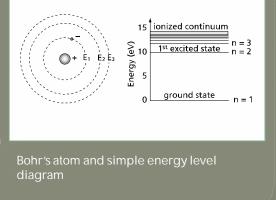
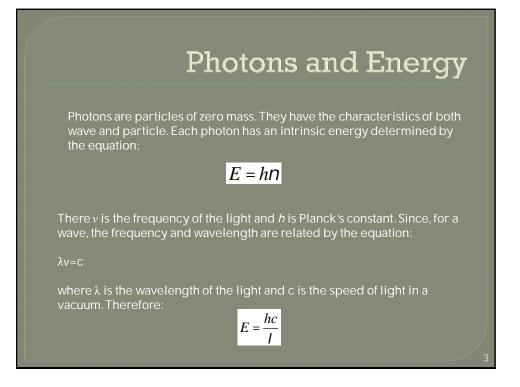
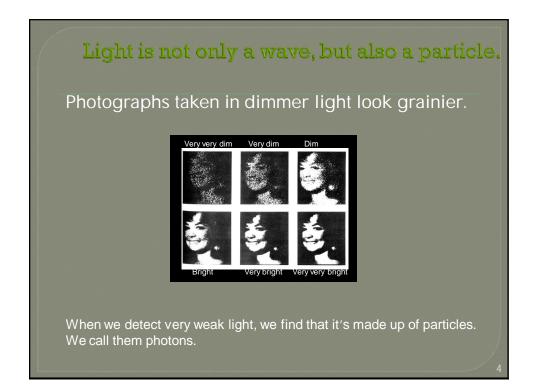
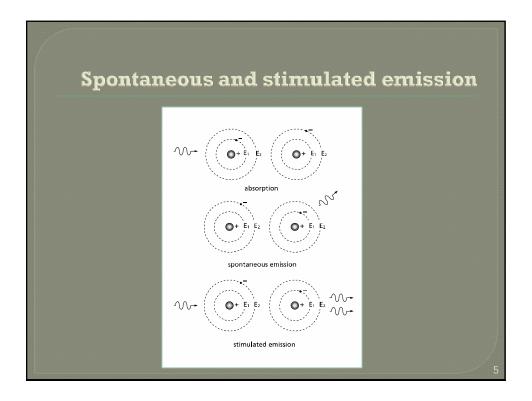
Laser Aided Manufacturing

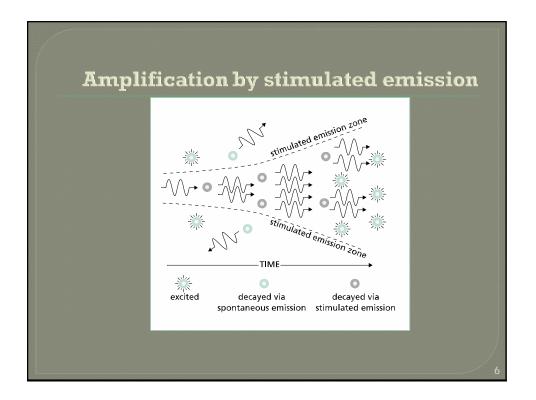

Principles of Laser and Optics Applications of Laser in Manufacturing Engineering Laser Welding Laser Surface Treatment Laser Powder Deposition

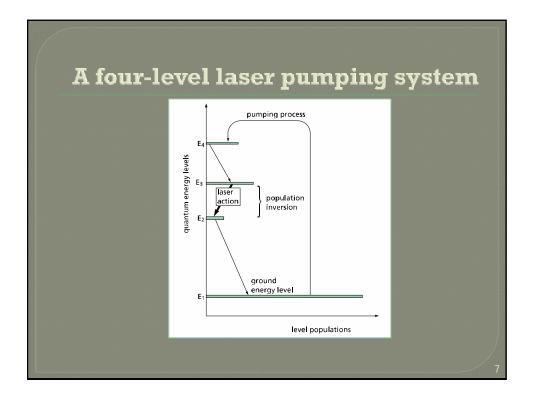
Laser and Optics Research Group (LORG) http://lorg.iut.ac.ir

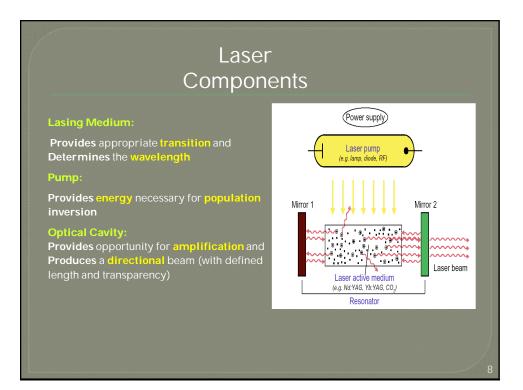

In this model, electrons can go from one level to another level, but they cannot stay between them. That makes the "quantum energy states."

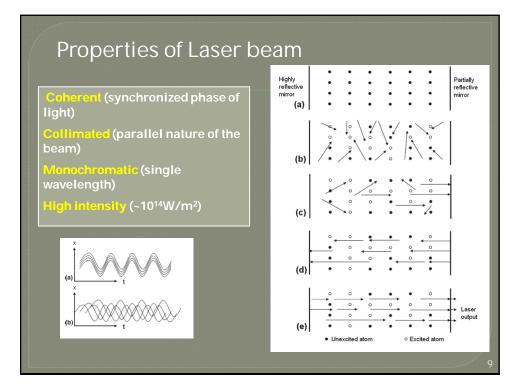

For an electron to jump to a higher quantum state, the atom must receive energy from the outside world. Likewise, when an electron drops from a higher state to a lower state, the atom must give off energy.

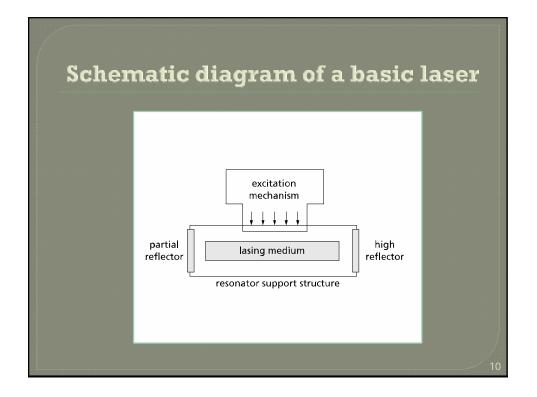

The Bohr Atom

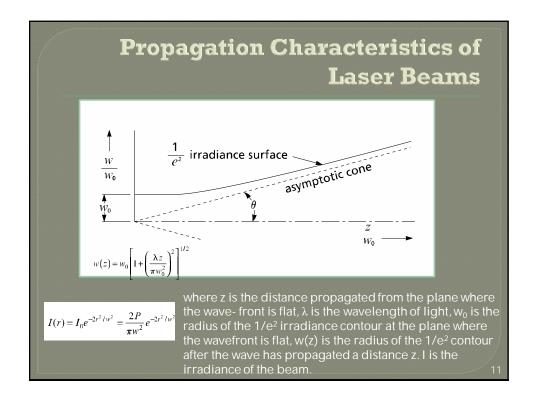


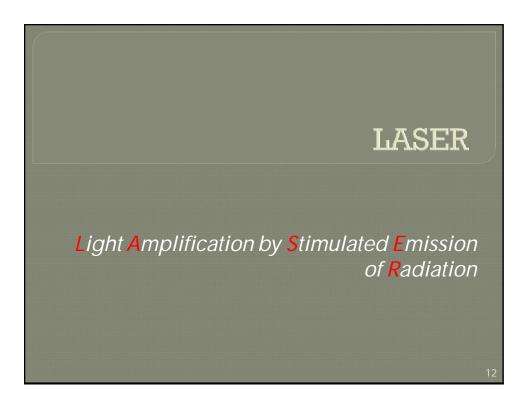

1

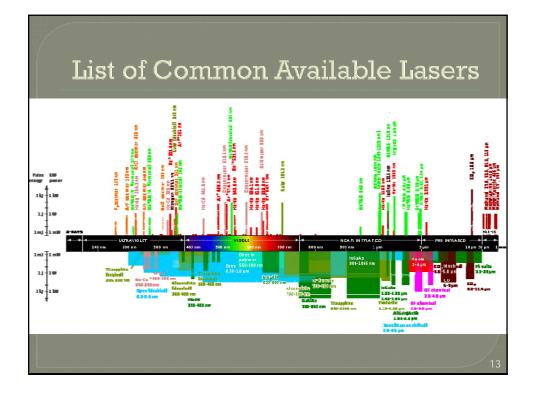


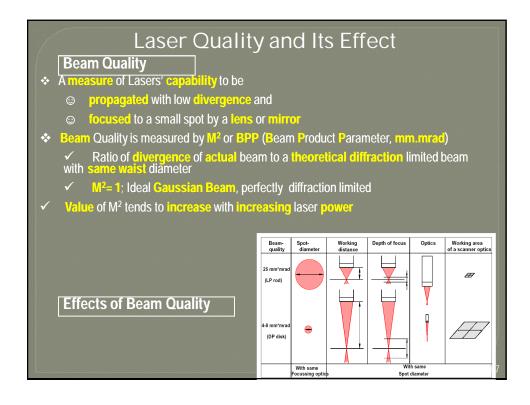


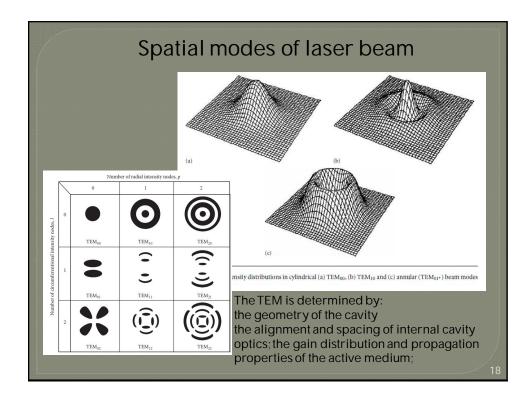


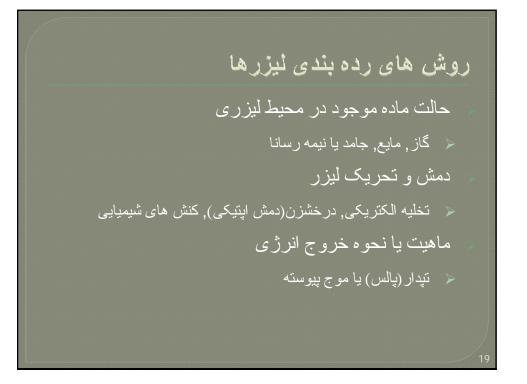


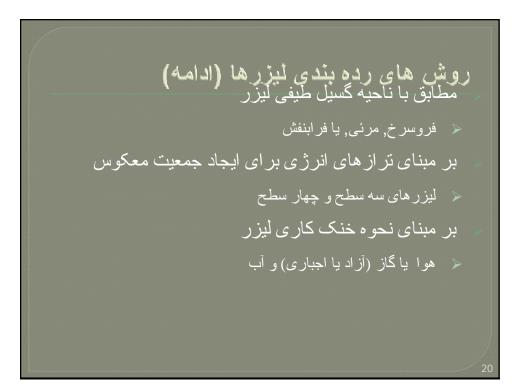


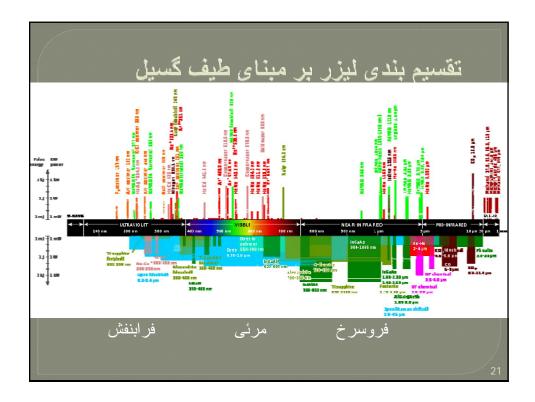


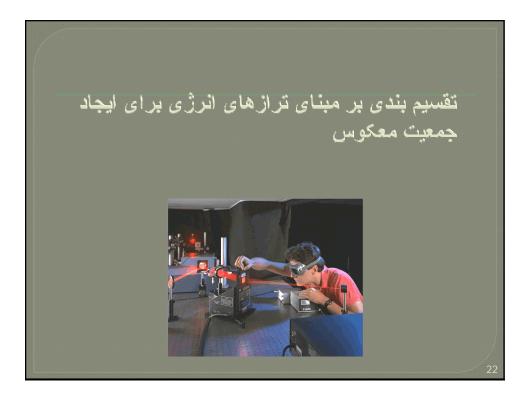


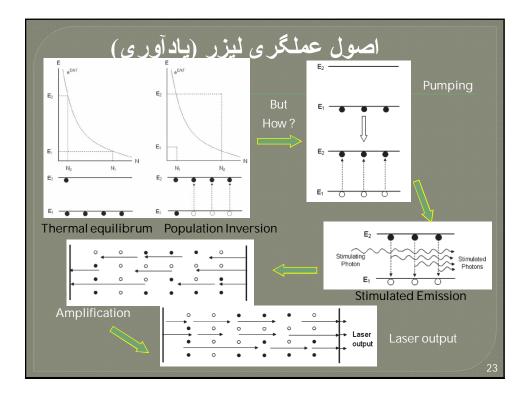


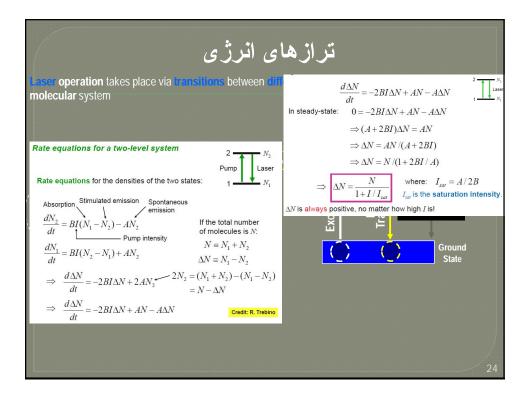

Table 0.1 Ra	nge of wavelen	gths for current	commerc	ial lasers
Laser type	Lasing species	Principle wavelength (µm)	Region	Date invented/commercialised
Excimer	F ₂	0.157	UV	1975/1976
	ArF	0.193	UV	
	KrF	0.248	UV	
Nd:YAG frequency-quadrupled	$Nd^{3+} \times 4$	0.266	UV	
	XeCl	0.308	UV	
	XeF	0.351	UV	
Nitrogen	N_2	0.337	UV	1966/1969
AlGaN diode	Band gap	0.38-0.45	Blue	
	•••	(tunable)		
Helium-cadmium	Cd	0.4416	Blue	1968/1970
Argon	Λr^+	0.4880	Blue	1964/1966
Ū.	Ar ⁺	0.5145	Green	
Copper vapour	Cu*	0.5106	Blue-	1966/1981
			green	
	Cu*	0.5782	Yellow	
Nd:YAG frequency-doubled	$Nd^{3+} \times 2$	0.532	Green	
I lelium-neon	Ne*	0.6328	Red	1962
Ruby	Cr ³⁺	0.6943	Red	1960/1963
Alexandrite	Cr ³⁺	0.700-0.820	IR	1977/1981
		(tunable)		
Ti:sapphire	Ti ³⁺	0.670-1.100	IR	
		(tunable)		
AlGaAs diode	Band gap	0.7-0.9 (tunable)	IR	1962/1965
Nd:YAG or Nd:glass	Nd ³⁺	1.064	IR	1964/1966
Yb:YAG or Yb:glass	Yb ³⁻	1.030	IR	1990s
Chemical oxygen-iodine	Chemical	1.3	IR	1964/1983
	$(O_2 + I_2)$			
Er:YAG	Er ³⁺	1.5	IR	
Hydrogen fluoride	Chemical	2.6-3.0	IR	1967/1977
	$(H_2 + F_2)$			
Helium-neon	Ne*	3.39	IR	
Carbon monoxide	CO vibration	5.4	IR	
Carbon dioxide	CO_2	9.4	IR	
	vibration	10.64	IR	1964/1966
Dye	Fluorescence	1.1-0.3 (tunable)	IR-UV	1962/1965
Free electron	Electron	12.0-0.1	IR-UV	1963/1969
	vibration	(tunable)		
		. ,		

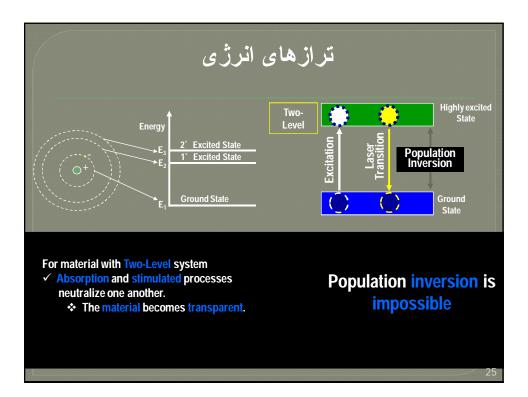

	Table 0.2 Outli	ne history of the development of the laser [5]	
Date	Name	Achievement	References
1916	Albert Einstein	Theory of light emission. Concept of stimulated emission	[2,3]
1928	Rudolph W. Ladenburg	Confirmed existence of stimulated emission and negative absorption	[17]
1940	Valentin A. Fabrikant	Noted possibility of population inversion	[18]
1947	Willis E. Lamb.	Induced emission suspected in hydrogen spectra. First	
	R.C. Retherford	demonstration of stimulated emission	(**)
1951	Charles H. Townes	The inventor of the maser at Columbia University.	[20]
1221	Chilles II. Johnes	First device based on stimulated emission. Awarded	[20]
		the Nobel prize in physics in 1964	1.0.1
1951	Joseph Weber	Independent inventor of the maser at University of Maryland	[21]
1951	Alexander Prokhorov,	Independent inventors of the maser at Lebedev	[22]
	Nikolai G. Basov	Laboratories, Moscow. Awarded the Nobel prize in	
		physics in 1964	
1954	Robert H. Dicke	"Optical bomb" patent based on pulsed population	[23]
		inversion for superradiance and a separate Fabry-	
		Perot resonant chamber for a "molecular amplification	
		and generation system"	
1956	Nicolaas Bloembergen	First proposal for a three-level, solid-state maser at	[24]
17.45	reconder brochiber gen	Harvard University	14.0
1957	Gordon Gould	First document defining a laser; notarised by a candy-	[25]
1757	Civiacii Civiati	store owner. Credited with patent rights in the	[20]
		1970s	
1958	Arthur L. Schawlow,	First detailed paper describing an "optical maser".	[26]
19.00	Charles H. Townes	Credited with the invention of the laser; from	[20]
	Charles FL Townes	Columbia University	
1960	Arthur L. Schawlow.	Laser patent no. 2,929,922	27
1900	Charles H. Townes	Laser patent no. 2,929,922	[27]
1960	Theodore Maiman	to consider the construction because the second	(11)
1900	incodore Maiman	Invented the first working laser based on ruby, 16 May	[1]
		1960. Hughes Research Laboratories	
1960	Peter P. Sorokin,	First uranium laser - second laser overall, November	28
	Mirek Stevenson	1960. IBM Laboratories	
1961	A.G. Fox, T. Li	Theoretical analysis of optical resonators at Bell	[29]
		Laboratories	
1961	Ali Javan.	Invented the helium-neon laser at Bell Laboratories,	[30]
	William Bennett Jr.,	Murray Hill, New Jersey	
	Donald Herriott		
1962	Robert Hall	Invention of the semiconductor laser at General	[10]
		Electric Laboratory followed swiftly by others	
1964	I.E. Geusic, H.M. Marcos,	Inventor of the first working Nd: YAG laser at Bell	[8]
	L.G. Van Uitert	Laboratories	
1964	Kumar N. Patel	Invention of the CO ₂ laser at Bell Laboratories,	[7]
1.01	realities 14 1 area	Murray Hill, New Jersey	1.1
1964	William Bridges	Invention of the argon ion laser at Hughes Laboratories	1311
1965	George Pimentel,	First chemical laser at University of California Berkley	
170.0	J.V.V. Kasper	That encline a mach at only charge of our of the perkicy	1.00
1966	William Silvast,	First metal vapour laser, Zn-Cd, at University of Utah	[33]
1900	Grant Fowles.	First metal vapour laser, zn=cu, at oniversity of cian	1551
00000	B.D. Hopkins		

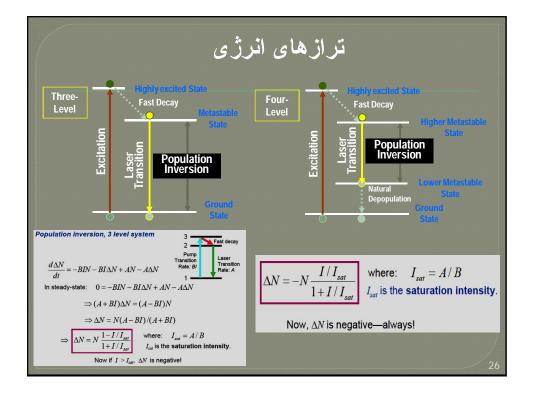

		he history of the development of the laser [5]	D (
Date	Name	Achievement	References
1966	Peter Sorokin, John Lankard	First dye laser action demonstrated at IBM Laborato-	[34]
1969	John Lankard G.M. Delco	ries First industrial installation of three lasers for	(D. Roessle
1909	G.M. Delto	automobile application	private con
		automobile application	munication
			1995)
19 70	Nicholai Basov's group	First excimer laser at Lebedev Laboratory, Moscow. Based on Xe only	[15]
1970	Zh.I. Alferov et al.	Invention of double heterostructure for laser diodes	[35]
19 74	J.J. Ewing, Charles Brau	First inert gas halide excimer laser at AVCO Everet Laboratories	[14]
1977	John M.J. Madey's group	First free-electron laser at Stanford University	[16]
1980	Geoffrey Pert's group	First report of X-ray lasing action, Hull University, UK	[36]
1981	Arthur L. Schawlow,	Awarded the Nobel prize in physics for work in	
	Nicholaas Bloembergen	non-linear optics and spectroscopy	
1984	Dennis Matthews's group	First reported demonstration of a "laboratory" X-ray laser; from Lawrence Livermore National Laboratory	[37]
2000	Zh.I Alferov, H. Kroemer	Awarded the Nobel prize in physics for heterostucture invention	











Pulsed Laser

> Pulsed lasers are lasers which emit light not in a continuous mode, but rather in the form of optical <u>pulses</u>.

The term is most commonly used for <u>Q-switched lasers</u> emitting nanosecond pulses

Depending on the <u>pulse duration</u>, <u>pulse energy</u>, <u>pulse</u> <u>repetition rate</u> and wavelength required, very different methods for <u>pulse generation</u> and very different types of pulsed lasers are used

➢ For nanosecond pulse durations, various types of <u>O-switched</u> <u>lasers</u> can be used. High <u>pulse energies</u> are achievable with <u>solid-state bulk lasers</u>. For small pulse energies, a <u>microchip laser</u> or a <u>fiber laser</u> can be suitable.

List of Common Available Lasers	S
---------------------------------	---

Laser	Year of discovery	Commercialised since	Application
Ruby	1960	1963	Metrology, medical applications, inor- ganic material processing
Nd-Glass	1961	1968	Length and velocity measurement
Diode	1962	1965	Semiconductor processing, bio- medical applications, welding
He–Ne	1962		Light-pointers, length/velocity mea- surement, alignment devices
Carbon dioxide	1964	1966	Material processing-cutting/joining, atomic fusion
Nd-YAG	1964	1966	Material processing, joining, analyti- cal technique
Argon ion	1964	1966	Powerful light, medical applications
Dye	1966	1969	Pollution detection, isotope separation
Copper	1966	1989	Isotope separation
Excimer	1975	1976	Medical application, material process- ing, colouring

Types of Laser based on state of active medium used

Gas Laser: He-Ne, Argon ion and CO₂ Solid state Laser : Ruby, Nd:YAG, Nd:glass Semiconductor Laser Tunable dye Laser

لیزر های گاڑ ی

ماده فعال کننده یک گاز جمعیت معکوس بسیار کمتر از جامدات: لیزر های گازی پرقدرت بسیار حجیم و بزرگ تحریک توسط تخلیه الکتریکی انواع لیزر گازی: • لیزر اتمی نظیر هلیوم-نئون, بخار مس • لیزر های یونی نظیر آرگون, هلیم-کادمیم • لیزر های مولکولی نظیر دی اکسید کربن, لیزر ازت و اگزیمر

He-Ne laser

Laser medium is mixture of Helium and Neon gases in the ratio 10:1
Medium excited by large electric discharge, flash pump or continuous high power pump
In gas, atoms characterized by sharp energy levels compared to solids

Actual lasing atoms are the Neon atom

Pumping action:

Electric discharge is passed through the gas Electrons are accelerated, collide with He and He atoms and excite them to higher energy levels

The CO2 LASER:

•Lasers discussed above – use transitions among various excited electronic states of an atom or ion

•CO2 laser – uses transition between different vibrational states of CO2 molecule

•One of the earliest Gas lasers

- •Highest power continuous wave laser currently available
- •The filling gas within the discharge tube consists primarily of:

Carbon dioxide Hydrogen Nitrogen Helium (proportions vary according to a specific laser)

لیزر نیمه هادی Semiconductor Lasers

•Use semiconductors as the lasing medium

Advantages:

•Capability of direct modulation into Gigahertz region

•Small size and low cost

- ·Capability of Monolithic integration with electronic circuitry
- •Direct Pumping with electronic circuitry
- •Compatibility with optical fibers

- Homojunction and Heterojunction lasers
- Threshold current density

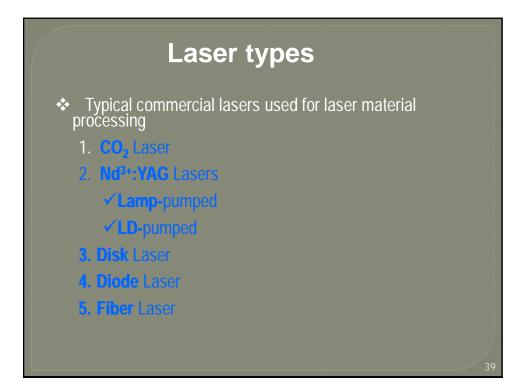
Carrier and Photon confinement

✓Most SC lasers operate in 0.8 – 0.9 µm or 1 – 1.7 µm spectral region

✓ Wavelength of emission determined by the bandgap

✓ Different SC materials used for different spectral regions

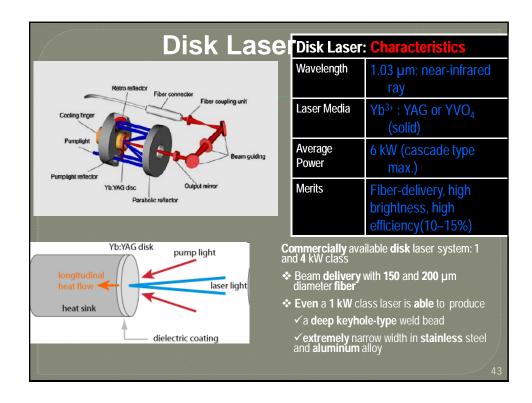
 $\checkmark 0.8-0.9~\mu m$: Based on Gallium Arsenide

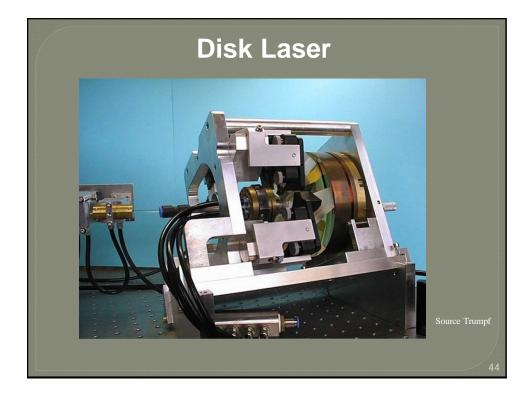

 $\sqrt{1}$ – 1.7 µm : Based on Indium Phosphide (InP)

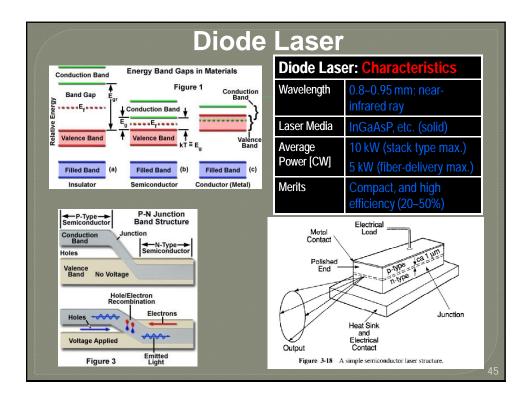
Laser Parameters for several common lasers

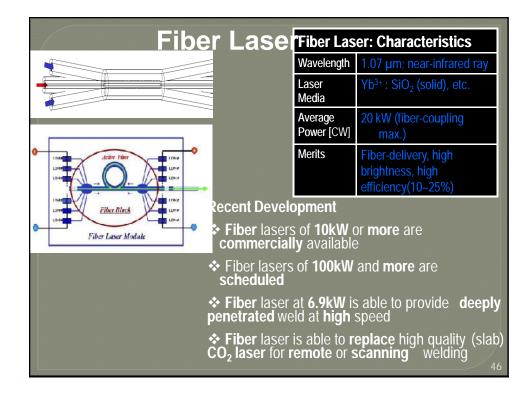
Gain medium	Pump type	Wavelength	Power/Energy	Output type	Beam diameter	Beam divergence	Efficiency	Cooling
Gas, atomic								
Helium Neon	electric discharge	0.6328 µm, others	0.1-50 mW	CW	0.5-2.5 mm	0.5-3 mrad	<0.1%	air
Helium Cadmium	electric discharge	325 nm, 441.6 nm, others	5-150 mW	cw	0.2-2 mm	1-3 mrad	<0.1%	air
Gas, ion								
Argon	electric discharge	several from 350– 530 nm, main lines: 488 nm, 514.5 nm	2 mW-20 W	cw (or mode- locked)	0.6-2 mm	0.4-1.5 mrad	<0.1%	water or forced air
Krypton	electric discharge	several from 350-800 nm, main line: 647.1 nm	5 mW-6 W	cw (or mode- locked)	0.6-2 mm	0.4-1.5 mrad	<0.05%	water or forced air
Gas, molecular								
Carbon Dioxide	electric discharge	10.6 µm	3 W-20 kW	cw or long pulse	3-50 mm	1-3 mrad	5-15%	flowing gas
Nitrogen	electric discharge	337.1 nm	1-300 mW (average)	pulsed -	2 × 3–6 × 30 mm (rectangular)	$1-3 \times 7 \text{ mrad}$	<0.1%	flowing gas
Gas, excimer								
Argon Fluoride	short-pulse electric discharge	193 nm	up to 50 W (average)	pulsed	2 × 4-25 × 30 mm (rectangular)	2–6 mrad	<1%	air or water
Krypton Fluoride	short-pulse electric discharge	248 nm	up to 100 W (average)	pulsed	2 × 4-25 × 30 mm (rectangular)	2–6 mrad	<2%	air or water
Xenon Chloride	short-pulse electric discharge	308 nm	up to 150 W (average)	pulsed	2 × 4-25 × 30 mm (rectangular)	2-6 mrad	<2.5%	air or water
Xenon Fluoride	short-pulse electric	351 am	up to 30 W (average)	pulsed	2 × 4-25 × 30 mm (rectangular)	2-6 mrad	<2%	air or water

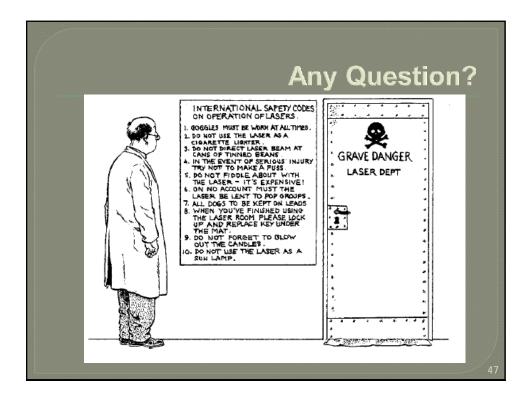
Laser Parameters for several common lasers

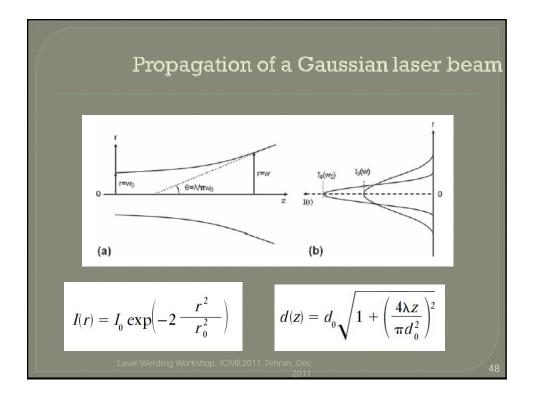

Gain medium	Pump type	Wavelength	Power/Energy	Output type	Beam diameter	Beam divergence	Efficiency	Cooling
liquid								
Various Dyes	other lasers, flashlamp	tunable 300-1000 nm	20 mW-1W (average)	cw or (ultrashort) pulsed	1-20 mm	0.3-2 mrad	1-20%	dye flow or water
Solid-State								
Nd:YAG	flashlamp, arc lamp, diode laser	1.064 µm	up to 10 kW (average)	cw or pulsed	0.710 mm	0.3-25 mrad	0.1-2% (5-8%, diode pumped)	air or water
Nd:glass	flashlamp	1.06 µm	0.1-100 J per pulse	pulsed	3-25 mm	3-10 mrad	1-5%	water
Alexandrite	flashlamp	tunable, 700-818 nm	<100 W average power	cw or pulsed	a few mm	a few mrad	0.5%	air or water
Ti-sapphire	flashlamp, diode laser, doubled Nd:YAG	tunable, 660-1000 nm	~2 W average power	cw or (ultrashort) pulsed	a few mm	a few mrad	comparable to Nd: YAG	air or water
Erbien:Fiber	flashlamp, diode laser	1.55 µm	1-100 W	ow or pulsed	a few man	a few mrad	comparable to Nd: YAG	air
Semiconductor Lasers								
GaAs, GaAlAs	electric current, optical pumping	780–900 nm, composition dependent	1 mW to several watts, diode arrays up to 100 kW	cw or pulsed	N/A (diverges too rapidly)	200 × 600 mrad (oval in shape)	1-50%	air, heat sink
InGaAsP	electric current, optical pumping	1100-1600 nm, composition dependent	1 mW to ~1 W	cw or pulsed	N/A (diverges too rapidly)	200 × 600 mrad (oval in shape)	1-20%	air, heat sink

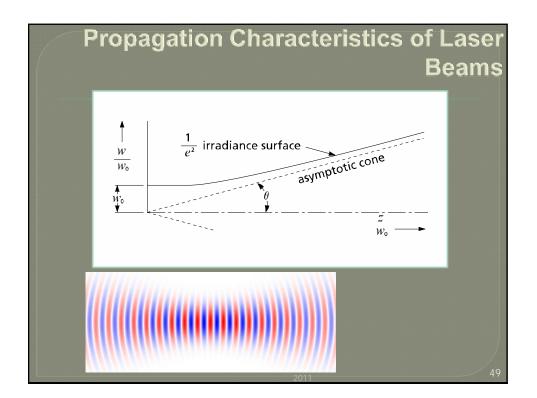


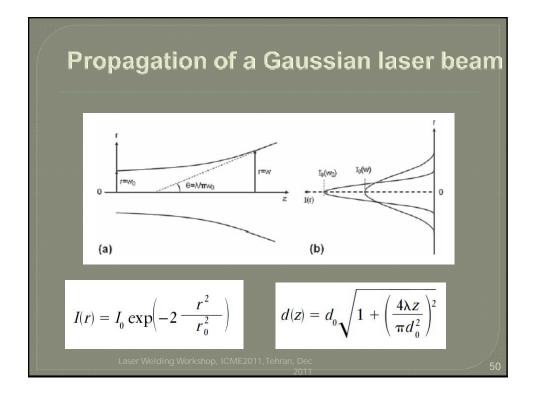

			CO ₂		ers			
CO ₂ Laser: C	har	acteristics			(a)	Radio frequen	ncy	Cooling water
Wavelength	10	.6 µm; far-infra	red ray		Coc	ling water	-4	
Laser Media	CC	D ₂ -N ₂ -He mixe	ed gas (gas	5)	Output mir	ror 🗡	6	Rear mirro
Average Power (CW)		kW (maximun ormal) 500 W ·			Beam sha unit	ping		Laser gas discharge
Merits	Ea 20	sier high powe %)	er (efficienc	:y: 10–	Laser beam		*	⊥_
CO ₂ Laser: M	² Va	lues [CW]			02			
Output power (W)	M ²						
<500		1.1-1.2						
800-1000		1.2-2					1	12 ·
1000-2500		1.2-3	CO ₂ Laser: A	Application		9		11
5000		2-5	Automobile	2.5 to 7 kW c	lass		ROFIN	
10,000		10	Industries	(Alder, 2003)				
			Steel and Shipbuilding Industries	5 to 45 kW(M 2002)	linamida,	-		40

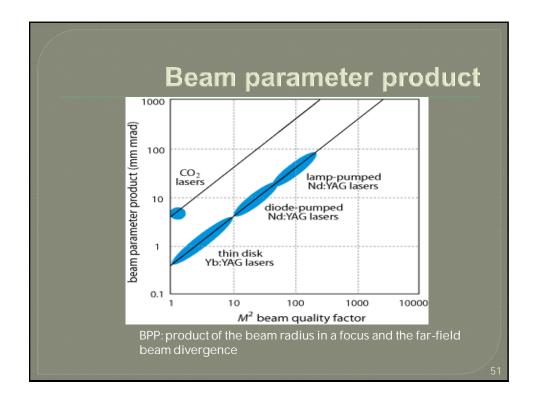

	YAG	La	aser	
	nped YAG Laser: teristics		Nd:YA	S crystal
Wavelength	1.06 µm; near-infrared ray		Pump light	Output mitror
Laser Media	Nd ³⁺ : Y ₃ Al ₅ O ₁₂ garnet (solid)	0	String-
Average Power [CW]	10 kW (cascade type & fibe coupling)	er-	Rear mirror	Cooling water Pump light Pump lamp 5 Schematic of an N±YAG laser (courtesy Rofin-Sinar)
	(Normal) 50 W–4 kW	LD	-pumped YA	G Laser: Characteristics
Merits	Fiber-delivery, and easier handling (efficiency: 1–4%)	Wa	avelength	about 1 µm; near-infrared ray
Cooling o o	Diode O C Electrical	La	ser Media	Nd ³⁺ : Y ₃ Al ₅ O ₁₂ garnet (solid)
Nd: VAG. crystal	colimating optic Laser		erage wer	[CW] : 13.5 kW (fiber-coupling max.) [PW] : 6 kW (slab type max.)
Raar mirror	Outcoupling mirror	Me	erits	Fiber-delivery, high brightness and high efficiency (10–20%)
5.6 Schematic of a sin Rofin-Sinarl.	gle rod diode-pumped Nd:YAG lasers (courtesy			

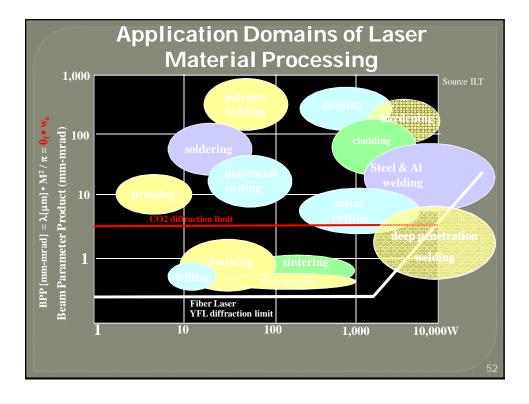

YAG Laser: M² v PW]	alues [CW &	YAG Laser App	lication: Automobile Industries
Output power (W)	M²	Lamp- pumped	3 to 4.5 kW class; SI fiber delivered (Mori, 2003)
0-20	1.1-5	LD-pumped	2.5 to 6 kW
20-50 50-150	20-50 50-75	New Development	Rod-type: 8 and 10 kW;
150-500 500-4000	75-150 75-150		Slab-type: 6 kW; Developed by Precision Laser Machining Consortium, PLM

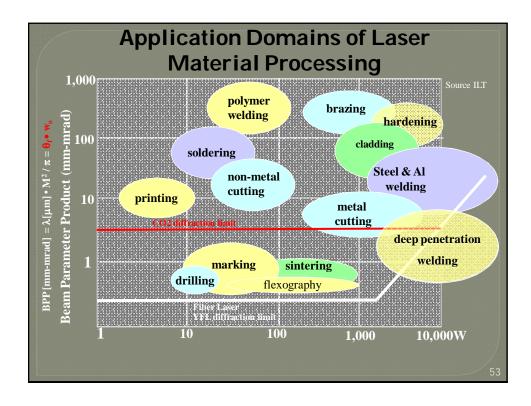


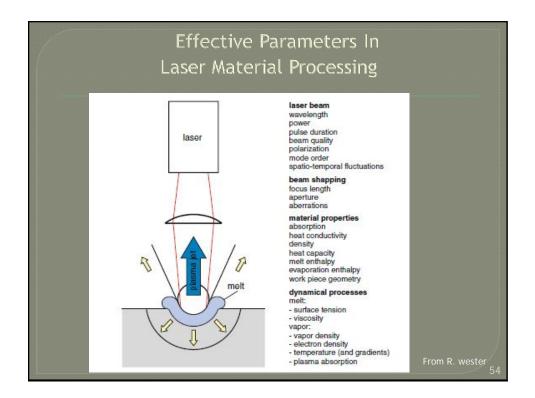




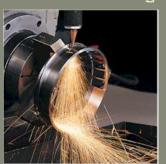




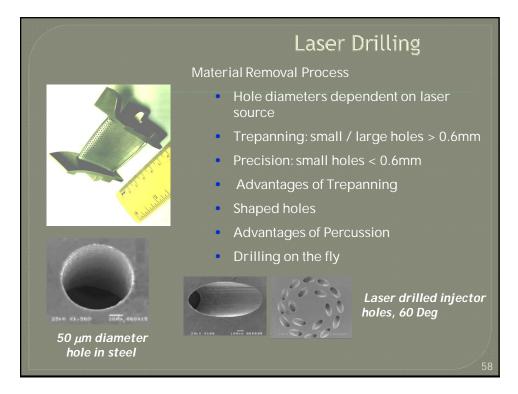




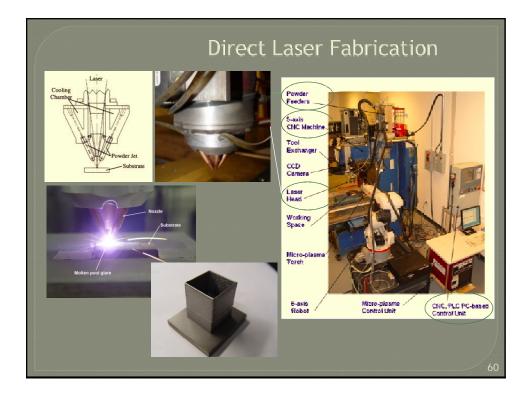
Laser Processing Applications

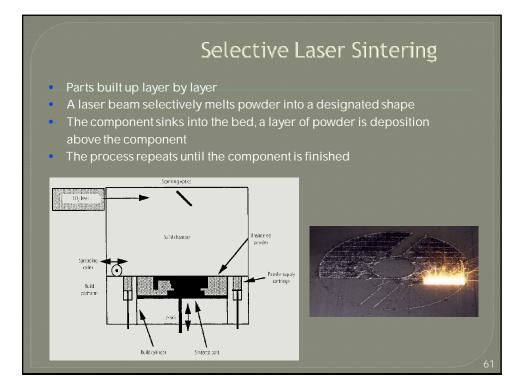

Laser Marking Laser Cutting Laser Drilling Laser Surface Treatment Laser Cladding Direct Laser Fabrication Laser Forming Laser Welding

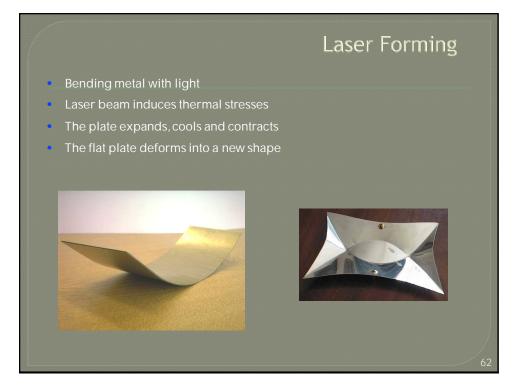
55



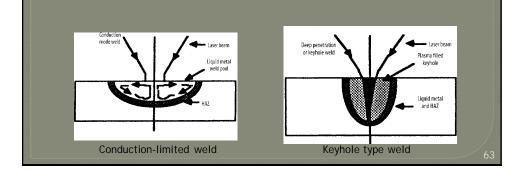
Laser Cutting

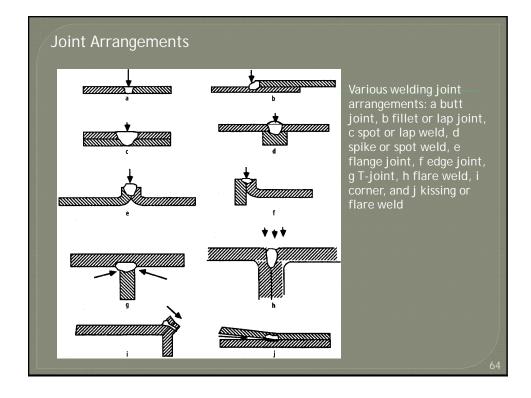

- Application to a wide range of materials and thickness
- Narrow kerf widths
- High speeds
- Very high repeatability
- Very high reliability
- Easily automated and programmable
- Flexibility in changeovers
- Reduced tooling costs and setup times
- Non-contact proces
- Versatility (same tool for welding)
- 3D cutting
- Cloths and plastic cutting



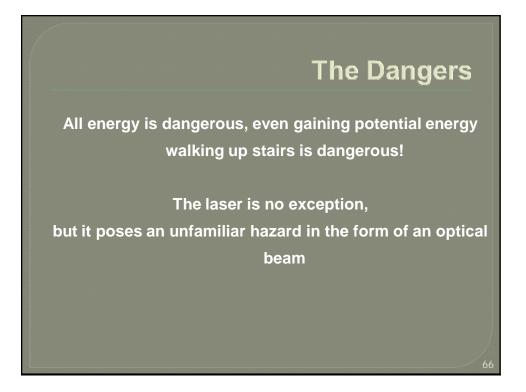


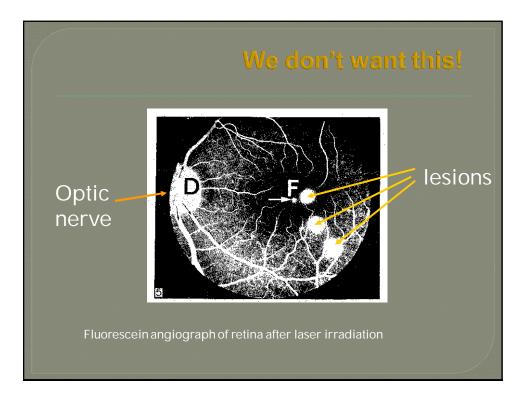
31

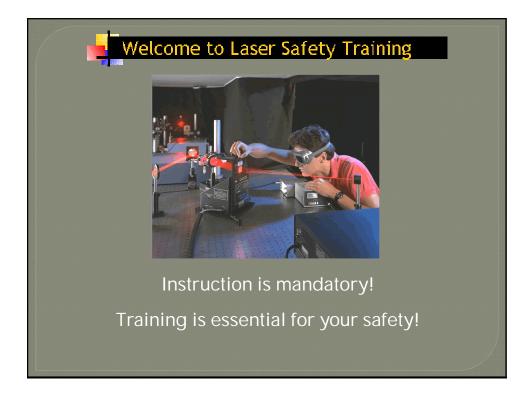

Laser Welding Modes

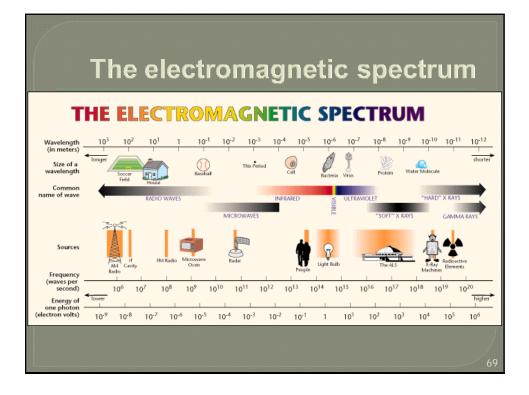

Laser Welding

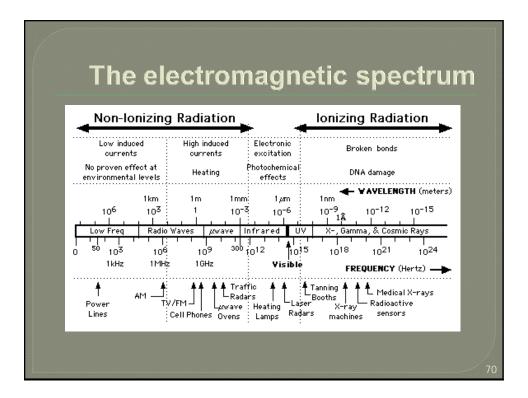
- Conduction Welding
- Deep Penetration Welding (Keyhole Welding)


Conduction Welding: the power density is insufficient to cause boiling and therefore generate a keyhole. The weld pool has strong stirring forces driven by Marangoni-type forces resulting from the variation in surface tension with temperature.


Keyhole Welding: there is sufficient energy to cause evaporation and hence a hole in the melt pool. This hole is stabilized by the pressure from the vapour being generated. The "keyhole" behaves like an optical black body, it enables the beam to be nearly all absorbed.







Ultraviolet radiation sub-divided ranges:

UV – A 315 nm to 400 nm

UV - B 280 nm to 315 nm

UV – C 100 nm to 280 nm

Visible region: between 400 nm and 780 nm

Infrared radiation sub-divided ranges:

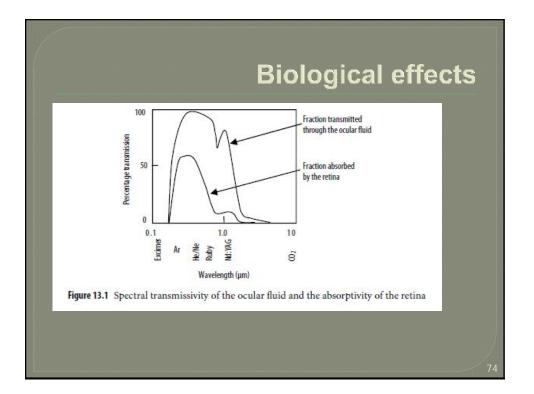
IR - A 780nm to 1400 nm

IR – B 1400 nm to 3000 nm

IR – C 3000nm to 1 mm

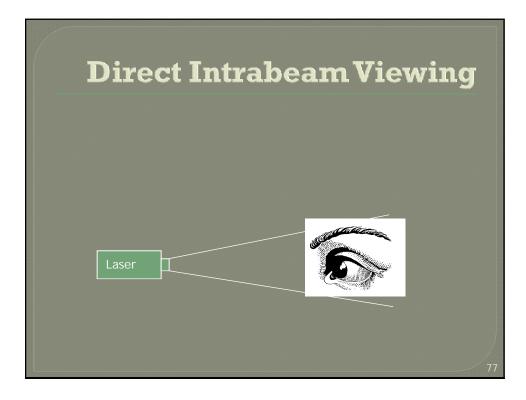
Biological effects

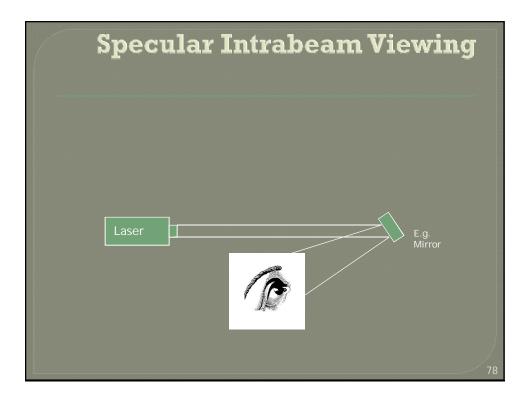
As same as those produced by exposure to incoherent radiation of the same wavelength No significance biological due temporal and spatial coherence The monochromaticity has some significance in that a very small image can be formed on the retina High irradiance and the low divergence have practical implications for the assessment of hazard

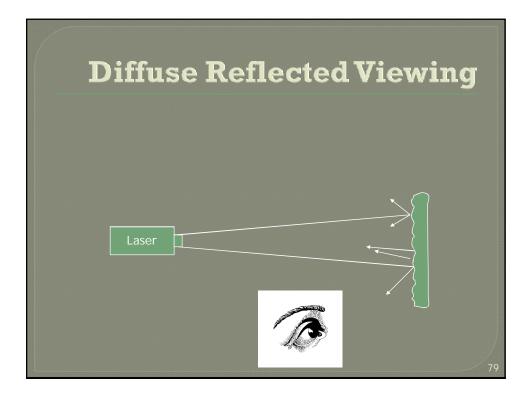


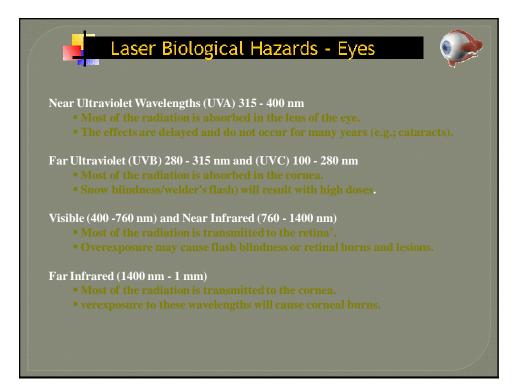
Biological effects

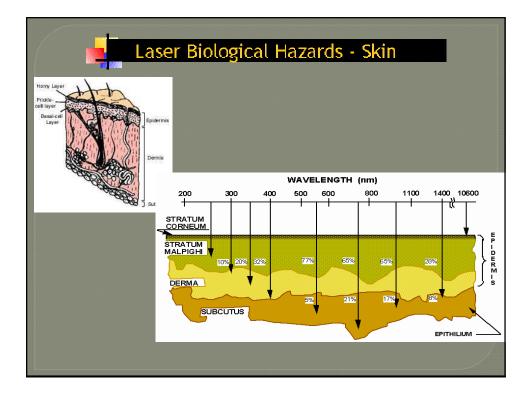
Laser radiation, unlike ionising radiation at the shortwavelength of the spectrum, does not penetrate deeply into the body and the eye and the skin are the only organ need to be considered

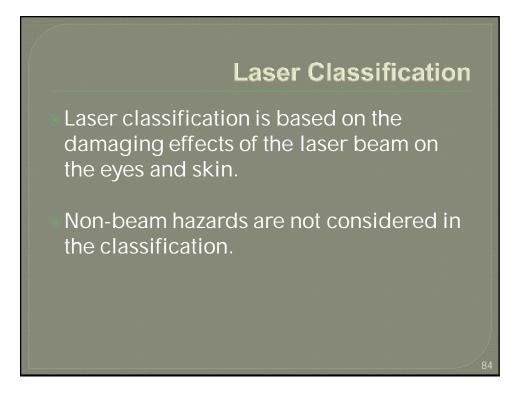

Radiation in the visible and infrared A regions is especially hazardous to the eye, because of its penetration through the structure of the eye to the retina


The effects on the other organ at risk, the skin, depend on the wavelength




	Tubic	13.1 Basic laser biologic	ai nazaro	15		12
Laser type	Wavelength (µm)	Biological effects	Skin	Cornea	Lens	Retina
CO ₂	10.6	Thermal	Х	Х		20
H ₂ F ₂	2.7	Thermal	X	Х		
Er:YAG	1.54	Thermal	X	х		
Nd:YAG	1.33	Thermal	X	X	X	X
Nd:YAG	1.06	Thermal	X			X
GaAs diode	0.78-0.84	Thermal	_ ^a		X	
He-Ne	0.633	Thermal	_a		X	
Ar Excimer:	0.488-0.514	Thermal, photochemical	Х			х
XeF	0.351	Photochemical	X	Х	X	
XeCl	0.308	Photochemical	x	х		
KrF	0.254	Photochemical	X	x		





Skin Hazards

UV-A: Photosensitive reactions & tanning UV-B & IR: Sun burn (1000 x sensitive than UV-A to burns) UV-C: Skin burn (sunburns without tanning, not from sun) Skin cancer and accelerated skin aging

Not capable of producing damaging radiation levels during normal operation.

E.g. Laser printer, CD-Rom

Does not apply to servicing.

Class 2 & 3a Lasers (Low Power)

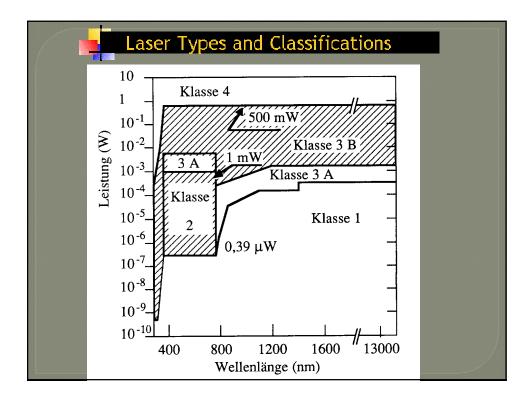
Class 2 lasers emit visible light. Not hazardous if viewed less than 0.25 second.
Maximum power is 1 mW for CW lasers. Eg. Barcode Scanner.

Class 3a lasers probably not hazardous if viewed within 0.25 seconds. Hazardous if viewed with collecting optics. Maximum power is 5mW. Some require DANGER labels. E.g. Laser Pointer.

Class 3b Lasers (Medium Power)

Hazardous if viewed directly or by specular reflection. Diffuse reflection not usually hazardous. Upper limit is 0.5W for CW lasers.

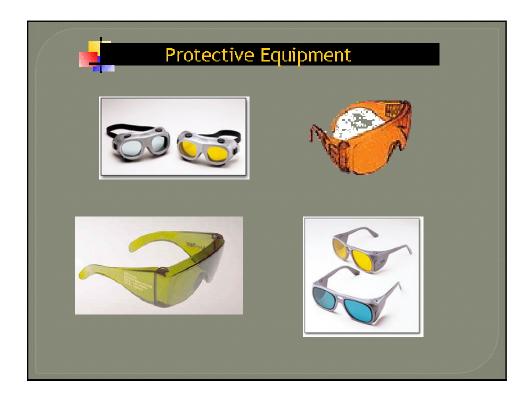
Class 4 lasers (high power)


- Lasers exceeding 0.5W
- Hazardous under all viewing conditions: direct, specular and diffuse.
- Potential fire hazard when in contact with combustible materials
- Produce skin hazards from ultraviolet radiation. Can produce laser generated air contaminants and hazardous plasma radiation.

Safety class	Description
1	 Not dangerous under reasonable conditions of use either because the output of the laser is very low or because of installed safeguards Examples: 0.2-mW laser diode, fully enclosed 10W Nd:YAG laser Most commercial laser systems for material processing are sold as Class 1 products although they contain Class 4 lasers The benefit of a Class 1 laser system is that it can be installed anywhere and no eye protection is

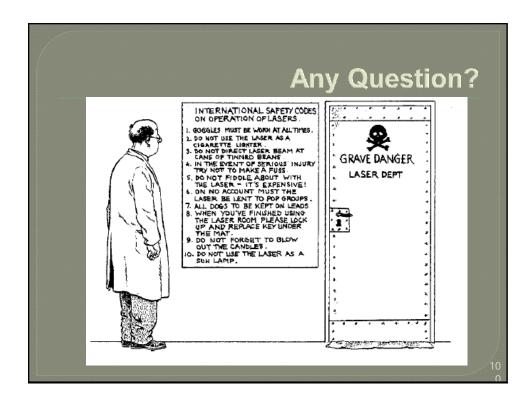
class	Description
2	The accessible laser radiation is limited to the visible spectral range (400–700 nm) and to 1 mW accessible power. Due to the blink reflex, it is not dangerous for the eye in the case of limited exposure (up to 0.25 s). Example: some (but not all) <u>laser pointers</u>
2M	Same as class 2, but with the additional restriction that no optical instruments may be used. The power may be higher than 1 mW, but the beam diameter in accessible areas is large enough to limit the intensity to levels which are safe for short-time exposure.

Safety class	Description
3R	The accessible radiation may be dangerous for the eye, but can have at most 5 times the permissible optical power of class 2 (for visible radiation) or class 1 (for other wavelengths).
3B	The accessible radiation may be dangerous for the eye, and under special conditions also for the skin. Diffuse radiation (as e.g. scattered from the some diffuse target) should normally be harmless. Up to 500 mW is permitted in the visible spectral region. Example: 100-mW continuous-wave frequency-doubled Nd:YAG laser


Safety class	description
4	The accessible radiation is very dangerous for the eye and for the skin. Even light from diffuse reflections may be hazardous for the eye. The radiation may cause fire or explosions. Examples: 10-W argon ion laser, 4-kW thin- disk laser in a non-encapsulated setup

Laser Types and Classifications						
Table 1: Classifica			Glassificat			
Laser	Wavel.(nm)	Wavel. Range (nm)	Class 1(W)	Class 2(W)	Class 3(W)	Class 4(W)
cw Nd:YAG (quadrupled)	266	UV: 100 - 280	< 0.8 x 10 ⁻⁹ for 8 hrs		> Class 1 but < 0.5	> 0.5
He-Cd Argon Krypton	325 351.1, 363.8 350.7, 356.4	UV: 315 - 400	< 0.8 x 10 ⁻⁶		> Class 1 but < 0.5	> 0.5
He-Cd Argon (vis.) He-Ne cw Nd:YAG dble He-Ne Krypton	441.6 488, 514.5 460, 4-700(numerous) 532 632.8 647.1, 530.9676.4	Visible: 400 - 700	< 0.4 x 10 ⁻⁶ < 0.4 x C ^B x 10 ⁻⁶ (See ANSI Z136.1 for values of C ^B)	> Class 1 but < 1 x 10 ⁻³	> Class2 but < 0.5	> 0.5
cw Ga-Al-As cw Ga-As cw Nd:YAG He-Ne	850 (20° C) 905 (20° C) 1064 1080, 1152	Near IR: 700 -1400	$ \begin{array}{c} < 80 \ x \ 10^{-6} < 0.1 \ x \\ 10^{-3} \\ < 0.28 \ x \ 10^{-3} \end{array} $		> Class 1 but < 0.5	> 0.5

PULSED LASERS	aser T	ypes and	l Classi	fications	
Laser	Wavel. (nm)	Pulse Duration(s)	Class 1 (J/ cm ²)	Class 3 (J/cm ²)	Class 4 (J/cm ²)
Nd:YAG Q sw. quad Ruby (Doubled)	266.1 347.1	10-30 x 10 ⁻⁹		≤ 1 0	> 10
Q sw Nd:YAG doubled Q switch Ruby Ruby long pulse Rhodamine 6G	532 694.3 694.3 450-650	~20 x 10 ⁻⁹ ~1 x 10 ⁻³ ~1 x 10 ⁻⁶	$\leq 0.2 \text{ x } 10^{-6}$ $\leq 4.0 \text{ x } 10^{-6}$ $\leq 0.2 \text{ x } 10^{-6}$	 ≥ Class 1 but < 74 x 10⁻³ ≥ Class 1 but < 3.1 ≥ Class 1 but < 0.31 	>75 x 10 ⁻³ >3.1 >0.31
Nd: YAG (Q sw) Erbium-glass (Q sw) Carbon Dioxide (Q sw)	1064 1540 10,600	~20 x 10 ⁻⁹ ~10-100 x 10 ⁻⁹ ~1-100 x 10 ⁻⁹	$ \leq 2 \times 10^{-6} \\ \leq 8 \times 10^{-3} \\ \leq 80 \times 10^{-6} $	≥ Class 1 but < 0.16 ≥ Class 1 but < 10 ≥ Class 1 but < 10	> 0.16 >10 >10
Based upon American Natio	onal Standards Ir	stitute Standard Z-136.1			



		Simplified M	ethod for Selecti for Wavelen		Protection for Ir 400 and 1400nm		ing		
	hed Lasers 0 0.1 ms)		tched Lasers to 10 ms)	Continu Morr	ous Lasers nentary s to 10 s)	Continue Long-Te	ous Lasers rm Staring nan 3 hours	Attenuatio	n
Maximum Output Energy (J)	Maximum Beam Radiant Exposure (J·cm ⁻²)	Maximum Laser Output Energy (J)	Maximum Beam Radiant Exposure (J·cm ⁻²)	Maximum Power Output (W)	Maximum Beam Irradiance (W·cm ⁻²)	Maximum Power Output (W)	Maximum Beam Irradiance (W·cm ⁻²)	Attenuation Factor	OD
10	20	100	200	NR	NR	NR	NR	100,000,000	8
1.0	2	10	20	NR	NR	NR	NR	10,000,000	7
10-1	2 x 10 ⁻¹	1.0	2	NR	NR	1.0	2	1,000,000	6
10-2	2 x 10 ⁻²	10-1	2 x 10 ⁻¹	NR	NR	10-1	2 x 10 ⁻¹	100,000	5
10-5	2 x 10 ⁻⁵	10-2	2 x 10 ⁻²	10	20	10-2	2 x 10 ⁻²	10,000	4
10-4	2 x 10 ⁻⁴	10-3	2 x 10 ⁻³	1.0	2	10-3	2 x 10 ⁻³	1,000	3
10-5	2 x 10 ⁻⁵	10-4	2 x 10 ⁻⁴	10-1	2 x 10 ⁻¹	10-4	2 x 10 ⁻⁴	100	2
10 ⁻⁶	2 x 10 ⁻⁶	10-5	2 x 10 ⁻⁵	10-2	2 x 10 ⁻²	10-5	2 x 10 ⁻⁵	10	1

Type of Accidents

• Eye exposure	-73%
Skin exposure	-13.9%
Fire	-7.3%
Electrical Shock	-3.6 (5 deaths)
Note: Contact DOHS to	arrange a course in CPR.

