

مقدمه

محوريا شافت:

عضوي چرخشي يا ثابت, ومعمو لا با مقطع دايره اي براي انتقال توان یا حرکت از دستگاه محرک, نظیر یک موتور الکتریکی, به یک مصر ف كننده

بر روی شافت معمولا چرخدنده, پولی و چرخ زنجیرنصب گردیده که انتقال حرکت چرخشی و توان را توسط دنده های درگیر, تسمه

وزنجیر میسر می سازند

Photo courtesy Emerson Power Transmission Corp

19

چرخدنده های جناقی

 To avoid axial thrust, two helical gears of opposite hand can be mounted side by side, to cancel resulting thrust forces

• Herringbone gears are mostly used on heavy machinery.

21

چرخدنده مارپیچ مواز ي-مشخصه ها

نحوه تماس: خط - نقطه - خط:

■ درگیری تدریجی دندانه ها

انتقال آرام بار

• توانایی انتقال بارهای سنگین در سرعتهای بالا

■ اهمیت کم نسبت تماس

زاویه مارپیچ: ایجاد مولفه نیرویی محوری (علاوه بر شعاعی) با افزایش ψ ایجاد سروصدا کاهش می یابد (انتقال قدرت یکنواخت تر)

با افزایش ψ نیروی محوری افزایش می یابد عموما 15, 23, 30و °45

22

WORM AND WORM GEAR

- Worm gears are used when large gear reductions are needed. It is common for worm gears to have reductions of 20:1, and even up to 300:1 or greater
- Many worm gears have an interesting property that no other gear set has: the worm can easily turn the gear, but the gear cannot turn the worm
- Worm gears are used widely in material handling and transportation machinery, machine tools, automobiles etc

 $W^x = W \cos \phi_n \sin \lambda$

 $W^{y} = W \sin \phi_{n}$

 $W^z = W \cos \phi_n \cos \lambda$

 $W_{Wt} = -W_{Ga} = W^x$

 $W_{Wr} = -W_{Gr} = W^y$

 $W_{Wa} = -W_{Gt} = W^z$

 $W^x = W(\cos\phi_n \sin\lambda + f\cos\lambda)$

 $W^y = W \sin \phi_n$

 $W^z = W(\cos\phi_n\cos\lambda - f\sin\lambda)$

آنالیز نیرویی حلزون و چرخ حلزون

$$W_f = fW = \frac{fW_{Gt}}{f\sin\lambda - \cos\phi_n\cos\lambda}$$
 (13-44)

A useful relation between the two tangential forces, W_{Wt} and W_{Gt} , can be obtained by equating the first and third parts of Eqs. (13–42) and (13–43) and eliminating W. The result is

$$W_{Wt} = W_{Gt} \frac{\cos \phi_n \sin \lambda + f \cos \lambda}{f \sin \lambda - \cos \phi_n \cos \lambda}$$
 (13-45)

Efficiency η can be defined by using the equation

$$\eta = \frac{W_{Wt}(\text{without friction})}{W_{Wt}(\text{with friction})} \tag{a}$$

Substitute Eq. (13–45) with f=0 in the numerator of Eq. (a) and the same equation in the denominator. After some rearranging, you will find the efficiency to be

 $\eta = \frac{\cos \phi_n - f \tan \lambda}{\cos \phi_n + f \cot \lambda} \tag{13-46}$

Dep. of Mech. Eng.

راندمان حلزون و چرخ حلزون

$$\eta = \frac{\cos \phi_n - f \tan \lambda}{\cos \phi_n + f \cot \lambda}$$

Table 13-6

Efficiency of Worm Gearsets for f = 0.05

Helix Angle ψ, deg	Efficiency η, %
1.0	25.2
2.5	45.7
5.0	62.0
7.5	71.3
10.0	76.6
15.0	82.7
20.0	85.9
30.0	89.1

راندمان حلزون و چرخ حلزون

Many experiments have shown that the coefficient of friction is dependent on the relative or sliding velocity. In Fig. 13–41, V_G is the pitch-line velocity of the gear and V_W the pitch-line velocity of the worm. Vectorially, $V_W = V_G + V_S$; consequently, the sliding velocity is

$$V_S = \frac{V_W}{\cos \lambda} \tag{13-47}$$

Figure 13-41

Velocity components in worm gearing.

Bevel gears

- **Bevel gears** are useful when the direction of a shaft's rotation needs to be changed
- They are usually mounted on shafts that are 90 degrees apart, but can be designed to work at other angles as well
- The teeth on bevel gears can be straight, spiral or hypoid
- locomotives, marine applications, automobiles, printing presses, cooling towers, power plants, steel plants, railway track inspection machines, etc.

Straight and Spiral Bevel Gears

