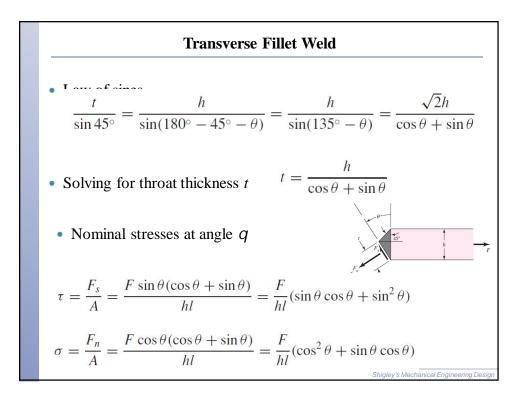
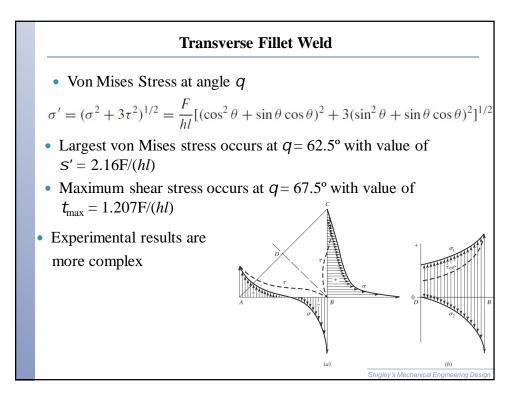
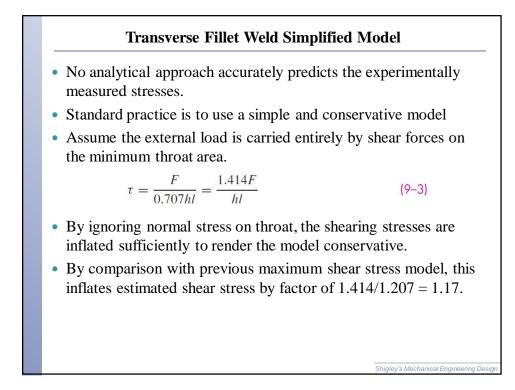
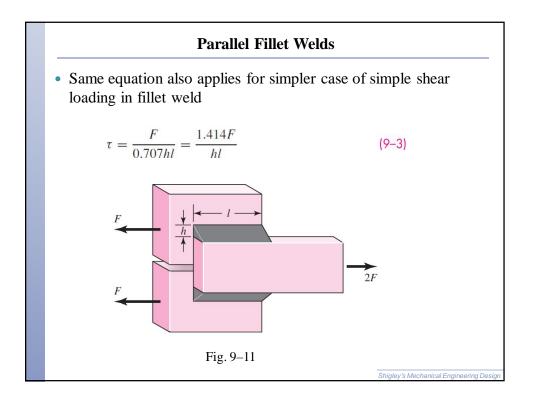
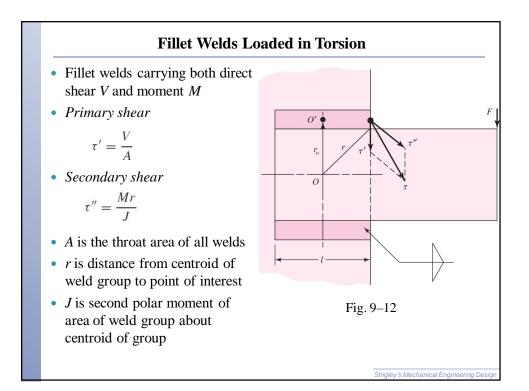

	<i>side</i> of a the arroy	a joint is		Symbols side, are	a, or nea	r membe	er to		
The sic	le oppos	site the ar	row side	e is the o	ther side	2			
		is shown							
Shup t				- Symeor					
			Туре о	f weld					
Bead	Fillet	Plug or		Groove					
Deau	rmet	slot	Square	V	Bevel	U	J		
				\sim	\checkmark	Y	V		
			Fig. 9	-2					
			0.2						

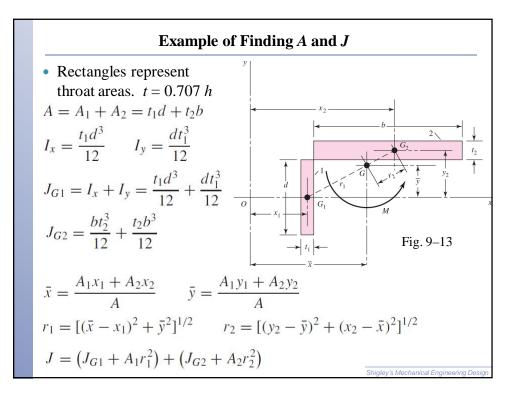


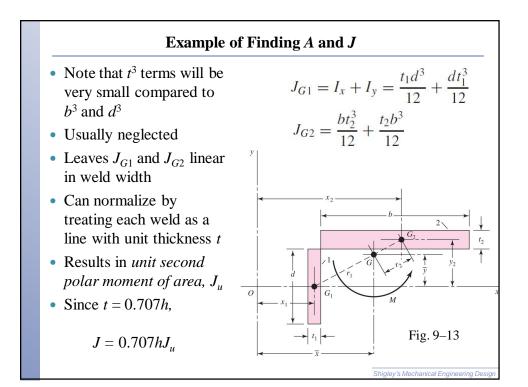


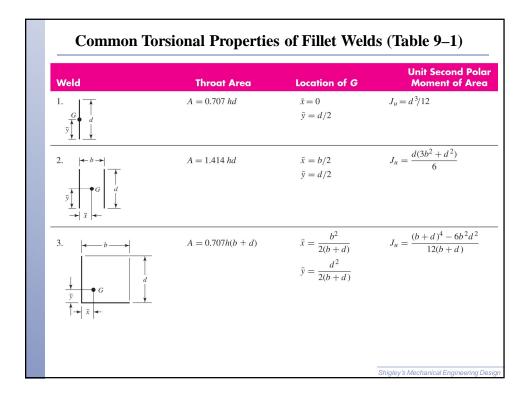

Table 9–3 Minimum Weld-Metal	AWS Electrode Number*	Tensile Strength kpsi (MPa)	Yield Strength, kpsi (MPa)	Percent Elongation
Properties	E60xx	62 (427)	50 (345)	17-25
	E70xx	70 (482)	57 (393)	22
	E80xx	80 (551)	67 (462)	19
	E90xx	90 (620)	77 (531)	14-17
	E100xx	100 (689)	87 (600)	13-16
	E120xx	120 (827)	107 (737)	14
_	or five-digit numbering system in variables in the welding technique	AWS) specification code numbering sy: which the first two or three digits desig e, such as current supply. The next-to-lo plete set of specifications may be obtai	nate the approximate tensile strengt st digit indicates the w <mark>el</mark> ding position	th. The last digit include

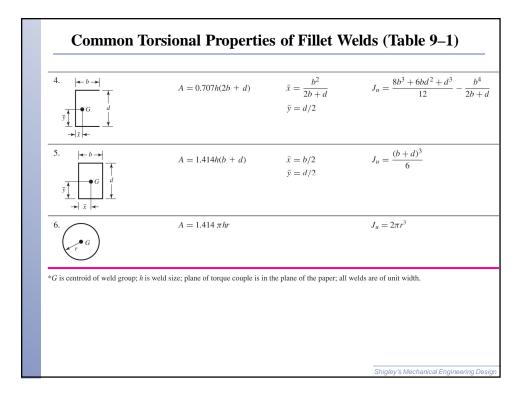


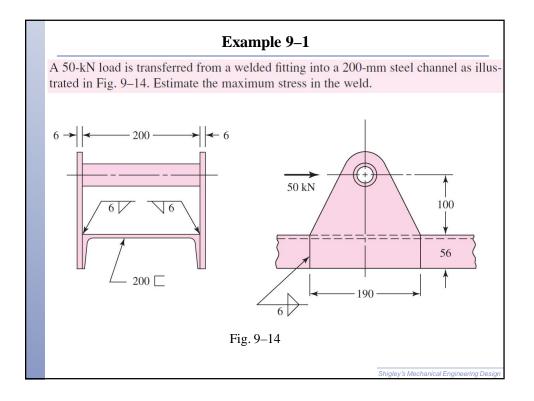


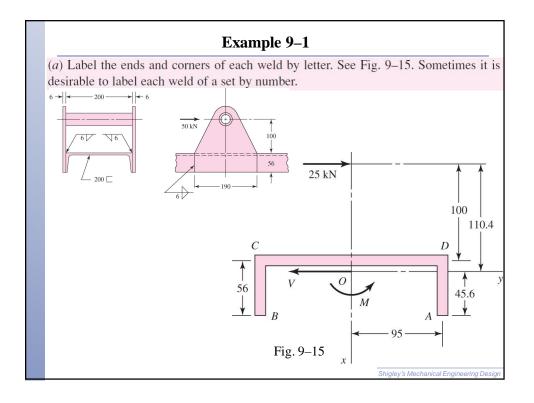


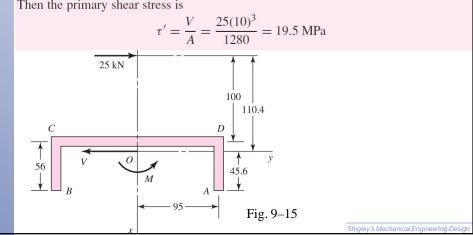


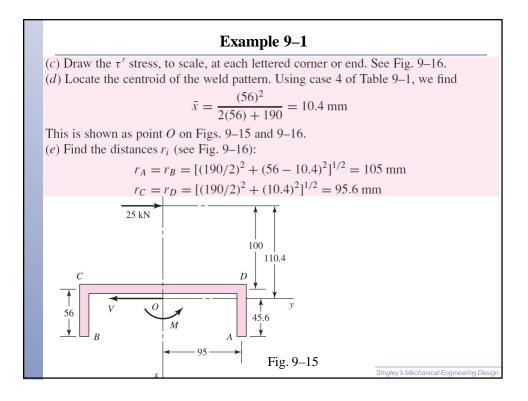


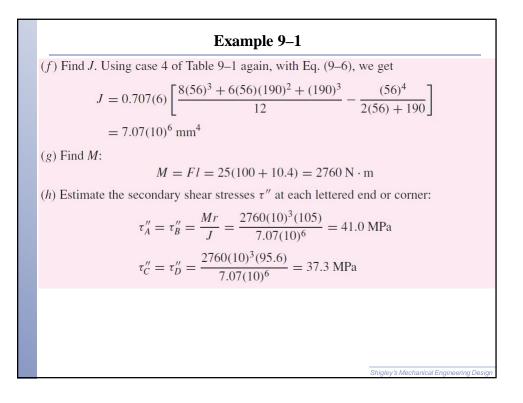


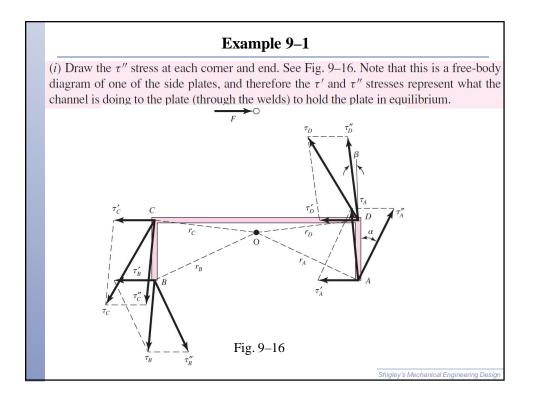


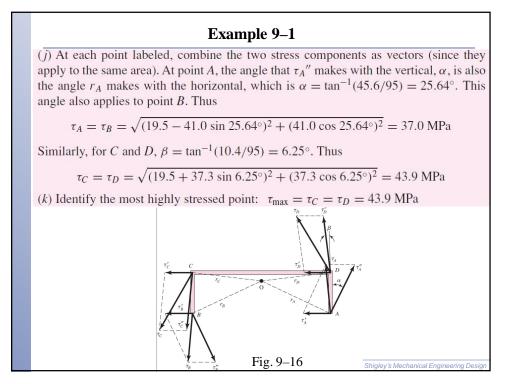


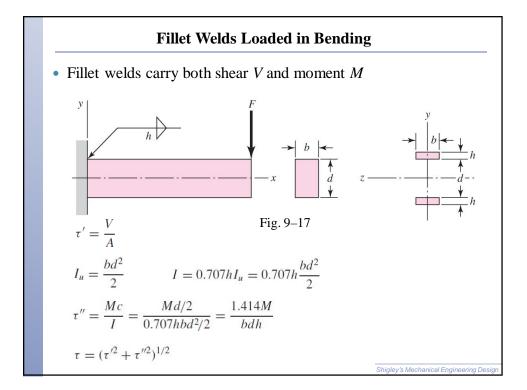


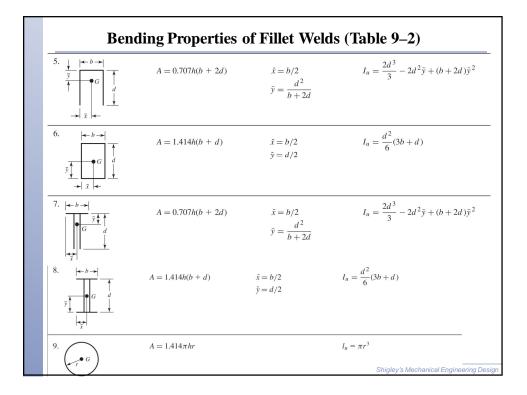



(b) Estimate the primary shear stress τ' . As shown in Fig. 9–14, each plate is welded to the channel by means of three 6-mm fillet welds. Figure 9-15 shows that we have divided the load in half and are considering only a single plate. From case 4 of Table 9–1 we find the throat area as


 $A = 0.707(6)[2(56) + 190] = 1280 \text{ mm}^2$


Then the primary shear stress is





Weld	Throat Area	Location of G	Unit Second Moment of A
1. \overline{g}	A = 0.707hd	$\bar{x} = 0$ $\bar{y} = d/2$	$I_u = \frac{d^3}{12}$
2. $\downarrow \downarrow \downarrow$	A = 1.414hd	$\begin{aligned} \bar{x} &= b/2\\ \bar{y} &= d/2 \end{aligned}$	$I_u = \frac{d^3}{6}$
3. $ \leftarrow b \rightarrow $ $\overline{y} \qquad \qquad$	A = 1.414hb	$\begin{aligned} \bar{x} &= b/2\\ \bar{y} &= d/2 \end{aligned}$	$I_u = \frac{bd^2}{2}$
4. $ \leftarrow b \rightarrow $ \overline{y} G d d	A = 0.707h(2b + d)	$\bar{x} = \frac{b^2}{2b+d}$ $\bar{y} = d/2$	$I_u = \frac{d^2}{12}(6b+d)$

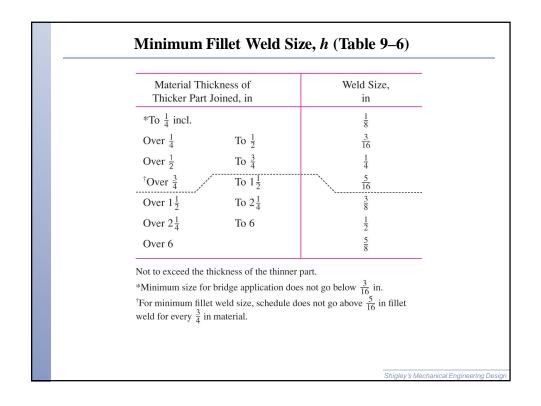
Strength of Welded Joints

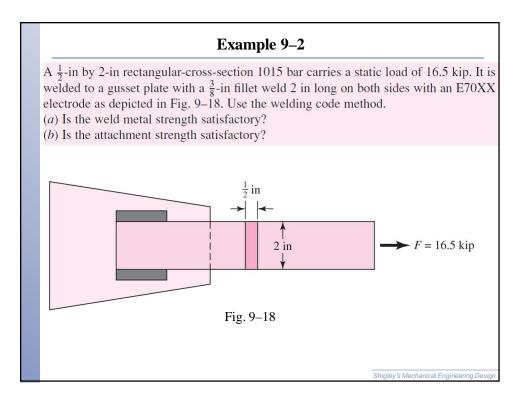
- Must check for failure in parent material and in weld
- Weld strength is dependent on choice of electrode material
- Weld material is often stronger than parent material
- Parent material experiences heat treatment near weld
- Cold drawn parent material may become more like hot rolled in vicinity of weld
- Often welded joints are designed by following codes rather than designing by the conventional factor of safety method

Shigley's Mechanical Engineer

Shialev's Mechanical Engineering Des

	Table 9–3		
Type of Loading	Type of Weld	Permissible Stress	n *
Tension	Butt	$0.60S_y$	1.67
Bearing	Butt	$0.90S_y$	1.11
Bending	Butt	$0.60 - 0.66 S_y$	1.52-1.67
Simple compression	Butt	$0.60S_y$	1.67
Shear	Butt or fillet	$0.30S_{ut}^{\dagger}$	


[†]Shear stress on base metal should not exceed $0.40S_y$ of base metal.


Fatigue Stress-Concentration Factors

- K_{fs} appropriate for application to shear stresses
- Use for parent metal and for weld metal

Table 9–5	Type of Weld	K _{fs}
Fatigue Stress-Concentration Factors, <i>K_{fs}</i>	Reinforced butt weld Toe of transverse fillet weld End of parallel fillet weld T-butt joint with sharp corners	1.2 1.5 2.7 2.0
		al Engineering Design

Strength Level of Weld Metal (EXX)							
	60*	70*	80	90*	100	110*	120
	Allowable	e shear stress or partial	on throat, penetratio			weld	
$\tau =$	18.0	21.0	24.0	27.0	30.0	33.0	36.0
	Allo	wable Unit I	Force on Fil	llet Weld, k	cip/linear in		
$^{\dagger}\!f =$	12.73h	14.85h	16.97h	19.09h	21.21h	23.33h	25.45h
Leg Size <i>h</i> , in		Allowable U		or Various p/linear in	Sizes of Fil	let Welds	
1	12.73	14.85	16.97	19.09	21.21	23.33	25.45
7/8	11.14	12.99	14.85	16.70	18.57	20.41	22.27
3/4	9.55	11.14	12.73	14.32	15.92	17.50	19.09
5/8	7.96	9.28	10.61	11.93	13.27	14.58	15.91
1/2	6.37	7.42	8.48	9.54	10.61	11.67	12.73
7/16	5.57	6.50	7.42	8.35	9.28	10.21	11.14
3/8	4.77	5.57	6.36	7.16	7.95	8.75	9.54
5/16	3.98	4.64	5.30	5.97	6.63	7.29	7.95
1/4	3.18	3.71	4.24	4.77	5.30	5.83	6.36
3/16	2.39	2.78	3.18	3.58	3.98	4.38	4.77
1/8	1.59	1.86	2.12	2.39	2.65	2.92	3.18
1/16	0.795	0.930	1.06	1.19	1.33	1.46	1.59

(*a*) From Table 9–6, allowable force per unit length for a $\frac{3}{8}$ -in E70 electrode metal is 5.57 kip/in of weldment; thus

F = 5.57l = 5.57(4) = 22.28 kip

Since 22.28 > 16.5 kip, weld metal strength is satisfactory. (*b*) Check shear in attachment adjacent to the welds. From Table A–20, $S_y = 27.5$ kpsi. Then, from Table 9–4, the allowable attachment shear stress is

 $\tau_{\rm all} = 0.4S_{\rm v} = 0.4(27.5) = 11 \,\rm kpsi$

The shear stress τ on the base metal adjacent to the weld is

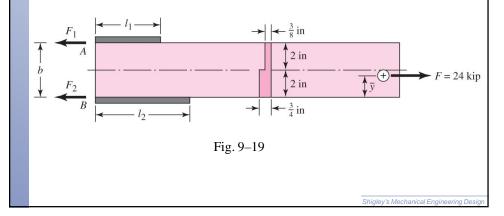
$$\tau = \frac{F}{2hl} = \frac{16.5}{2(0.375)2} = 11 \text{ kpsi}$$

Shigley's Mechanical Engineering De

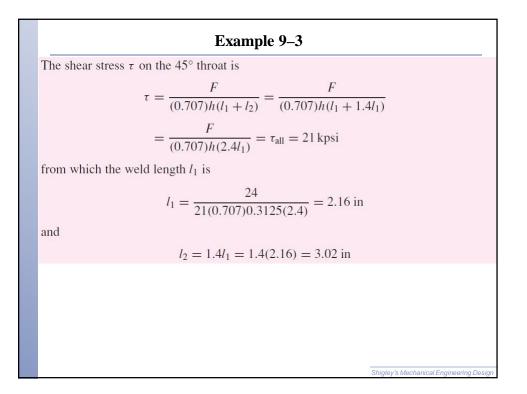
Shigley's Mechanical Engineering Des

Example 9–2

Since $\tau_{all} \ge \tau$, the attachment is satisfactory near the weld beads. The tensile stress in the shank of the attachment σ is


$$\sigma = \frac{F}{tl} = \frac{16.5}{(1/2)2} = 16.5$$
 kpsi

The allowable tensile stress σ_{all} , from Table 9–4, is 0.6S_y and, with welding code safety level preserved,


$$\sigma_{\text{all}} = 0.6S_{y} = 0.6(27.5) = 16.5 \text{ kpsi}$$

Since $\sigma \leq \sigma_{all}$, the shank tensile stress is satisfactory.

A specially rolled A36 structural steel section for the attachment has a cross section as shown in Fig. 9–19 and has yield and ultimate tensile strengths of 36 and 58 kpsi, respectively. It is statically loaded through the attachment centroid by a load of F =24 kip. Unsymmetrical weld tracks can compensate for eccentricity such that there is no moment to be resisted by the welds. Specify the weld track lengths l_1 and l_2 for a $\frac{5}{16}$ -in fillet weld using an E70XX electrode. This is part of a design problem in which the design variables include weld lengths and the fillet leg size.

Example 9–3
The <i>y</i> coordinate of the section centroid of the attachment is
$\bar{y} = \frac{\sum y_i A_i}{\sum A_i} = \frac{1(0.75)2 + 3(0.375)2}{0.75(2) + 0.375(2)} = 1.67$ in
Summing moments about point B to zero gives
$\sum M_B = 0 = -F_1 b + F \bar{y} = -F_1(4) + 24(1.67)$
from which $F_1 = 10$ kip It follows that
$F_2 = 24 - 10.0 = 14.0$ kip
The weld throat areas have to be in the ratio $14/10 = 1.4$, that is, $l_2 = 1.4l_1$. The weld length design variables are coupled by this relation, so l_1 is the weld length design variable. The other design variable is the fillet weld leg size h , which has been decided by the problem statement. From Table 9–4, the allowable shear stress on the throat τ_{all} is
$\tau_{\rm all} = 0.3(70) = 21 \; {\rm kpsi}$
Shigley's Mechanical Engineering Design

Example 9–3
The shear stress τ on the 45° throat is
$\tau = \frac{F}{(0.707)h(l_1 + l_2)} = \frac{F}{(0.707)h(l_1 + 1.4l_1)}$
$=\frac{F}{(0.707)h(2.4l_1)}=\tau_{\rm all}=21\rm kpsi$
from which the weld length I_1 is
$l_1 = \frac{24}{21(0.707)0.3125(2.4)} = 2.16 \text{ in}$
and
$l_2 = 1.4l_1 = 1.4(2.16) = 3.02$ in
These are the weld-bead lengths required by weld metal strength. The attachment shear stress allowable in the base metal, from Table 9–4, is
$\tau_{\rm all} = 0.4S_y = 0.4(36) = 14.4 \text{ kpsi}$
Shigley's Mechanical Engineering Design

The shear stress τ in the base metal adjacent to the weld is

$$\tau = \frac{F}{h(l_1 + l_2)} = \frac{F}{h(l_1 + 1.4l_1)} = \frac{F}{h(2.4l_1)} = \tau_{all} = 14.4 \text{ kpsi}$$

from which

$$l_1 = \frac{F}{14.4h(2.4)} = \frac{24}{14.4(0.3125)2.4} = 2.22 \text{ in}$$

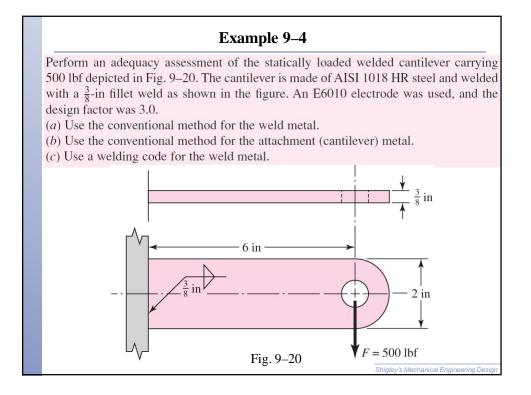
$$l_2 = 1.4l_1 = 1.4(2.22) = 3.11 \text{ in}$$

These are the weld-bead lengths required by base metal (attachment) strength. The base metal controls the weld lengths. For the allowable tensile stress σ_{all} in the shank of the attachment, the AISC allowable for tension members is $0.6S_{\gamma}$; therefore,

$$\sigma_{\text{all}} = 0.6S_v = 0.6(36) = 21.6 \text{ kpsi}$$

Shigley's Mechanical Engineering De

Shigley's Mechanical Engineering Des


Example 9–3

The nominal tensile stress σ is *uniform* across the attachment cross section because of the load application at the centroid. The stress σ is

$$\sigma = \frac{F}{A} = \frac{24}{0.75(2) + 2(0.375)} = 10.7 \text{ kps}$$

Since $\sigma \le \sigma_{\text{all}}$, the shank section is satisfactory. With l_1 set to a nominal $2\frac{1}{4}$ in, l_2 should be 1.4(2.25) = 3.15 in.

Set $l_1 = 2\frac{1}{4}$ in, $l_2 = 3\frac{1}{4}$ in. The small magnitude of the departure from $l_2/l_1 = 1.4$ is not serious. The joint is essentially moment-free.

Example 9–4 (a) From Table 9–3, $S_y = 50$ kpsi, $S_{ut} = 62$ kpsi. From Table 9–2, second pattern, b = 0.375 in, d = 2 in, so A = 1.414hd = 1.414(0.375)2 = 1.06 in² $I_u = d^3/6 = 2^3/6 = 1.33$ in³ $I = 0.707hI_u = 0.707(0.375)1.33 = 0.353$ in⁴ Primary shear: $\tau' = \frac{F}{A} = \frac{500(10^{-3})}{1.06} = 0.472$ kpsi Secondary shear: $\tau'' = \frac{Mr}{I} = \frac{500(10^{-3})(6)(1)}{0.353} = 8.50$ kpsi

The shear magnitude τ is the Pythagorean combination

$$\tau = (\tau'^2 + \tau''^2)^{1/2} = (0.472^2 + 8.50^2)^{1/2} = 8.51$$
 kpsi

The factor of safety based on a minimum strength and the distortion-energy criterion is

$$n = \frac{S_{sy}}{\tau} = \frac{0.577(50)}{8.51} = 3.39$$

Shigley's Mechanical Engineering De

Since $n \ge n_d$, that is, $3.39 \ge 3.0$, the weld metal has satisfactory strength.

Example 9–4 (b) From Table A–20, minimum strengths are $S_{ut} = 58$ kpsi and $S_y = 32$ kpsi. Then $= \frac{M}{L/c} = \frac{M}{bd^2/6} = \frac{500(10^{-3})6}{0.375(2^2)/6} = 12$ kpsi $= \frac{S_y}{\sigma} = \frac{32}{12} = 2.67$ Since $n < n_d$, that is, 2.67 < 3.0, the joint is unsatisfactory as to the attachment strength. (c) From part (a), $\tau = 8.51$ kpsi. For an E6010 electrode Table 9–6 gives the allowable shear stress τ_{all} as 18 kpsi. Since $\tau < \tau_{all}$, the weld is satisfactory. Since the code already has a design factor of 0.577(50)/18 = 1.6 included at the equality, the corresponding factor of safety to part (a) is $n = 1.6\frac{18}{8.51} = 3.38$ which is consistent.