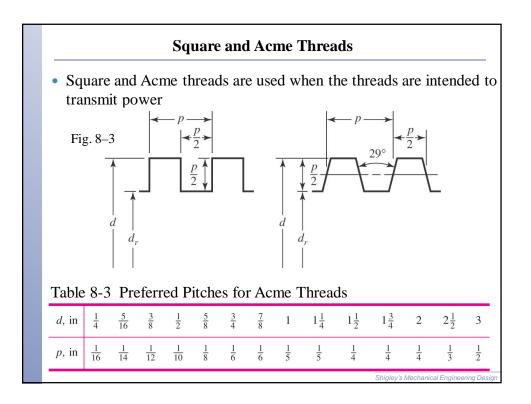
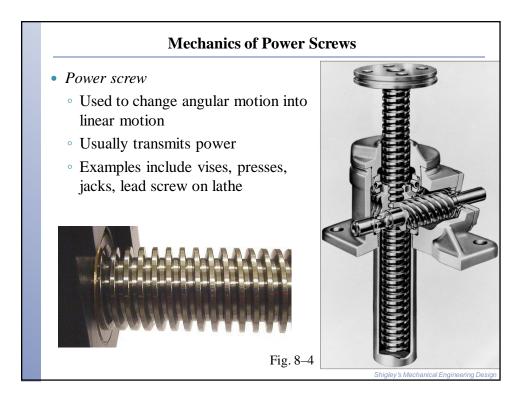


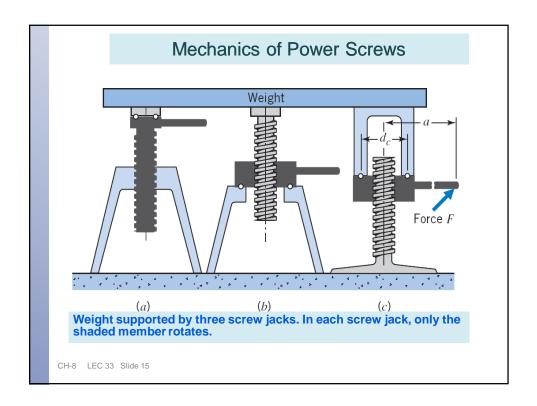
Standardization

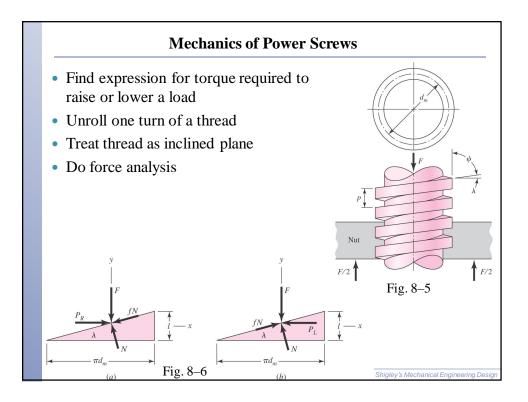
- The *American National (Unified)* thread standard defines basic thread geometry for uniformity and interchangeability
- American National (Unified) thread
 - UN normal thread
 - UNR greater root radius for fatigue applications
- Metric thread
 - M series (normal thread)
 - MJ series (greater root radius)

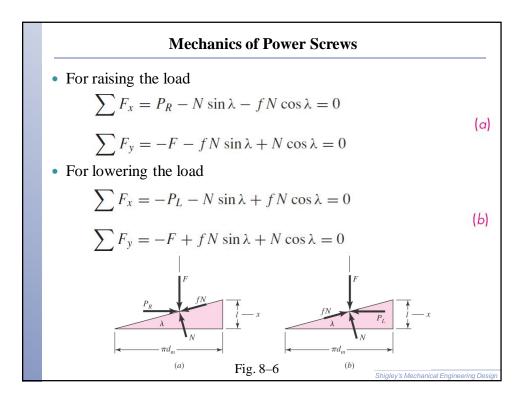
	Standardization	
• Coa	rse series UNC	
• G	eneral assembly	
• Fr	equent disassembly	
• N	ot good for vibrations	
• Tl	ne "normal" thread to specify	
• Fine	series UNF	
• G	ood for vibrations	
• G	ood for adjustments	
	utomotive and aircraft	
• Extr	a Fine series UNEF	
• G	ood for shock and large vibrations	
	igh grade alloy	
	strumentation	
• A	ircraft	
		Shigley's Mechanical Engineering Desig

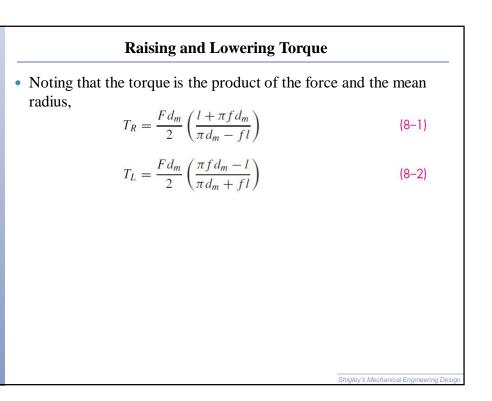

Shigley's Mechanical Engineering De

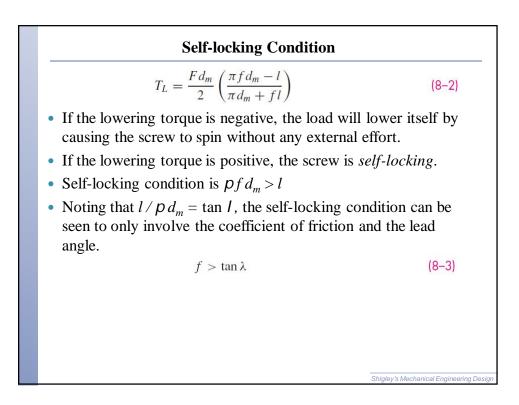


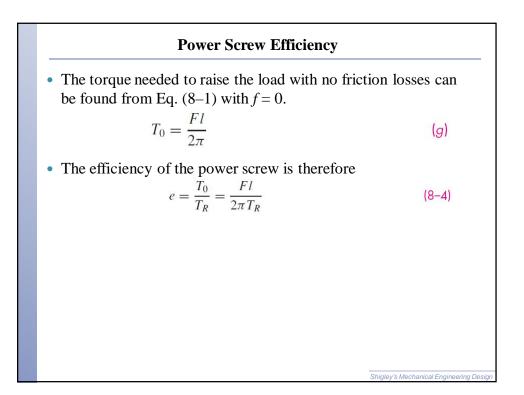

Table 8-1	Nominal	C	oarse-Pitch			Fine-Pitch S	Series
Diameters and Areas of Coarse-Pitch and Fine- Pitch Metric Threads.*	Major Diameter d mm	Pitch P mm	Tensile- Stress Area Ar mm ²	Minor- Diameter Area Ar mm ²	Pitch p mm	Tensile- Stress Area Ar mm ²	Minor- Diamete Area A mm ²
	1.6	0.35	1.27	1.07			
	2	0.40	2.07	1.79			
	2.5	0.45	3.39	2.98			
	3	0.5	5.03	4.47			
	3.5	0.6	6.78	6.00			
	4	0.7	8.78	7.75			
	5	0.8	14.2	12.7			
	6	1	20.1	17.9			
	8	1.25	36.6	32.8	1	39.2	36.0
	10	1.5	58.0	52.3	1.25	61.2	56.3
	12	1.75	84.3	76.3	1.25	92.1	86.0
	14	2	115	104	1.5	125	116
	16	2	157	144	1.5	167	157
	20	2.5	245	225	1.5	272	259
	24	3	353	324	2	384	365
	30	3.5	561	519	2	621	596
	36	4	817	759	2	915	884
	42	4.5	1120	1050	2	1260	1230
	48	5	1470	1380	2	1670	1630
	56	5.5	2030	1910	2	2300	2250
	64	6	2680	2520	2	3030	2980

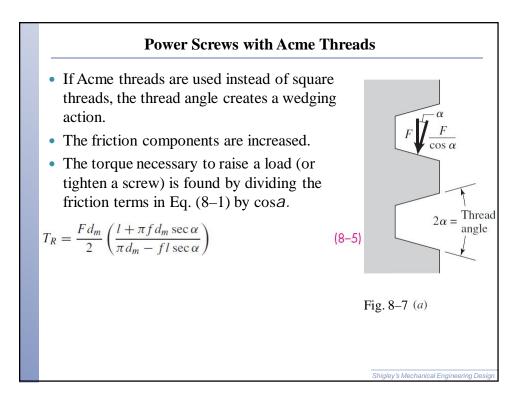

Table 8–2		Co	arse Series—	-UNC	Fi	ine Series—L	INF
Size Designation	Nominal Major Diameter in	Threads per Inch N	Tensile- Stress Area A, in ²	Minor- Diameter Area A, in ²	Threads per Inch N	Tensile- Stress Area A, in ²	Minor- Diameter Area A, in ²
0	0.0600				80	0.001 80	0.001 51
1	0.0730	64	0.002 63	0.002 18	72	0.002 78	0.002 37
2	0.0860	56	0.003 70	0.003 10	64	0.003 94	0.003 39
3	0.0990	48	0.004 87	0.004 06	56	0.005 23	0.004 51
4	0.1120	40	0.006 04	0.004 96	48	0.006 61	0.005 66
5	0.1250	40	0.007 96	0.006 72	44	0.008 80	0.007 16
6	0.1380	32	0.009 09	0.007 45	40	0.010 15	0.008 74
8	0.1640	32	0.014 0	0.011 96	36	0.014 74	0.012 85
10	0.1900	24	0.017 5	0.014 50	32	0.020 0	0.017 5
12	0.2160	24	0.024 2	0.020 6	28	0.025 8	0.022 6
$\frac{1}{4}$	0.2500	20	0.031 8	0.026 9	28	0.036 4	0.032 6
$\frac{\frac{1}{4}}{\frac{5}{16}}$	0.3125	18	0.052 4	0.045 4	24	0.058 0	0.052 4
3	0.3750	16	0.077 5	0.067 8	24	0.087 8	0.080 9
$\frac{3}{8}$ $\frac{7}{16}$ $\frac{1}{2}$ $\frac{9}{16}$	0.4375	14	0.106 3	0.093 3	20	0.1187	0.109 0
$\frac{1}{2}$	0.5000	13	0.141 9	0.1257	20	0.159 9	0.148 6
9 16	0.5625	12	0.182	0.162	18	0.203	0.189
5	0.6250	11	0.226	0.202	18	0.256	0.240
3	0.7500	10	0.334	0.302	16	0.373	0.351
5 8 3 4 7 8	0.8750	9	0.462	0.419	14	0.509	0.480
ĩ	1.0000	8	0.606	0.551	12	0.663	0.625
1 1/4	1.2500	7	0.969	0.890	12	1.073	1.024
1 1	1.5000	6	1.405	1.294	12	1.581	1.521

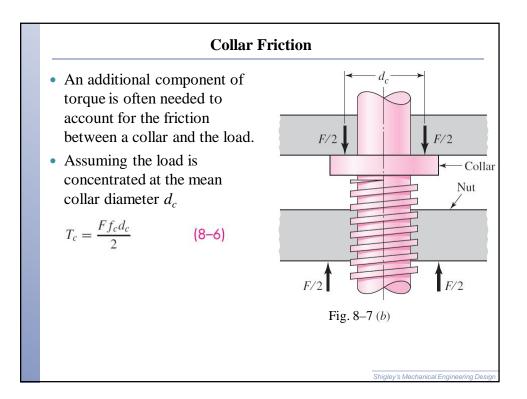

Tensile Stress Area
e tensile stress area, A_t , is the area of an unthreaded rod h the same tensile strength as a threaded rod.
the effective area of a threaded rod to be used for stress culations.
e diameter of this unthreaded rod is the average of the ch diameter and the minor diameter of the threaded rod.

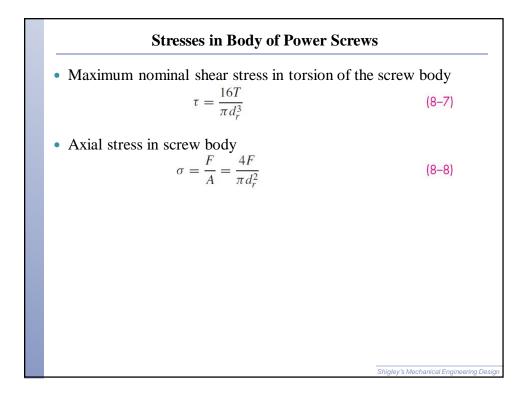


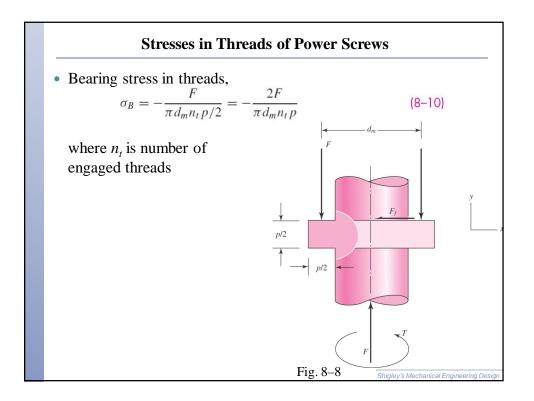


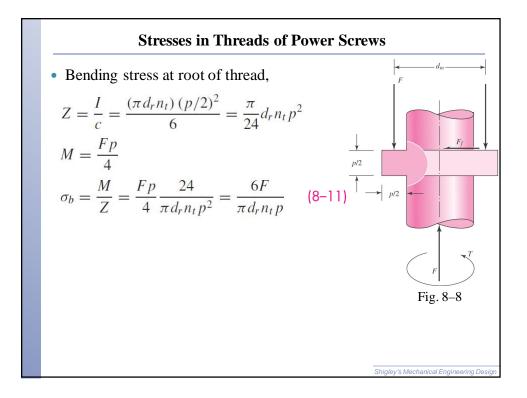


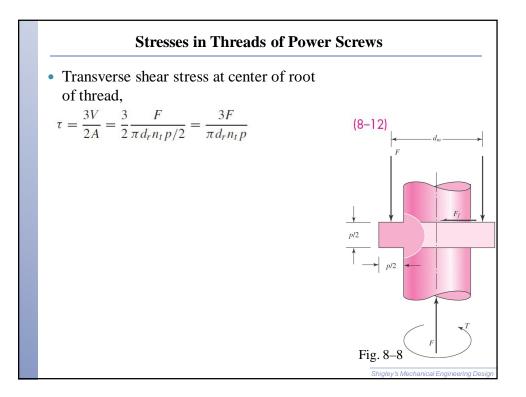


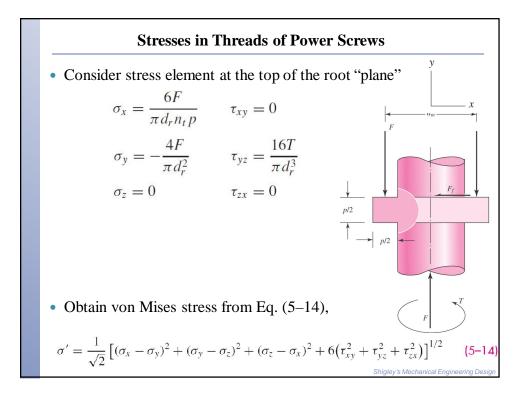

Mechanics of Power Screws	
• Eliminate N and solve for P to raise and lower the	he load
$P_R = \frac{F(\sin \lambda + f \cos \lambda)}{\cos \lambda - f \sin \lambda}$	(c)
$P_L = \frac{F(f\cos\lambda - \sin\lambda)}{\cos\lambda + f\sin\lambda}$	(d)
• Divide numerator and denominator by $\cos l$ and $\tan l = l/p d_m$	use relation
$P_{R} = \frac{F[(l/\pi d_{m}) + f]}{1 - (fl/\pi d_{m})}$	(e)
$P_L = \frac{F[f - (l/\pi d_m)]}{1 + (fl/\pi d_m)}$	(<i>f</i>)
	Shigley's Mechanical Engineering D







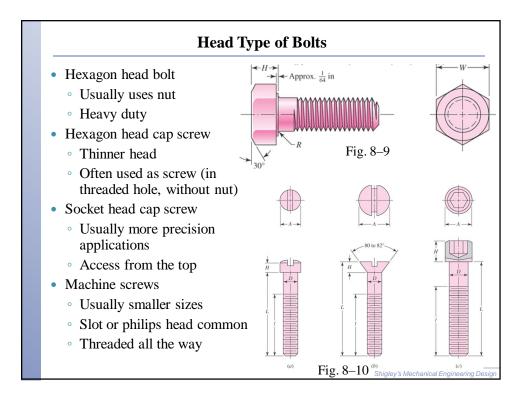


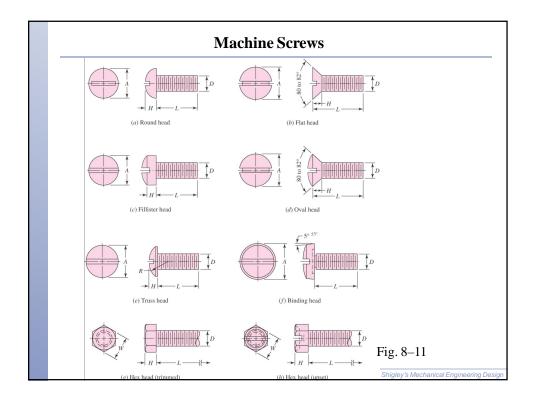


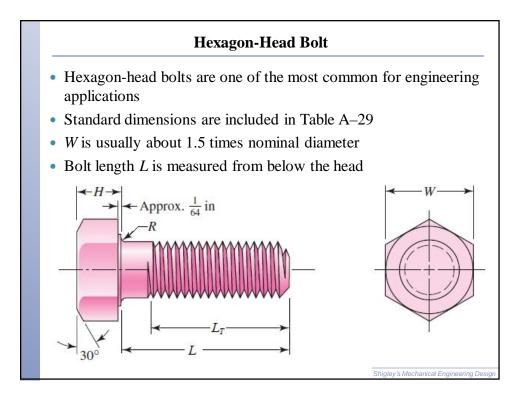
Thread Deformation in Screw-Nut Combination

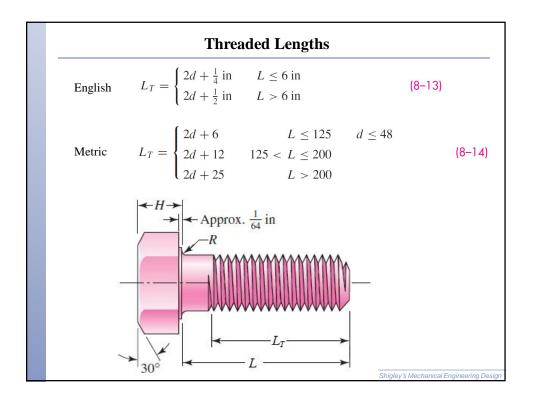
- Power screw thread is in compression, causing elastic shortening of screw thread pitch.
- Engaging nut is in tension, causing elastic lengthening of the nut thread pitch.
- Consequently, the engaged threads cannot share the load equally.
- Experiments indicate the first thread carries 38% of the load, the second thread 25%, and the third thread 18%. The seventh thread is free of load.

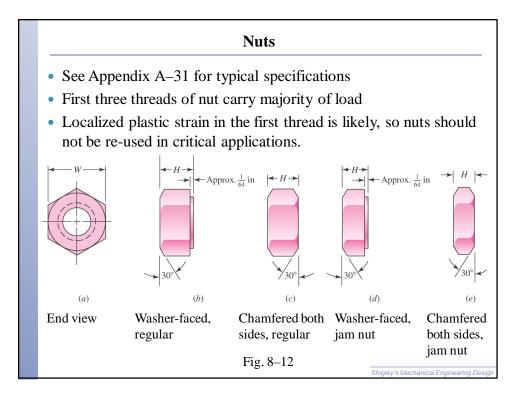
Shigley's Mechanical Engineering De

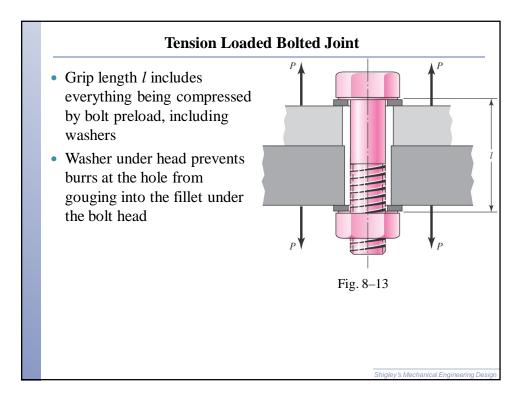

• To find the largest stress in the first thread of a screw-nut combination, use 0.38F in place of *F*, and set $n_t = 1$.

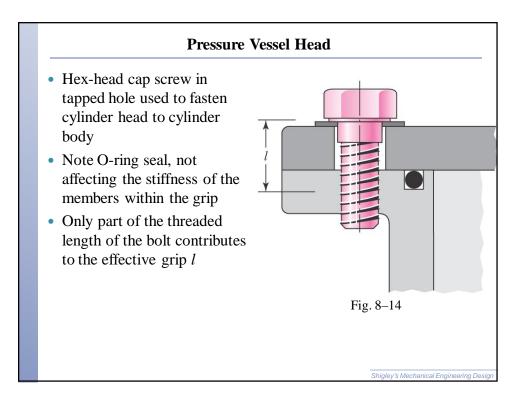

Table 8–4 Screw Bearing	Screw Material	Nut Material	Safe p _b , psi	Notes
Pressure p_b	Steel	Bronze	2500-3500	Low speed
Source: H. A. Rothbart and	Steel	Bronze	1600-2500	≤10 fpm
T. H. Brown, Jr., <i>Mechanical</i> <i>Design Handbook</i> , 2nd ed.,		Cast iron	1800-2500	$\leq 8 \text{ fpm}$
McGraw-Hill, New York, 2006.	Steel	Bronze	800-1400	20-40 fpn
		Cast iron	600-1000	20-40 fpn
	Steel	Bronze	150-240	\geq 50 fpm

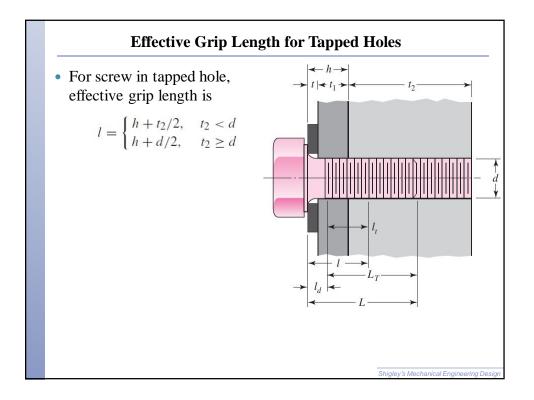

Power Screw Friction Coefficients

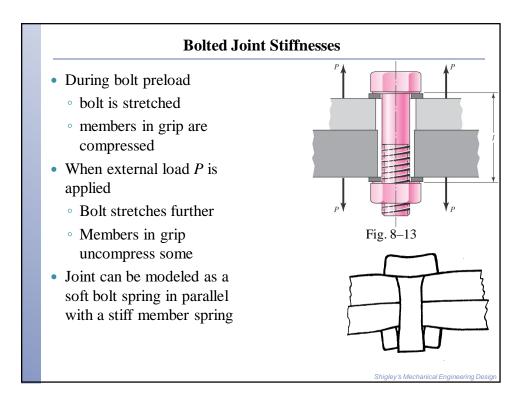

Table 8–5	8-5 Screw Nut Mater				
Coefficients of Friction f	Material	Steel	Bronze	Brass	Cast Iron
for Threaded Pairs	Steel, dry	0.15-0.25	0.15-0.23	0.15-0.19	0.15-0.25
Source: H. A. Rothbart and	Steel, machine oil	0.11-0.17	0.10-0.16	0.10-0.15	0.11 - 0.17
T. H. Brown, Jr., <i>Mechanical</i> <i>Design Handbook</i> , 2nd ed., McGraw-Hill, New York, 2006.	Bronze	0.08-0.12	0.04-0.06	—	0.06-0.09

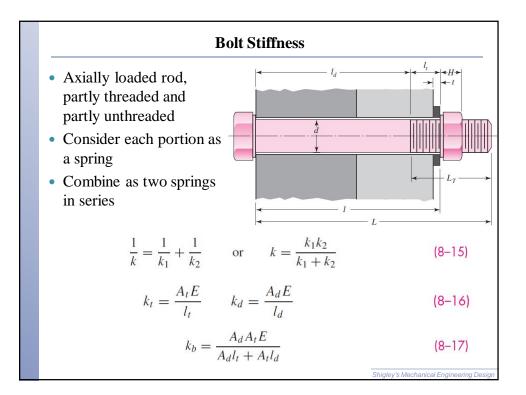

Table 8-6	Combination	Running	Starting
Thrust-Collar Friction Coefficients Source: H. A. Rothbart and T. H. Brown, Jr., Mechanical Design Handbook, 2nd ed.,	Soft steel on cast iron Hard steel on cast iron Soft steel on bronze Hard steel on bronze	0.12 0.09 0.08 0.06	0.17 0.15 0.10 0.08
McGraw-Hill, New York, 2006.		Shidev's Mechan	ical Engineering Design

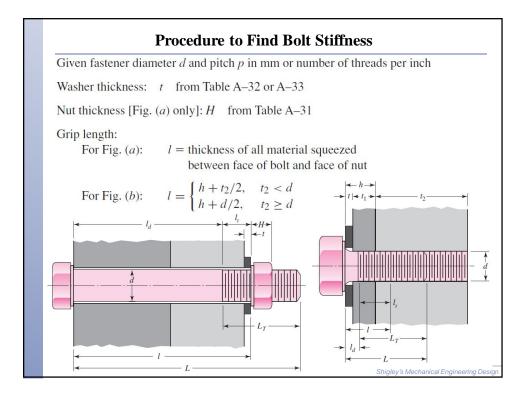


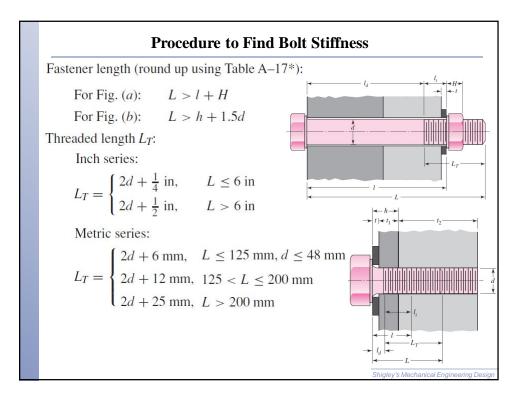


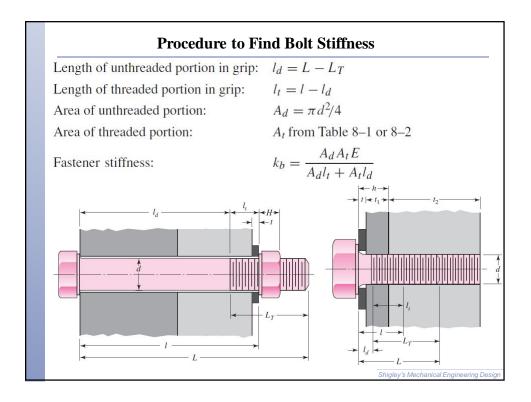


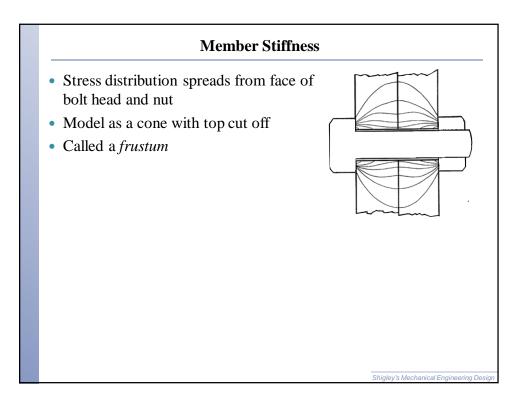


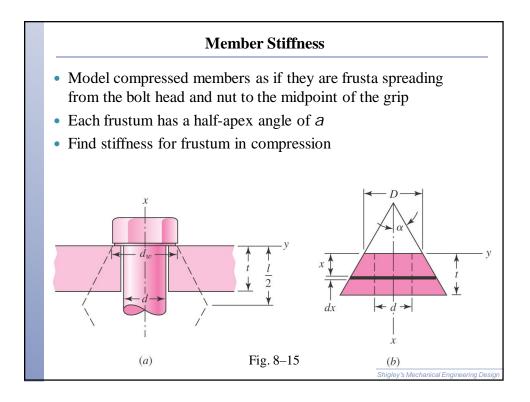


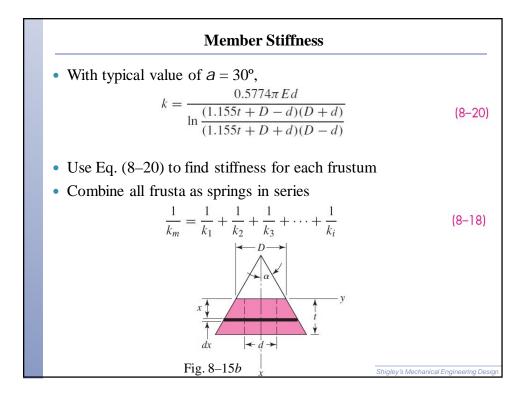






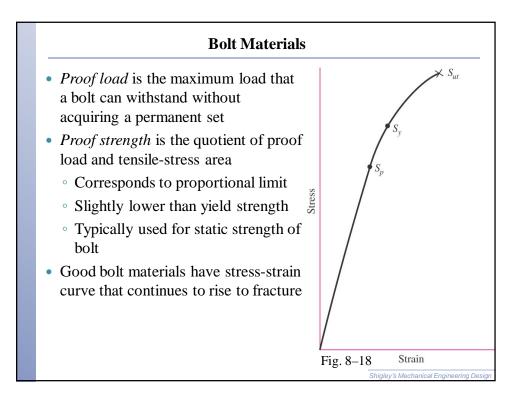






Member Stiffness	
$d\delta = \frac{P dx}{E A}$	(a)
$A = \pi \left(r_o^2 - r_i^2 \right) = \pi \left[\left(x \tan \alpha + \frac{D}{2} \right)^2 - \left(\frac{d}{2} \right)^2 \right]$	(b)
$= \pi \left(x \tan \alpha + \frac{D+d}{2} \right) \left(x \tan \alpha + \frac{D-d}{2} \right)$	
$\delta = \frac{P}{\pi E} \int_0^t \frac{dx}{[x \tan \alpha + (D+d)/2][x \tan \alpha + (D-d)/2]}$	<u>2]</u> (c)
$\delta = \frac{P}{\pi E d \tan \alpha} \ln \frac{(2t \tan \alpha + D - d)(D + d)}{(2t \tan \alpha + D + d)(D - d)}$	(d)
$k = \frac{P}{\delta} = \frac{\pi E d \tan \alpha}{\ln \frac{(2t \tan \alpha + D - d)(D + d)}{(2t \tan \alpha + D + d)(D - d)}}$	(8–19)
Shiq	gley's Mechanical Engineering Desigr

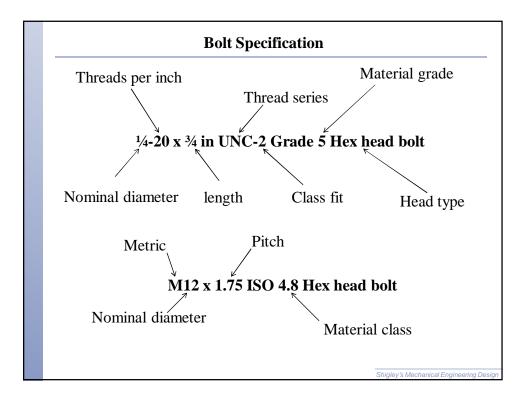
• If the grip consists of any number of members all of the same material, two identical frusta can be added in series. The entire joint can be handled with one equation,

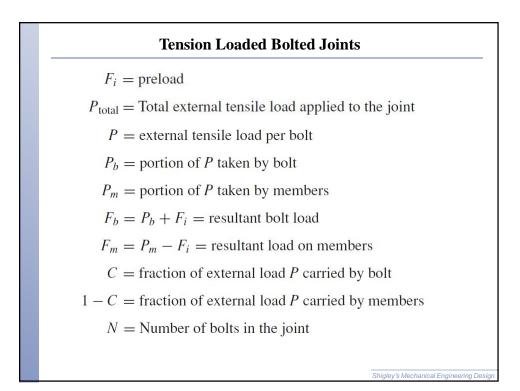

$$k_m = \frac{\pi E d \tan \alpha}{2 \ln \frac{(l \tan \alpha + d_w - d) (d_w + d)}{(l \tan \alpha + d_w + d) (d_w - d)}}$$
(8-21)

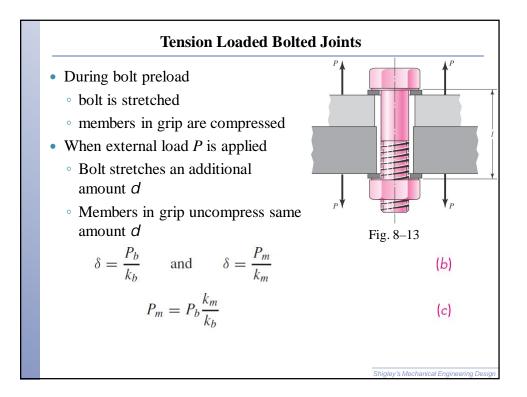
- d_w is the washer face diameter
- Using standard washer face diameter of 1.5d, and with $a = 30^\circ$,

$$k_m = \frac{0.5774\pi Ed}{2\ln\left(5\frac{0.5774l + 0.5d}{0.5774l + 2.5d}\right)}$$
(8-22)

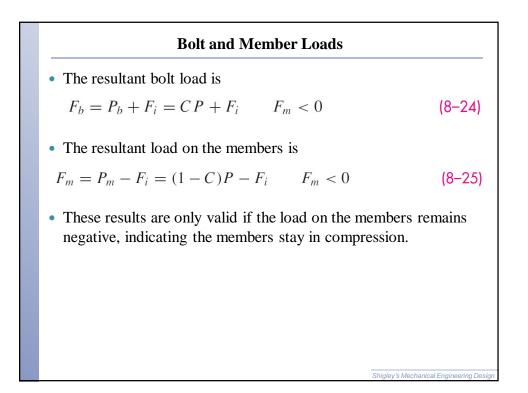
Shigley's Mechanical Engineering De

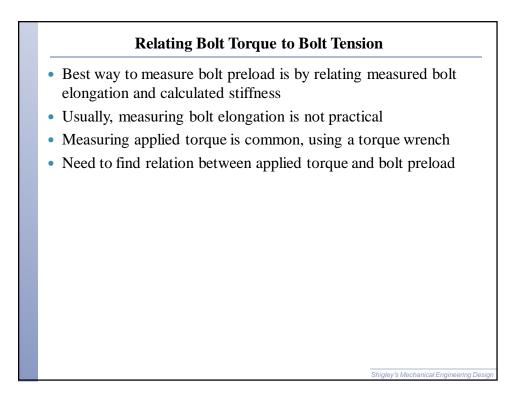

Bolt Material	S
• Grades specify material, heat treatment	nt, strengths
 Table 8–9 for SAE grades 	
• Table 8–10 for ASTM designations	
• Table 8–11 for metric property class	s
• Grades should be marked on head of l	
	Shiqley's Mechanical Engineering Des

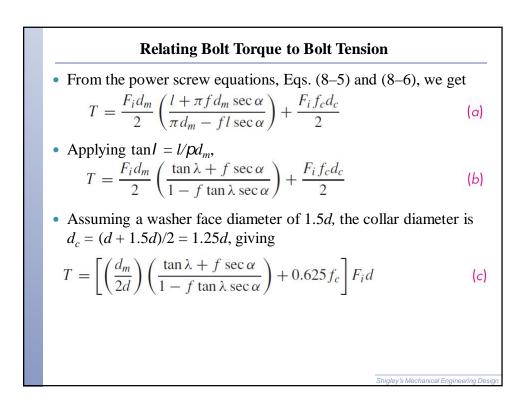


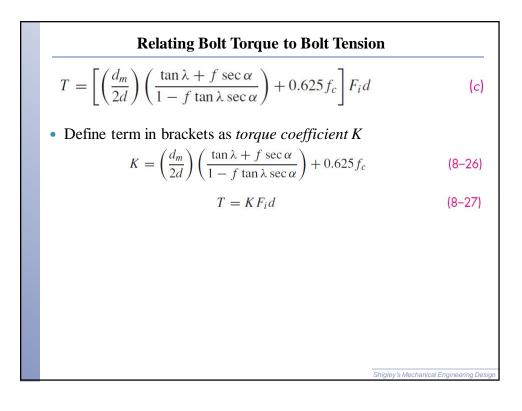

Table 8–9	SAE Grade No.	Size Range Inclusive, in	Minimum Proof Strength,* kpsi	Minimum Tensile Strength,* kpsi	Minimum Yield Strength,* kpsi	Material	Head Marking
	1	$\frac{1}{4} - 1\frac{1}{2}$	33	60	36	Low or medium carbon	\bigcirc
	2	$\frac{1}{4} - \frac{3}{4}$	55	74	57	Low or medium carbon	\sim
		$\frac{7}{8} - 1\frac{1}{2}$	33	60	36		\bigcirc
	4	$\frac{1}{4} - 1\frac{1}{2}$	65	115	100	Medium carbon, cold-drawn	\bigcirc
	5	$\frac{1}{4} - 1$	85	120	92	Medium carbon, Q&T	
		$1\frac{1}{8} - 1\frac{1}{2}$	74	105	81		$\left(\right)$
	5.2	$\frac{1}{4} - 1$	85	120	92	Low-carbon martensite, Q&T	\bigcirc
	7	$\frac{1}{4} - 1\frac{1}{2}$	105	133	115	Medium-carbon alloy, Q&T	Õ
	8	$\frac{1}{4} - 1\frac{1}{2}$	120	150	130	Medium-carbon alloy, Q&T	$\tilde{\bigcirc}$
	8.2	$\frac{1}{4} - 1$	120	150	130	Low-carbon martensite, Q&T	Ň

able 8–10	ASTM Desig- nation No.	Size Range, Inclusive, in	Minimum Proof Strength,* kpsi	Minimum Tensile Strength,* kpsi	Minimum Yield Strength,* kpsi	Material	Head Marking
	A307	$\frac{1}{4} - 1\frac{1}{2}$	33	60	36	Low carbon	\bigcirc
	A325,	$\frac{1}{2} - 1$	85	120	92	Medium carbon, Q&T	
	type 1	$1\frac{1}{8} - 1\frac{1}{2}$	74	105	81		(A325)
	A325,	$\frac{1}{2} - 1$	85	120	92	Low-carbon, martensite,	
	type 2	$1\frac{1}{8} - 1\frac{1}{2}$	74	105	81	Q&T	(A325)
	A325,	$\frac{1}{2} - 1$	85	120	92	Weathering steel,	
	type 3	$1\frac{1}{8} - 1\frac{1}{2}$	74	105	81	Q&T	(A325)
	A354,	$\frac{1}{4} - 2\frac{1}{2}$	105	125	109	Alloy steel, Q&T	\frown
	grade BC	$2\frac{3}{4}-4$	95	115	99		BC
	A354, grade BD	$\frac{1}{4}$ -4	120	150	130	Alloy steel, Q&T	
	A449	$\frac{1}{4} - 1$	85	120	92	Medium-carbon, Q&T	\wedge
		$1\frac{1}{8} - 1\frac{1}{2}$	74	105	81		$\left\{ \right\}$
		$1\frac{3}{4}-3$	55	90	58		\checkmark
	A490, type 1	$\frac{1}{2} - 1\frac{1}{2}$	120	150	130	Alloy steel, Q&T	A490
	A490, type 3	$\frac{1}{2} - 1\frac{1}{2}$	120	150	130	Weathering steel, Q&T	(A490)

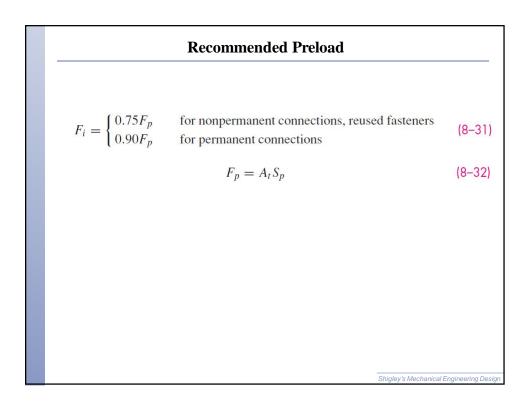

Property Class	Size Range, Inclusive	Minimum Proof Strength, [†] MPa	Minimum Tensile Strength, [†] MPa	Minimum Yield Strength, [†] MPa	Material	Head Marking
4.6	M5-M36	225	400	240	Low or medium carbon	4.6
4.8	M1.6-M16	310	420	340	Low or medium carbon	4.8
5.8	M5-M24	380	520	420	Low or medium carbon	5.8
8.8	M16-M36	600	830	660	Medium carbon, Q&T	8.8
9.8	M1.6-M16	650	900	720	Medium carbon, Q&T	9.8
10.9	M5-M36	830	1040	940	Low-carbon martensite, Q&T	10.9
12.9	M1.6-M36	970	1220	1100	Alloy, Q&T	12.9

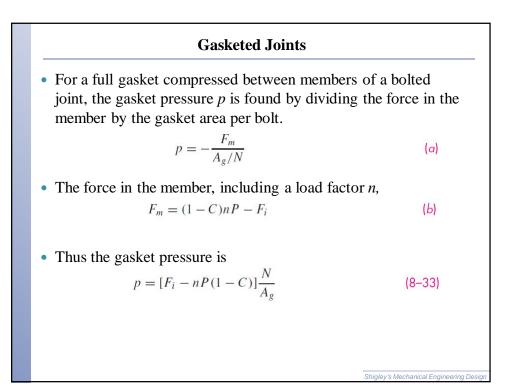


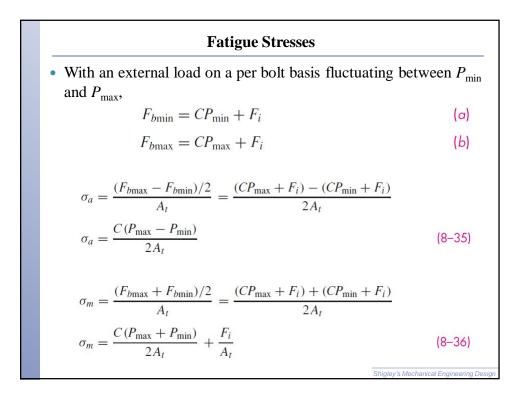


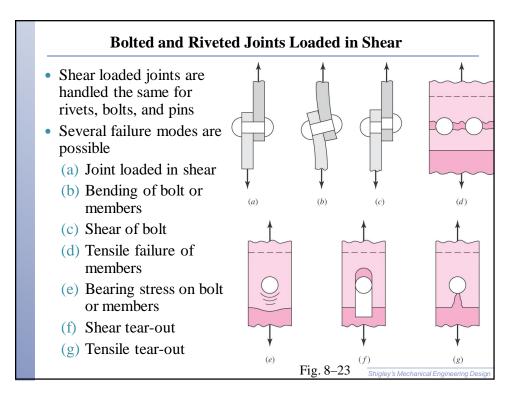


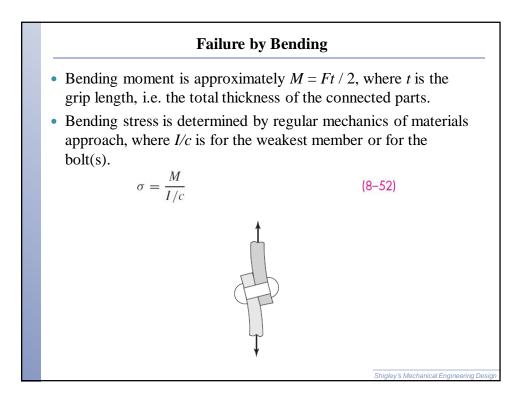
	Stiffness	Constan	t		
• Since $P = P_b + P_b$	m				
$P_b = -$	$\frac{k_b P}{k_b + k_m} = C P$	D			(d)
$P_m = P$	$-P_b = (1 - C)$	C)P			(e)
• <i>C</i> is defined as the	e stiffness cor	<i>istant</i> of	the joint		
C :	$=\frac{k_b}{k_b+k_m}$				(<i>f</i>)
• <i>C</i> indicates the provide carry. A good de	-			he bolt w	ill
Table 8-12		Stiffne	esses, M lbf/i	n	
Computation of Bolt	Bolt Grip, in	kb	k _m	С	1 – C
and Member Stiffnesses.	2	2.57	12.69	0.168	0.832
Steel members clamped	3	1.79	11.33	0.136	0.864
using a $\frac{1}{2}$ in-13 NC steel bolt. $C = \frac{k_b}{k_b + k_m}$	4	1.37	10.63	0.114 gley's Mechanical El	0.886

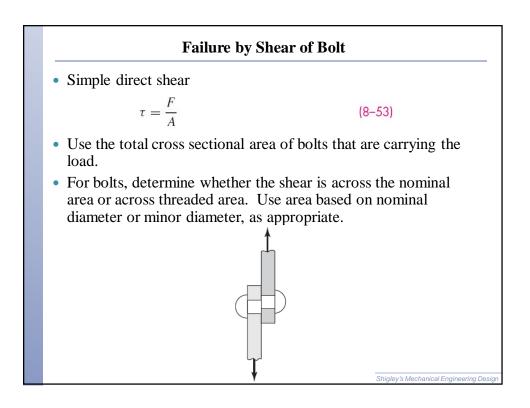


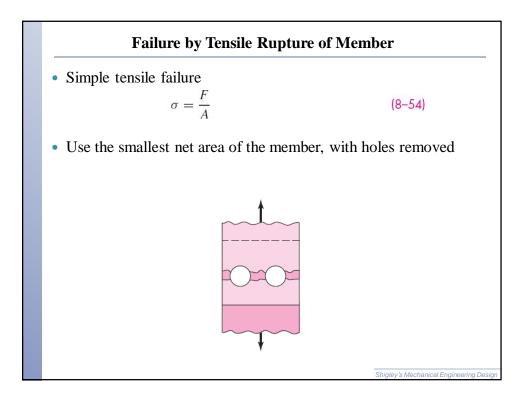





	Typical Values f	for Torque Coefficient K		
	$T = K F_i d$	(8–27)		
•	 Some recommended values given in Table 8–15 Use K = 0.2 for other cases 	s for <i>K</i> for various bolt finishe	es is	
	Table 8–15	Bolt Condition	K	
	Torque Factors K for Use	Nonplated black finish	0.20	
	ronque i uetono in tor e se	Nonplated, black finish	0.30	
	with Eq. (8–27)	Zinc-plated	0.30	
ľ	•			
ľ	•	Zinc-plated	0.20	
	•	Zinc-plated Lubricated	0.20 0.18	






Gasketed Joints	
• Uniformity of pressure on the gasket is i	1
 Adjacent bolts should no more than six r on the bolt circle 	nominal diameters apart
• For wrench clearance, bolts should be at apart	least three diameters
 This gives a rough rule for bolt spacing a diameter D_h 	around a bolt circle of
$3 \le \frac{\pi D_b}{Nd} \le 6$	(8–34)
	Shigley's Mechanical Engineering

