) —k+2, then there are at most k—2 ver-
tices in V,, which are not adjacent to v. Let V;\Ng(g)(v) = {{u1,v1}, {u,v2},...,
{us,v:}}, where t < k — 2. Note that, u; ~ {u;,v;} in R(G) for each i, 1 <14 < ¢t.

Therefore, Ng(c)({v,u1,uz,...,us}) = V. Hence, B(G) < t+1 < k-1,



which is a contradiction. Thus, degR(G) (v) < (g) — k 4+ 1 and consequently,
e(R(G) <n((3) —k+1). [ |

Proposition 2. If G is a randomly k-dimensional graph of order n, then for

each v € V(GQ),
e(v)
n I'i(v
degR(G) (v) = <2> N Z ( ; )|)

i=1

Proof. Note that, a vertex v € V(G) resolves a pair {z,y} if and only if there
exist 0 < ¢ # j < e(v) such that « € TI';(v) and y € T'j(v). Therefore, a
vertex {u,w} € V, is not adjacent to v in R(G) if and only if there exists an

i, 1 <1 < e(v), such that u,w € I';(v). The number of such vertices in V,, is
e(v) (| (v _/n e(v) (|0 (v
S (\ 2( )I), Therefore, deg_ . (v) = (2) -y (\ § >\). -

Since R(G) is bipartite, by Proposition 2,
(RGN = Y [(“) 3 ('n(”)'>] —n(”) Yy ('Ff(””)
VeV (Q) 2 i=1 2 2 vEV(G) i=1 2
Thus, by Proposition 1,

(@) _ (n
we-ns 33 (M0 < (- 0

veV(G) i=1

Observation 2. Let ni,...,n, and n be positive integers, with 21:1 n; = n.

Then, Y ', ("21) is mintmum if and only if |n; —n;| <1, for each 1 <i,5 <r.

Lemma 1. Let n,pi,p2,q1,q2,71 and r2 be positive integers, such that n =

piqi +1i and r; < pi, for 1 <i < 2. If p1 < p2, then
=) () (M) 2 e (%) e (P
1 Ul 1 9 = (P2 —12)| 2 9 .

Proof. Let f(p:) = (pi — rl)(‘g) + 7 (‘“;’1), 1 <4 < 2. We just need to prove
that f(p1) > f(p2)-

(P —r1)a(@n — 1) +rqi(a +1) —

N =

flpr) — f(p2) =



(p2 — 7r2)q2(q2 — 1) — 72q2(q2 + 1)]

1 1
= 50 [p1g1 — p1 + 2r1] — §Q2[p2CI2 — p2 + 272]

1 1
= 5(11[” —p1+ri] - qu[n —p2 + 12

1
= 5[”(‘11 —q2) — p1q1 + T1q1 + P2g2 — r2g2).

Since p1 < p2, we have q2 < q1. If g1 = g2, then r2 < r1. Therefore,

f(p1) — f(p2) = %lh[(m —p1) + (r1 —72)] > 0.

If g2 < q1, then ¢1 — g2 > 1. Thus,

1
=[r1+71q1 + g2(p2 —72)] > 0.

f(p1) — f(p2) 2 1[n—plql +r1iq1 +qe(p2 —r2)] = 2[

2

Theorem 1. If G is a randomly k-dimensional graph of order n and diameter

n—1
> —.
d, then k > p

Proof. Note that, for each v € V(G), |Ue<v> I'i(v)] =n—1. For v € V(Q), let
n —1=gq(v)e(v) + r(v), where 0 < r(v) < e(v). Then, by Observation 2,

e(v)
(e(v) = r(v)) (q(;)) +r(v) <Q(v)2+ 1) < Z (Fiévﬂ). (2)

i=1
Let w € V(G) with e(w) =d, r(w) =r, and qg(w) = ¢, then n—1 = gd+r. Since
for each v € V(G), e(v) < e( ), by Lemma 1,

q+1 q(v) q(v) +1
a=n(3)+r("3") s =ren (7)) +roa ().

Therefore,

=) (g) *’“<q;1>} < D lel) —r(v) <q<2”)> (o) (q“’)j 1)].

Thus, by Relations (2) and (1),

e(v)
()13 3 E ) <o

veV(G) i=1



Hence, ¢[(d—71)(¢—1)+7r(¢+1)] < (n—1)(k—1), which implies, ¢[(r — d) + (d —
r)g+r(g+1)] < (n—1)(k —1). Therefore, g(r —d) + q(n — 1) < (n—1)(k — 1).

Since ¢ = [25*], we have

r—d qr qd
k—1> - = _
_q+qn_1 q+n—1 n—1
n=14
_ g S
n—1 n—1
> q+ T,
n—1

Thus, k> |2] +
k is an integer. If -2~ = 0, then r = 0 and consequently, d divides n — 1. Thus,

n—1 —

|21] = [252]. Therefore, k > [251] > 2L |

qr
n—

Note that, -2~ > 0. If -2~ > 0, then k > [251], since

1° n—1 — n—1

The following theorem shows that there is no randomly k-dimensional graph of

order n, where 4 <k <n — 2.

Theorem 2. If G is a randomly k-dimensional graph of order n, then k < 3 or
k>n—1.

Proof. For each W C V(G), let N(W) = V, \ N(W) in R(G). We claim
that, if S,7 C V(G) with |S| = |T| =k — 1 and T # S, then N(S) N N(T) = 0.
Otherwise, there exists a pair {z,y} € N(S)NN(T). Therefore, {z,y} ¢ N(SUT)
and hence, SUT is not a resolving set for G. Since S # T, |[SUT| > |S| =k —1,
which contradicts res(G) = k. Thus, N(S) N N(T) = 0.

Since B(G) = k, for each S C V(G) with |S| = k — 1, N(S) # 0. Now, let
Q={S CV(G)||S| =k —1}. Therefore,

— — n
UNS)I=S N ) > Y1 = (,H).
seq seq seq
On the other hand, (Jg o, N(S) € V,. Hence, [Jgeq N(S)| < (’2’) Conse-
quently, (kfl) < (g) If n < 4, then k < 3. Now, let n > 5. Thus, 2 < 25

We know that for each a,b < "%’17 (Z) < (71:) if and only if @ < b. There-
fore, if K —1 < "T‘H, then £ — 1 < 2, which implies £ < 3. If £ —1 > "T“,
then n —k+1 < "T“ Since (n72+1) = (kfl), we have (

n 1) < (3) and
consequently, n — k 4+ 1 < 2, which yields £ > n — 1. |



By Theorem 2, to characterize all randomly k-dimensional graphs, we only need
to consider graphs of order k+1 and graphs with metric dimension less than 4. By
Theorem A, if G has k+1 vertices and 3(G) = k, then G = Kj41. Also, if k =1,
then G = P,. Clearly, the only paths with resolving number 1 are P, = K7 and
P, = K. Furthermore, randomly 2-dimensional graphs are determined in [6] and
it has been proved that these graphs are odd cycles. Therefore, to complete the

characterization, we only need to determine all randomly 3-dimensional graphs.

3 Randomly 3-Dimensional Graphs

In this section, through several lemmas and theorems, we prove that the complete

graph K} is the unique randomly 3-dimensional graph.
Proposition 3. If res(G) =k, then A(G) < 287! +k — 1.

Proof. Let v € V(G) be a vertex with deg(v) = A(G) and T' = {v,v1,v2,...,
Uk_1}, where vi,va, ..., vk—1 are neighbors of v. Since res(G) = k, T is a resolving
set for G. Note that, d(u,v) =1 and d(u, v;) € {1,2} for each u € N(v) \ T and
each i, 1 <17 < k—1. Therefore, the maximum number of distinct representations
for vertices of N'(v)\T is 2" . Since T is a resolving set for G, the representations
of vertices of N(v) \ T are distinct. Thus, |[N(v) \ T| < 27! and hence, A(G) =
IN()| <281 + k- 1. [ ]

Lemma 2. If res(G) = 3, then A(G) < 5.

Proof. By Proposition 3, A(G) < 6. Suppose, on the contrary that, there
exists a vertex v € V(G) with deg(v) = 6 and N(v) = {z,y,v1,...,v4}. Since
res(G) = 3, set {v,z,y} is a resolving set for G. Therefore, the representations
of vertices v1,...,vs with respect to this set are 11 = (1,1,1), ro = (1,1,2),
r3 = (1,2,1), and r4 = (1,2,2). Without loss of generality, we can assume

r(vil{v,z,y}) = r;, for each i, 1 <i < 4. Thus, y » v2, y * va, and y ~ vs.

On the other hand, set {v,y,vs} is a resolving set for G, too. Hence, the

representations of vertices x, v1,v2,v4 with respect to this set are ri,72,73,74 in



some order. Therefore, the vertex y has two neighbors and two non-neighbors
in {z,v1,v2,v4}. Since y = v2 and y ~ v4, the vertices x,v; are adjacent to y.
Thus, r(y|{z,v1,vs}) = (1,1,1) = r(v|{z,v1,v3}), which contradicts res(G) = 3.
Hence, A(G) < 5. ]

Lemma 3. Ifres(G) = 3 and v € V(G) is a vertex with deg(v) = 5, then the
induced subgraph (N (v)) is a cycle Cs.

Proof. Let H = (N(v)). By Theorem D, for each x € N(v) we have, |N(x) N
N (v)| < 2. Therefore, A(H) < 2, thus, each component of H is a path or a cycle.
If the largest component of H has at most three vertices, then there are two ver-
tices z,y € N(v) which are not adjacent to any vertex in N(v)\ {z,y}. Thus, for
each u € N(v) \ {z,y}, r(ul{v,z,y}) = (1,2,2), which contradicts the fact that
res(G) = 3. Therefore, the largest component of H, say Hi, has at least four ver-
tices and the other component has at most one vertex, say {x}. Let (y1,y2, y3) be
a path in H;. Hence r(yi[{v,z,y2}) = (1,2,1) = r(ys|{v, x, y2}), which is a con-
tradiction. Therefore, H = Cs or H = Ps. If H = Ps = (y1, Y2, Y3,Y4,Ys5), then
r(yal{v,y1,92}) = (1,2,2) = r(ys|{v,y1,y2}), which is impossible. Therefore,
H=Cs. ]

Lemma 4. Ifres(G) = 3 and v € V(G) is a vertex with deg(v) = 4, then the
induced subgraph (N (v)) is a path Pj.

Proof. Let H = (N(v)). By Theorem D, for each € N(v), we have |[N(z) N
N(v)| < 2. Hence, A(H) < 2 thus, each component of H is a path or a cycle. If
H has more than two components, then it has at least two components with one
vertex say {z} and {y}. Thus, r(u|{v,z,y}) = (1,2,2), for each u € N(v)\{z,y},
which contradicts res(G) = 3. If H has exactly two components H, = {z,y}
and Hy = {u,w}, then r(ul{v,z,y}) = (1,2,2) = r(w|{v,z,y}), which is a
contradiction. Now, let H has a component with one vertex, say {z}, and a
component contains a path (y1,y2,ys). Consequently, r(ul{v,z,y2}) = (1,2,1),
for each u € N(v) \ {z,y}, which is a contradiction. Therefore, H = Cj4 or
H =Py If H=Cs= (y1,92,93,Y4,91), then r(y1l{v,y2,54}) = (1,1,1) =
r(ys|{v,y2,va}), which is impossible. Therefore, H = P;. ]



Proposition 4. If G is a randomly 3-dimensional graph, then A(G) < 3.

Proof. By Lemma 2, A(G) < 5. If there exists a vertex v € V(G) with deg(v) =
5, then, by Lemma 3, (N(v)) = Cs. If I'2(v) = 0, then G = C5 vV K1 (the join
of graphs Cs and Ki) and hence, 3(G) = 2, which is a contradiction. Thus,
I'2(v) # 0. Let u € I'2(v). Then u has a neighbor in N(v), say z. Since (N (v)) =
Cs, z has exactly two neighbors in N(v), say x1,z2. Therefore, deg(z) > 4.
By Lemmas 3 and 4, ({u,v,z1,22}) = Ps. Note that, by Theorem D, u has
at most two neighbors in N(v). Thus, u is adjacent to exactly one of z; and
T2, say x1. As in Figure 1(a), the set {u,v,s} is not a resolving set for G,
because r(z|{u,v,s}) = (1,1,2) = r(z1|{u,v,s}). This contradiction implies
that A(G) < 4.

If v is a vertex of degree 4 in G, then by Lemma 4, (N (v)) = Ps. Let (N(v)) =
(z1,x2,23,24). If T2(v) = 0, then G = P,V K, and consequently, 3(G) = 2, which
is a contradiction. Thus, I'2(v) # 0. Let u € I's(v). Then, u has a neighbor in
N (v) and by Theorem D, u has at most two neighbors in N(v). If v has only one
neighbor in N (v), then by symmetry, we can assume u ~ 1 or u ~ x2. If u ~ x2
and u ~ x1, then deg(xz2) = 4 and by Lemma 4, ({u,z1,x3,v}) = Ps. Therefore,
u has two neighbors in N(v), which is a contradiction. If u ~ z1 and u = xa,
then r(v|{z1, zs,u}) = (1,1,2) = r(xz|{z1, z3,u}), which contradicts res(G) = 3.
Hence, u has exactly two neighbors in N(v). Let T' = N(u) N N(v). By sym-
metry, we can assume that T is one of the sets {x1,x2}, {z1,23}, {z1,24}, and
{z2,z3}. U T = {z1,22}, then r(z1|[{v,zs,u}) = (1,2,1) = r(z2|{v, za,u}). If
T = {x1,z3}, then r(z1|{v, z2,u}) = (1,1,1) = r(z3|{v, z2,u}). U T = {z1, 24},
then r(v[{z1,x3,u}) = (1,1,2) = r(x2|{x1,z3,u}). These contradictions, imply
that T = {x2,23}. Thus, |T'2(v)| = 1, because each vertex of I'z2(v) is adja-
cent to both vertices 2 and x3 and if I'2(v) has more than one vertex, then
deg(z2) = deg(xz3) > 5, which is impossible. Now, if I's(v) = @, then {z1,z4} is
a resolving set for G, which is a contradiction. Therefore, I's(v) # (0 and hence,
u is a cut vertex in G, which contradicts the 2-connectivity of G (Theorem B).

Consequently, A(G) < 3. [ ]

Theorem 3. If G is a randomly 3-dimensional graph, then G is 3-regular.

10
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Figure 1: (a) A(G) =5, (b) Neighbors of a vertex of degree 2.

Proof. By Proposition 4, A(G) < 3 and by Theorem B, §(G) > 2. Suppose
that, v is a vertex of degree 2 in G. Let N(v) = {z,y}. Since N(v) is a separating
set of size 2 in G, Theorem C implies that G \ {v,z,y} is a connected graph and
there exists a vertex u € V(G) \ {v,z,y} such that v ~ = and u ~ y. Note
that G # K,, because G has a vertex of degree 2 and B(G) = 3. Thus, by

Proposition A, there exists a vertex w € V(G) such that w ~ u and w ~ v.

If w is neither adjacent to x nor y, then r(z|{v,u,w}) = (1,1,2) = r(y|{v, u, w}),
which contradicts the fact that res(G) = 3. Also, if w is adjacent to both z and y,
then r(z|{v,u,w}) = (1,1,1) = r(y|{v, u, w}), which is a contradiction. Hence,
w is adjacent to exactly one of the vertices x and y, say x. Since A(G) < 3, the
graph in Figure 1(b) is an induced subgraph of G. Clearly, the metric dimension

of this subgraph is 2. Therefore, G has at least six vertices.

If [U2(v)| = 2, then w is a cut vertex in G, because A(G) < 3. This contradic-
tion implies that there exists a vertex z in I's2(v) \ {u, w}. Since A(G) < 3,z ~y.
If z ~ w, then the graph in Figure 2(a) is an induced subgraph of G with metric
dimension 2. In this case, G must have at least seven vertices and consequently, z
is a cut vertex in G, which contradicts Theorem B. Hence, z ~ w. By Theorem B,
deg(z) > 2. Therefore, z has a neighbor in I's (v). If there exists a vertex s € I's(v)
such that s ~ z and s ~ w, then r(v|{y, 2z, s}) = (1,2,3) = r(ul{y, z, s}), which
contradicts res(G) = 3. Thus, w is adjacent to all neighbors of z in I'3(v). Since

A(G) < 3, z has exactly one neighbor in I's(v), say ¢. Hence I's(v) = {t}.

11



If G has more vertices, then ¢ is a cut vertex in (G, which contradicts the 2-

connectivity of G. Therefore, G is as in Figure 2(b) and consequently, 3(G) = 2,

which is a contradiction. Thus, G does not have any vertex of degree 2. |
N(v)  T(v) N(v)  Ta(v)  Ts(v)
T w T w
v v t
u u >
Y Z Y z

(a) (b)

Figure 2: The minimum degree of G is more than 2.

Theorem 4. If G is a randomly 3-dimensional graph, then G is 3-connected.

Proof. Suppose, on the contrary, that G is not 3-connected. Therefore, by
Theorem B, the connectivity of G is 2. Since G is 3-regular, (by Theorem 4.1.11
in [16],) the edge-connectivity of G is also 2. Thus, there exists a minimum edge
cut in G of size 2, say {zu,yv}. Let H and H; be components of G \ {zu,yv}
such that =,y € V(H) and u,v € V(H;). Note that, x # y and u # v, because G
is 2-connected. Since G is 3-regular, |H| > 3 and |Hi| > 3. Therefore, {z,y} is
a separating set in G and components of G\ {z,y} are H1 and Hy = H \ {z,y}.
Hence, each of the vertices x and y has exactly one neighbor in H;, u and v,
respectively. Since G is 3-regular, x has at most two neighbors in Hs and u has
exactly two neighbors s,¢ in Hy. Thus, u has a neighbor in H; other than v, say

s. Therefore, s ® x and s » y.

If 2 has two neighbors p, g in Ha, then r(p|{z,u, s}) = (1,2, 3) = r(q|{z, u, s}),
which contradicts res(G) = 3. Consequently, = has exactly one neighbor in Ho,
say p. Since G is 3-regular, x ~ y and hence, y has exactly one neighbor in Ha.
Note that p is not the unique neighbor of y in Hs, because G is 2-connected.
Thus, d(t,p) = 3 and hence, r(s|{u,z,p}) = (1,2,3) = r(t|{u,z,p}), which is

impossible. Therefore, G is 3-connected. |
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Proposition 5. If G # K4 is a randomly 3-dimensional graph, then for each
v € V(G), N(v) is an independent set in G.

Proof. Suppose on the contrary that there exists a vertex v € V(G), such
that N(v) is not an independent set in G. By Theorem 3, deg(v) = 3. Let
N(v) = {u1,uz,us}. Since G # Ky, the induced subgraph (N(v)) of G has one
or two edges. If (N(v)) has two edges, then by symmetry, let uy ~ ug2, uz ~ us
and u1 ~ us. Since G is 3-regular, the set {u1,us} is a separating set in G,
which contradicts Theorem 4. This argument implies that for each s € V(G),
(N(s)) does not have two edges. Hence, (N(v)) has one edge, say ujuz. Since
G is 3-regular, there are exactly four edges between N(v) and I'z(v). Therefore,
I'2(v) has at most four vertices, because each vertex of I's(v) has a neighbor in
N(v). On the other hand, 3-regularity of G forces I's(v) to have at least two

vertices. Thus, one of the following cases can happen.

1. |T2(v)| = 2. In this case I's(v) = @, otherwise I'2(v) is a separating set of size
2, which is impossible. Consequently, G is as in Figure 3(a). Hence, 3(G) = 2.
But, by assumption 8(G) = 3, a contradiction.

2. |T2(v)| = 3. Let I's(v) = {z,y,2} and N(us) NT'2(v) = {y,z}. Also, by
symmetry, let ui ~ x, because each vertex of I'2(v) has a neighbor in N(v).
Then the last edge between N (v) and I'2(v) is one of usx, usy, and uzz. But,
usx ¢ E(G), otherwise (N(uz2)) has two edges. Thus, by symmetry, we can
assume that ugy € E(G) and uzz ¢ E(G). Since res(G) = 3, we have y ~ z,
otherwise r(v|{us2,us, z}) = (1,1,2) = r(y|{usz, us, z}), which is impossible. For
3-regularity of G, I's(v) # 0. Hence, {x,z} is a separating set of size 2 in G,

which contradicts Theorem 4.

3. [I2(v)] =4. Let I'z(v) ={w, z,y, 2} and u1 ~ w, uz ~ x, uz ~y, and ug ~ z.
If © ¢~ y and = ~ z, then d(y,u2) = 3 = d(z,u2) and it yields r(y|{v, u2,us}) =
(2,3,1) = r(z|{v,u2,us}). Therefore, G has at least one of the edges zy and zz. If
G has both zy and zz, then r(y|{v, z,us}) = r(z|{v, z, us}). Thus, G has exactly
one of the edges zy and zz, say xy. In the same way, G has exactly one of the edges
wy and wz. If w ~ y, then r(z|{v,us,y}) = (2,2,1) = r(w|{v,us,y}). Hence,
w ~ y and w ~ z. Note that, z ~ w, otherwise 7(uz|{u1,z,us}) = (1,1,2) =

r(w|{u1,z,us}). Therefore, N(w)N[['1(v)UT'2(v)] = {u1,2z}. Since G is 3-regular,
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['s(v) # 0. If 2 ~ y, then {w, z} is a separating set in G which is impossible. Thus,
z has a neighbor in I's(v), say u. If u ~ w, then d(w,u) = 2 = d(us,u) which
implies that r(us|{uz, z,u}) = (2,1,2) = r(w|{uz, z,u}). Hence, u ~ w and it
yields r(w|{u,v,z}) = r(z|{u,v,z}). Consequently, N(v) is an independent set
in G. |

N(v)  Ta(v) ()

x1

ul

s

<
NQQHZ
NN

|
22

(a) (b)

Figure 3: Two graphs with metric dimension 2.

Theorem 5. If G is a randomly 3-dimensional graph, then G = K.

Proof. Suppose on the contrary that G is a randomly 3-dimensional graph and
G # K4. Let v € V(G) be an arbitrary fixed vertex and N(v) = {z,y,z}. By
Proposition 5, N(v) is an independent set in G. Since G is 3-regular, there are six
edges between N (v) and I'2(v). If a vertex a € I'2(v) is adjacent to = and y, then
r(z|{v,a,z}) = (1,1,2) = r(y|{v, a, z}), which is impossible. Therefore, by sym-
metry, each vertex of I'z(v) has exactly one neighbor in N (v) and hence I'z(v) has
exactly six vertices. If there exists a vertex a € I's(v) with no neighbor in I'z(v),
then by symmetry, let a ~ z. Thus, r(z|{v,z,a}) = (1,2,3) = r(y|{v, z,a}).
Also, if there exists a vertex a € I'2(v) with two neighbors b and ¢ in T'z(v),
by symmetry, let a ~ 2z, b » z and ¢ ~ z. Then, r(b|{v,z,a}) = (2,2,1) =
r(c[{v,z,a}). These contradictions imply that I's(v) is a matching in G. Since
all neighbors of each vertex of G constitute an independent set in G, the induced
subgraph ({v} U N(v) UT2(v)) of G is as in Figure 3(b). Since G is 3-regular,
I's(v) # 0 and each vertex of I'2(v) has one neighbor in I's(v). Let u € I'3(v)
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be the neighbor of 1. Thus, y1 » w. If y1 and 22 have no common neighbor
in I's(v), then r(z|{z1,u,22}) = (1,2,3) = r(y1|{z1,u, 22}). Therefore, y1 and
z2 have a common neighbor in I's(v), say w. Consequently, r(y/{v,z,w}) =

(1,2,2) = r(z|{v, z,w}). This contradiction implies that G = K. ]

The next corollary characterizes all randomly k-dimensional graphs.

Corollary 1. Let G be a graph with B(G) = k > 1. Then, G is a randomly

k-dimensional graph if and only if G is a complete graph Ki+1 or an odd cycle.
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